首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An increasing number of GNSS reference stations are installed around the world to provide real-time precise positioning services. In most of the current services, a full network solution is required for the precise determination of biases. Such a network solution is time consuming and difficult to achieve for very large regions such as Europe or China. Therefore, we developed a multi-layer processing scheme for precise point positioning (PPP) regional augmentation to avoid processing large networks. Furthermore, we use L1 and L2 raw observations and estimate atmospheric delays, which were properly constrained to the atmospheric corrections derived from the reference stations. Therefore, inaccurate representation of atmospheric delays due to temporal and/or spatial atmospheric fluctuations in the processing can be compensated. The proposed scheme of PPP regional augmentation was implemented into the operational real-time PPP service system at GFZ for validation. The real-time orbit and clock corrections, the uncalibrated phase delays, and regional augmentation corrections are generated by this system. The augmentation corrections from the regional network are investigated and the positioning performance in terms of positioning accuracy and time for fixed solution is demonstrated in real-time. Our results indicate that a reliable fixing is possible after 5 s on average. The positioning accuracy is about 12, 10, and 25 mm in east, north, and vertical direction, respectively.  相似文献   

2.
As the Chinese BeiDou Navigation Satellite System (BDS) has become operational in the Asia-Pacific region, it is important to better understand and demonstrate the benefits of combining triple-frequency BDS with dual-frequency GPS observations for network-based real-time kinematic (NRTK) services. Undifferenced NRTK is a new NRTK service mode, it extends the concept of NRTK by not requiring reference station and specified reference satellite at the rover processing. In order to realize the undifferenced NRTK service, a strategy for real-time modeling the undifferenced (UD) augmentation information is given, in which the fixed double-differenced ambiguities are transformed into UD ones with the help of datum settings. Since this strategy is insensitive to existing ephemeris products, it is applicable to the services of current BDS regional reference networks. Furthermore, a processing scheme for ambiguity resolution (AR) with arbitrary-frequency observations is also presented in detail. An instantaneous and reliable BDS + GPS positioning service can be provided to the rovers in undifferenced NRTK processing mode. With the data collected at 31 stations from a continuously operating reference station network in Guangdong Province (GDCORS) of China, the efficiency of the proposed approaches using combined BDS and GPS observations is confirmed. For three rover stations during days 327–329, a total of 12,960 1-min tests were performed separately to demonstrate the performance of AR. Thanks to the dynamically refined priori information of residual tropospheric and ionospheric error, and the availability of more satellites and observations, the AR fixing rates of combined BDS and GPS systems improve by 13 to 65%, compared with those of the GPS-only system using the traditional WL-L1-IF scheme. The positioning accuracy has also significantly improved.  相似文献   

3.
舒宝  刘晖  王利  张勤  黄观文 《测绘学报》2022,51(9):1870-1880
GNSS区域参考站网可为大范围PPP和RTK终端用户提供快速精密定位服务,然而不同技术体制下的误差影响因素及服务模式不同,服务端数据处理方法及终端定位性能也会有所差异。本文在实现参考站非差模糊度固定的基础上,给出了基于区域参考站网的PPP及RTK一体化服务方法,并对两种技术体制的终端定位效果进行了全面评估。采用西北某省站间距约100 km的CORS站网数据进行试验分析,结果表明,采用区域参考站网解算的整数钟/UPD产品进行PPP固定解动态定位时精度较高,水平方向RMS可达0.5 cm,区域大气改正数可以显著提升定位终端的初始化速度,对于PPP和RTK,60.0%和87.7%的时段单历元即可得到固定解。需要注意的是,基于VRS模式的RTK定位等价于大气强约束,在大气建模精度较差时定位精度会显著下降,而采用虚拟大气约束的PPP-RTK定位精度几乎不受影响。  相似文献   

4.
模糊度固定能够显著提高精密单点定位(PPP)的精度和收敛速度,是国内外卫星导航定位领域的研究热点.本文通过最小二乘法分离接收机端和卫星端小数周偏差(FCB),恢复非差模糊度的整数特性,将得到的卫星端FCB提供给用户,能够实现非差模糊度固定的PPP.采用全球IGS跟踪站的观测数据进行非差FCB解算,实验结果表明,宽巷FCB的稳定性较好,一周内变化小于0.1周,而窄巷FCB一天内变化较大.将获得的FCB用于模糊度固定PPP实验,E、N、U三个方向的定位精度分别为0.7 cm、0.8 cm和2.1 cm,与浮点解PPP相比,分别提高68%、51%和37%,验证了本文估计的FCB用于模糊度固定PPP的定位性能   相似文献   

5.
基于部分整周模糊度固定的非差GPS精密单点定位方法   总被引:2,自引:2,他引:0  
潘宗鹏  柴洪洲  刘军  董冰全  刘鸣  王华润 《测绘学报》2015,44(11):1210-1218
近年来,精密单点定位(PPP)模糊度固定技术不断发展,模糊度正确固定后可以提高短时间的定位精度。然而固定错误的模糊度,将引起严重的定位偏差,因此对PPP模糊度固定的成功率和可靠性进行研究很有必要。本文探讨了采用非差小数偏差(FCBs)改正的PPP模糊度固定方法;同时提出了一种分步质量控制的PPP部分模糊度固定(PAR)策略。通过欧洲CORS数据对该方法进行验证,结果表明:PPP模糊度固定可以提高小时解静态PPP定位精度。同时,采用部分模糊度固定策略,能够有效控制未收敛模糊度影响,提高用户端PPP模糊度固定成功率。  相似文献   

6.
Network real-time kinematic (NRTK) positioning is today’s industry standard for high-precision applications. Once network ambiguities are fixed, the network engine processes simultaneous observations from a number of continuously operating reference stations to compute corrections for users operating within the network area. Users are treated as passive nodes of the network. However, if two-way communication is available, then users could transmit their observations to the central processing facility where the network can treat them as active nodes, densifying the existing network infrastructure. This multiple rover network (MRN) concept exploits the additional information provided by users in a GNSS network. One application is to use the shorter inter-receiver distances to improve the success rate of single-epoch ambiguity resolution. This is also the goal of the subset ambiguity resolution algorithm, which improves the single-epoch success rate by allowing a subset of ambiguities to be resolved. We present an enhanced processing strategy to complement centimeter-level single-epoch NRTK positioning. This approach combines a single-baseline and an MRN solution with the partial ambiguity resolution algorithm and is only possible for a centralized GNSS network architecture. The algorithm is tested against the standard network ambiguity resolution strategy of full-set ambiguity fixing with respect to the nearest reference station. A 24-h dataset from the Southern California Integrated GNSS network is used with a configuration of three reference stations and four users. The enhanced solution achieves a mean ambiguity resolution success rate of 83% over all four users and all epochs, compared to 32% for the conventional technique.  相似文献   

7.
提出一种基于参考站增强信息的精密单点定位(Precise Point Positioning,PPP)新算法。与其它方法的不同在于采用星间历元间差分技术,消除了模糊度和接收机钟差,避免模糊度参数的收敛或固定。应用基于参考站的增强信息 ,以减弱残余对流层延迟和潜在偏差对定位结果的影响。与传统PPP处理方法相比较,提出的新方法可以改善位置参数的收敛速度,定位精度也有一定程度的提高。  相似文献   

8.
整数相位钟法精密单点定位模糊度固定模型及效果分析   总被引:1,自引:1,他引:0  
刘帅  孙付平  郝万亮  刘婧  李海峰 《测绘学报》2014,43(12):1230-1237
精密单点定位(PPP)模糊度固定方法有3种:星间单差法、整数相位钟法和钟差解耦法,但目前仅法国CNES公开发布用于整数相位钟法PPP模糊度固定的产品,因此研究基于整数相位钟法的用户端PPP模糊度固定模型很有必要.本文分析了整数相位钟法PPP模糊度固定模型,着重指出该模型与传统浮点解PPP模型的区别;提出一种顾及质量控制的逐级模糊度固定策略用于具体实施PPP模糊度固定.大量动态PPP解算试验表明:与浮点解PPP相比,固定解PPP具有更快的收敛速度且定位精度和稳定性更好.  相似文献   

9.
In this article, initial results are presented of a method to improve fast carrier phase ambiguity resolution over longer baselines (with lengths up to about 200 km). The ionospheric delays in the global positioning system (GPS) data of these long baselines mainly hamper successful integer ambiguity resolution, a prerequisite to obtain precise positions within very short observation time spans. A way to correct the data for significant ionospheric effects is to have a GPS user operate within an active or permanently operating network use ionospheric estimates from this network. A simple way to do so is to interpolate these ionospheric estimates based on the expected spatial behaviour of the ionospheric delays. In this article such a technique is demonstrated for the Dutch Active Control Network (AGRS.NL). One hour of data is used from 4 of the 5 reference stations to obtain very precise ionospheric corrections after fixing of the integer ambiguities within this network. This is no problem because of the relatively long observation time span and known positions of the stations of the AGRS.NL. Next these interpolated corrections are used to correct the GPS data from the fifth station for its ionospheric effects. Initial conclusions about the performance of this technique are drawn in terms of improvement of integer ambiguity resolution for this baseline. ? 1999 John Wiley & Sons, Inc.  相似文献   

10.
Ambiguity resolution (AR) for a single receiver has been a popular topic in Global Positioning System (GPS) recently. Ambiguity-resolution methods for precise point positioning (PPP) have been well documented in recent years, demonstrating that it can improve the accuracy of PPP. However, users are often concerned about the reliability of ambiguity-fixed PPP solution in practical applications. If ambiguities are fixed to wrong integers, large errors would be introduced into position estimates. In this paper, we aim to assess the correct fixing rate (CFR), i.e., number of ambiguities correctly fixing to the total number of ambiguities correctly and incorrectly fixing, for PPP user ambiguity resolution on a global scale. A practical procedure is presented to evaluate the CFR of PPP user ambiguity resolution. GPS data of the first 3 days in each month of 2010 from about 390 IGS stations are used for experiments. Firstly, we use GPS data collected from about 320 IGS stations to estimate global single-differenced (SD) wide-lane and narrow-lane satellite uncalibrated phase delays (UPDs). The quality of UPDs is evaluated. We found that wide-lane UPD estimates have a rather small standard deviation (Std) between 0.003 and 0.004 cycles while most of Std of narrow-lane estimates are from 0.01 to 0.02 cycles. Secondly, many experiments have been conducted to investigate the CFR of integer ambiguity resolution we can achieve under different conditions, including reference station density, observation session length and the ionospheric activity. The results show that the CFR of PPP can exceed 98.0 % with only 1 h of observations for most user stations. No obvious correlation between the CFR and the reference station density is found. Therefore, nearly homogeneous CFR can be achieved in PPP AR for global users. At user end, higher CFR could be achieved with longer observations. The average CFR for 30-min, 1-h, 2-h and 4-h observation is 92.3, 98.2, 99.5 and 99.7 %, respectively. In order to get acceptable CFR, 1 h is a recommended minimum observation time. Furthermore, the CFR of PPP can be affected by diurnal variation and geomagnetic latitude variation in the ionosphere. During one day at the hours when rapid ionospheric variations occur or in low geomagnetic latitude regions where equatorial electron density irregularities are produced relatively frequently, a significant degradation of the CFR is demonstrated.  相似文献   

11.
Currently, the GNSS computing modes are of two classes: network-based data processing and user receiver-based processing. A GNSS reference receiver station essentially contributes raw measurement data in either the RINEX file format or as real-time data streams in the RTCM format. Very little computation is carried out by the reference station. The existing network-based processing modes, regardless of whether they are executed in real-time or post-processed modes, are centralised or sequential. This paper describes a distributed GNSS computing framework that incorporates three GNSS modes: reference station-based, user receiver-based and network-based data processing. Raw data streams from each GNSS reference receiver station are processed in a distributed manner, i.e., either at the station itself or at a hosting data server/processor, to generate station-based solutions, or reference receiver-specific parameters. These may include precise receiver clock, zenith tropospheric delay, differential code biases, ambiguity parameters, ionospheric delays, as well as line-of-sight information such as azimuth and elevation angles. Covariance information for estimated parameters may also be optionally provided. In such a mode the nearby precise point positioning (PPP) or real-time kinematic (RTK) users can directly use the corrections from all or some of the stations for real-time precise positioning via a data server. At the user receiver, PPP and RTK techniques are unified under the same observation models, and the distinction is how the user receiver software deals with corrections from the reference station solutions and the ambiguity estimation in the observation equations. Numerical tests demonstrate good convergence behaviour for differential code bias and ambiguity estimates derived individually with single reference stations. With station-based solutions from three reference stations within distances of 22–103 km the user receiver positioning results, with various schemes, show an accuracy improvement of the proposed station-augmented PPP and ambiguity-fixed PPP solutions with respect to the standard float PPP solutions without station augmentation and ambiguity resolutions. Overall, the proposed reference station-based GNSS computing mode can support PPP and RTK positioning services as a simpler alternative to the existing network-based RTK or regionally augmented PPP systems.  相似文献   

12.
The network-based real-time kinematic (RTK) positioning has been widely used for high-accuracy applications. However, the precise point positioning (PPP) technique can also achieve centimeter to decimeter kinematic positioning accuracy without restriction of inter-station distances but is not as popular as network RTK for real-time engineering applications. Typically, PPP requires a long initialization time and continuous satellite signals to maintain the high accuracy. In case of phase breaks or loss of signals, re-initialization is usually required. An approach of instantaneous cycle slips fixing using undifferenced carrier phase measurements is proposed, which leads to instantaneous re-initialization for real-time PPP. In the proposed approach, various errors such as real-time orbit and clock errors, atmosphere delay and wind-up effects are first refined and isolated from integer cycle slips. The integer values of cycle slips can then be estimated and fixed with the LAMBDA technique by applying a cascade cycle slip resolution strategy. Numerical experiments with different user dynamics are carried out to allow a comprehensive evaluation of efficiency and robustness of the cycle slip fixing algorithm. The results show that the cycle slips can be fixed correctly in all cases considered and that data gaps of up to 300?s can be connected with high confidence. As a result, instantaneous re-initialization is achieved in the real-time PPP processing.  相似文献   

13.
施闯  郑福  楼益栋 《测绘学报》2017,46(10):1354-1363
采用IGS、MGEX、北斗地基增强网的实时观测数据,研制北斗广域精密定位服务系统,实时生成北斗高精度轨道、钟差、电离层产品,提供厘米级北斗双频PPP、分米级单频PPP、米级单频伪距定位服务。对实时产品评估分析的结果表明:北斗卫星实时轨道与钟差产品URE统计精度约为2.0cm,实时电离层精度优于4.0TECU。采用全国分布的实时测站动态定位精度(95%置信度)评估分析表明:北斗双频PPP精度存在明显的区域特征,高纬度以及西部边缘地区的定位精度平面约0.2m,高程约0.3m;中部地区定位精度平面优于0.1m,高程优于0.2m,接近GPS实时PPP精度水平;北斗与GPS融合可以提高单北斗、单GPS的定位性能,尤其是显著加快了PPP收敛时间,收敛时间缩短到20min内。另外,除边缘地区外,北斗单频PPP实现平面0.5m,高程1.0m;北斗单频伪距单点定位实现平面2.0m,高程3.0m。  相似文献   

14.
Rapid PPP ambiguity resolution using GPS+GLONASS observations   总被引:1,自引:1,他引:0  
Integer ambiguity resolution (IAR) in precise point positioning (PPP) using GPS observations has been well studied. The main challenge remaining is that the first ambiguity fixing takes about 30 min. This paper presents improvements made using GPS+GLONASS observations, especially improvements in the initial fixing time and correct fixing rate compared with GPS-only solutions. As a result of the frequency division multiple access strategy of GLONASS, there are two obstacles to GLONASS PPP-IAR: first and most importantly, there is distinct code inter-frequency bias (IFB) between satellites, and second, simultaneously observed satellites have different wavelengths. To overcome the problem resulting from GLONASS code IFB, we used a network of homogeneous receivers for GLONASS wide-lane fractional cycle bias (FCB) estimation and wide-lane ambiguity resolution. The integer satellite clock of the GPS and GLONASS was then estimated with the wide-lane FCB products. The effect of the different wavelengths on FCB estimation and PPP-IAR is discussed in detail. We used a 21-day data set of 67 stations, where data from 26 stations were processed to generate satellite wide-lane FCBs and integer clocks and the other 41 stations were selected as users to perform PPP-IAR. We found that GLONASS FCB estimates are qualitatively similar to GPS FCB estimates. Generally, 98.8% of a posteriori residuals of wide-lane ambiguities are within \(\pm 0.25\) cycles for GPS, and 96.6% for GLONASS. Meanwhile, 94.5 and 94.4% of narrow-lane residuals are within 0.1 cycles for GPS and GLONASS, respectively. For a critical value of 2.0, the correct fixing rate for kinematic PPP is only 75.2% for GPS alone and as large as 98.8% for GPS+GLONASS. The fixing percentage for GPS alone is only 11.70 and 46.80% within 5 and 10 min, respectively, and improves to 73.71 and 95.83% when adding GLONASS. Adding GLONASS thus improves the fixing percentage significantly for a short time span. We also used global ionosphere maps (GIMs) to assist the wide-lane carrier-phase combination to directly fix the wide-lane ambiguity. Employing this method, the effect of the code IFB is eliminated and numerical results show that GLONASS FCB estimation can be performed across heterogeneous receivers. However, because of the relatively low accuracy of GIMs, the fixing percentage of GIM-aided GPS+GLONASS PPP ambiguity resolution is very low. We expect better GIM accuracy to enable rapid GPS+GLONASS PPP-IAR with heterogeneous receivers.  相似文献   

15.
Ambiguity resolution in precise point positioning with hourly data   总被引:19,自引:7,他引:12  
Precise point positioning (PPP) has become a powerful tool for the scientific analysis of Global Positioning System (GPS) measurements. Until recently, ambiguity resolution at a single station in PPP has been considered difficult, due to the receiver- and satellite-dependent uncalibrated hardware delays (UHD). However, recent studies show that if these UHD can be determined accurately in advance within a network of stations, then ambiguity resolution at a single station becomes possible. In this study, the method proposed by Ge et al. J Geod 82(7):389–399, 2007 is adopted with a refinement in which only one single-difference narrow-lane UHD between a pair of satellites is determined within each full pass over a regional network. This study uses the EUREF (European Reference Frame) Permanent Network (EPN) to determine the UHD from Day 245 to 251 in 2007. Then 12 International GNSS Service stations inside the EPN and 15 outside the EPN are used to conduct ambiguity resolution in hourly PPP. It is found that the mean positioning accuracy in all hourly solutions for the stations inside the EPN is improved from (3.8, 1.5, 2.8) centimeters to (0.5, 0.5, 1.4) centimeters for the East, North and Up components, respectively. For the stations outside the EPN, some of which are over 2,000 km away from the nearest EPN stations, the mean positioning accuracy in the East, North and Up directions still achieves (0.6, 0.6, 2.0) centimeters, respectively, when the EPN-based UHD are applied to these stations. These results demonstrate that ambiguity resolution at a single station can significantly improve the positioning accuracy in hourly PPP. Particularly, UHD can be even applied to a station which is up to thousands of kilometers from the UHD-determination network, potentially showing a great advantage over current network-based GPS augmentation systems. Therefore, it is feasible and beneficial for the operators of GPS regional networks and providers of PPP-based online services to provide these UHD estimates as an additional product.  相似文献   

16.
Although integer ambiguity resolution (IAR) can improve positioning accuracy considerably and shorten the convergence time of precise point positioning (PPP), it requires an initialization time of over 30 min. With the full operation of GLONASS globally and BDS in the Asia–Pacific region, it is necessary to assess the PPP–IAR performance by simultaneous fixing of GPS, GLONASS, and BDS ambiguities. This study proposed a GPS + GLONASS + BDS combined PPP–IAR strategy and processed PPP–IAR kinematically and statically using one week of data collected at 20 static stations. The undifferenced wide- and narrow-lane fractional cycle biases for GPS, GLONASS, and BDS were estimated using a regional network, and undifferenced PPP ambiguity resolution was performed to assess the contribution of multi-GNSSs. Generally, over 99% of a posteriori residuals of wide-lane ambiguities were within ±0.25 cycles for both GPS and BDS, while the value was 91.5% for GLONASS. Over 96% of narrow-lane residuals were within ±0.15 cycles for GPS, GLONASS, and BDS. For kinematic PPP with a 10-min observation time, only 16.2% of all cases could be fixed with GPS alone. However, adding GLONASS improved the percentage considerably to 75.9%, and it reached 90.0% when using GPS + GLONASS + BDS. Not all epochs could be fixed with a correct set of ambiguities; therefore, we defined the ratio of the number of epochs with correctly fixed ambiguities to the number of all fixed epochs as the correct fixing rate (CFR). Because partial ambiguity fixing was used, when more than five ambiguities were fixed correctly, we considered the epoch correctly fixed. For the small ratio criteria of 2.0, the CFR improved considerably from 51.7% for GPS alone, to 98.3% when using GPS + GLONASS + BDS combined solutions.  相似文献   

17.
The main challenge of ambiguity resolution in precise point positioning (PPP) is that it requires 30 min or more to succeed in the first fixing of ambiguities. With the full operation of the BeiDou (BDS) satellite system in East Asia, it is worthwhile to investigate the performance of GPS + BDS PPP ambiguity resolution, especially the improvements of the initial fixing time and ambiguity-fixing rate compared to GPS-only solutions. We estimated the wide- and narrow-lane fractional-cycle biases (FCBs) for BDS with a regional network, and PPP ambiguity resolution was carried out at each station to assess the contribution of BDS. The across-satellite single-difference (ASSD) GPS + BDS combined ambiguity-fixed PPP model was used, in which the ASSD is applied within each system. We used a two-day data set from 48 stations. For kinematic PPP, the percentage of fixing within 10 min for GPS only (Model A) is 17.6 %, when adding IGSO and MEO of BDS (Model B), the percentage improves significantly to 42.8 %, whereas it is only 23.2 % if GEO is added (Model C) due to the low precision of GEO orbits. For static PPP, the fixing percentage is 32.9, 53.3 and 28.0 % for Model A, B and C, respectively. In order to overcome the limitation of the poor precision of GEO satellites, we also used a small network of 10 stations to analyze the contribution of GEO satellites to kinematic PPP. We took advantage of the fact that for stations of a small network the GEO satellites appear at almost the same direction, such that the GEO orbit error can be absorbed by its FCB estimates. The results show that the percentage of fixing improves from 39.5 to 57.7 % by adding GEO satellites.  相似文献   

18.
针对目前非差精密单点定位增强信息无法直接用于RTK(real time kinematic)相对定位的问题,研究了基于附加坐标约束的参考站非差精密单点模糊度固定解提取非差改正信息的方法,并建立了非差增强信息与虚拟参考站观测信息等价变换模型,重点论述了空间状态域信息(state space representation,SSR)在等价变换中的区别应用。根据RTK模糊度部分固定技术,利用实测数据设计实验证明了算法的正确性与可用性。结果表明,虚拟零基线可获得与网络RTK同等精度的定位效果,从而实现了区域增强系统在非差与差分模式上的高度统一。  相似文献   

19.
周锋  杨宇泽  王磊  徐天河 《测绘学报》2022,51(8):1779-1786
精密单点定位技术能够提供全球高精度定位结果,其主要技术瓶颈在于定位收敛时间长,载波相位模糊度固定技术是加快PPP收敛速度、改善定位精度的主要手段之一。模糊度固定的可靠性问题在PPP定位中尤为突出,因为模糊度浮点解质量取决于服务端产品质量、接收机噪声特性和观测环境等多种因素,所以高可靠PPP模糊度固定技术仍然充满巨大挑战。为了保障PPP定位的可靠性,本文将最优整数等变估计(best integer equivariant,BIE)引入PPP模糊度估计过程中。BIE法利用GNSS模糊度整数解加权融合以获得最优的浮点模糊度估计值,可有效降低模糊度错误固定风险,同时又利用了模糊度整数解信息来提升模糊度估值精度,从而提升PPP定位精度,缩短模糊度收敛时间。本文选取了105个全球分布的MGEX测站对BIE估计PPP模糊度的性能进行验证,试验结果表明,与模糊度固定解相比,采用BIE估计PPP模糊度能够进一步改善坐标三分量(东、北、垂向)定位性能,收敛时间分别减少了37%、28%与31%,收敛后定位精度分别提高了9%、8%和3%。此外,BIE估计PPP模糊度定位结果的毛刺和阶跃现象更少。  相似文献   

20.
基准站间整周模糊度的快速准确固定是实现网络RTK高精度快速定位的前提。对于GPS/GLONASS/BDS组合系统长基线,模糊度维数大幅度增加,加之观测噪声、大气残余误差等因素的影响,很难快速准确地固定所有模糊度,尤其是低高度角卫星模糊度。提出了一种基于部分固定策略的GPS/GLONASS/BDS组合网络长基线部分模糊度快速解算方法,以截止高度角、模糊度固定成功率以及Ratio值为主要参数,优选模糊度固定子集,以实现长距离基准站间模糊度快速固定。通过实测GPS/GLONASS/BDS三系统长基线数据的实验验证,部分模糊度固定方法可有效避免低高度角卫星对模糊度固定的影响,从而显著提高模糊度固定时的成功率及Ratio值,缩短长距离基准站间模糊度准确固定所需的时间。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号