首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
This paper presents a 3D bonded discrete element and lattice Boltzmann method for resolving the fluid‐solid interaction involving complicated fluid‐particle coupling in geomaterials. In the coupled technique, the solid material is treated as an assembly of bonded and/or granular particles. A bond model accounting for strain softening in normal contact is incorporated into the discrete element method to simulate the mechanical behaviour of geomaterials, whilst the fluid flow is solved by the lattice Boltzmann method based on kinetic theory and statistical mechanics. To provide a bridge between theory and application, a 3D algorithm of immersed moving boundary scheme was proposed for resolving fluid‐particle interaction. To demonstrate the applicability and accuracy of this coupled method, a benchmark called quicksand, in which particles become fluidised under the driving of upward fluid flow, is first carried out. The critical hydraulic gradient obtained from the numerical results matches the theoretical value. Then, numerical investigation of the performance of granular filters generated according to the well‐acknowledged design criteria is given. It is found that the proposed 3D technique is promising, and the instantaneous migration of the protected soils can be readily observed. Numerical results prove that the filters which comply with the design criteria can effectively alleviate or eliminate the appearance of particle erosion in dams.  相似文献   

2.
This paper presents a three-dimensional coupled bonded particle and lattice Boltzmann method (BPLBM) with an immersed moving boundary scheme for the fluid-solid interaction. It is then applied to investigate the erosion process of soil particles in granular filters placed within earth dams. The microscopic migration of soil particles can be clearly visualised as the movement of particles can be directly recorded. Three granular filters with different representative size ratios are simulated and the numerical results are seen to match the empirical criteria. In addition, the effect of the representative size ratio of granular filters, hydraulic loading and erosion time are discussed.  相似文献   

3.
A coupled continuum‐discrete hydromechanical model was employed to analyse the liquefaction of a saturated loose deposit of cohesionless particles when subjected to a dynamic base excitation. The pore fluid flow was idealized using averaged Navier–Stokes equations and the discrete element method was employed to model the solid phase particles. A well established semi‐empirical relationship was utilized to quantify the fluid–particle interactions. The conducted simulations revealed a number of salient micro‐mechanical mechanisms and response patterns associated with the deposit liquefaction. Space and time variation of porosity was a major factor which affected the coupled response of the solid and fluid phases. Pore fluid flow was within Darcy's regime. The predicted response exhibited macroscopic patterns consistent with experimental results and case histories of the liquefaction of granular soil deposits. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

4.
This paper presents a unified modeling framework to investigate the impacts of debris flow on flexible barriers, based on coupled computational fluid dynamics and discrete element method (CFD‐DEM). We consider a debris flow as a mixture of fluid and particles where the fluid and particle phases are modeled by the CFD and the DEM, respectively. The fluid‐particle coupling is considered by the exchange of interaction forces between CFD and DEM calculations. The flexible barrier is simulated by the DEM as a network of bonded particles with remote interactions. The proposed coupled CFD‐DEM approach enables us to conveniently handle the complicated three‐way interactions among the fluid, the particles, and the flexible barrier structure for debris flow impact simulations. The proposed approach is first used to investigate the influences of channel inclination and the volumetric solid fraction in a debris mixture on the impact force, the resultant deformation, and the retained mass in a flexible barrier. The predictions agree well with existing experimental and numerical studies. We further examine the possible failure modes of a flexible barrier under debris flow impact and their underlying mechanisms. The performance of different components in a flexible barrier system, including single wires, double twists and cables, and their load sharing mechanisms, are carefully evaluated. The proposed unified framework offers a novel, promising pathway towards physically based, quantitative analysis and design of flexible barriers for debris flow mitigation.  相似文献   

5.
Computational fluid dynamics and discrete element method (CFD–DEM) is extended with the volume of fluid (VOF) method to model free‐surface flows. The fluid is described on coarse CFD grids by solving locally averaged Navier–Stokes equations, and particles are modelled individually in DEM. Fluid–particle interactions are achieved by exchanging information between DEM and CFD. An advection equation is applied to solve the phase fraction of liquid, in the spirit of VOF, to capture the dynamics of free fluid surface. It also allows inter‐phase volume replacements between the fluid and solid particles. Further, as the size ratio (SR) of fluid cell to particle diameter is limited (i.e. no less than 4) in coarse‐grid CFD–DEM, a porous sphere method is adopted to permit a wider range of particle size without sacrificing the resolution of fluid grids. It makes use of more fluid cells to calculate local porosities. The developed solver (cfdemSolverVOF) is validated in different cases. A dam break case validates the CFD‐component and VOF‐component. Particle sedimentation tests validate the CFD–DEM interaction at various Reynolds numbers. Water‐level rising tests validate the volume exchange among phases. The porous sphere model is validated in both static and dynamic situations. Sensitivity analyses show that the SR can be reduced to 1 using the porous sphere approach, with the accuracy of analyses maintained. This allows more details of the fluid phase to be revealed in the analyses and enhances the applicability of the proposed model to geotechnical problems, where a highly dynamic fluid velocity and a wide range of particle sizes are encountered. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
A fully coupled transient two‐dimensional model was employed to study fundamentals of flood‐induced surface erosion in a particle bed. The interaction of the liquid and solid phases is the key mechanism related to surface erosion. The solid phase was idealized at a particle scale by using the discrete element method. The fluid phase was modeled at a mesoscale level and solved using the lattice Boltzmann method. The fluid forces applied on the particles were calculated on the basis of the momentum the fluid exchanges with the particle. The proposed approach was used to model both single particles and particle beds subjected to Couette flow conditions. The behavior of both the single particle and the particle bed depended on particle diameter and surface shear fluid velocity. The conducted simulations show that the fluid flow profile penetrates the bed for a small distance. This penetration initiates sheet‐flow and surface erosion as the fluid interacts with particles. The effect of suppressing particle rotation on the fluid‐induced forces on the particle was also examined. Suppressing particle spinning may lead to underestimated erosion rate. Results of fluid and particle velocities were compared against experimental results and appeared to agree with the observed trends.Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
Wind‐blown sand movement, considered as a particle‐laden two‐phase flow, was simulated by a new numerical code developed in the present study. The discrete element method was employed to model the contact force between sand particles. Large eddy simulation was used to solve the turbulent atmospheric boundary layer. Motions of sand particles were traced in the Lagrangian frame. Within the near‐surface region of the atmospheric boundary layer, interparticle collisions will significantly alter the velocity of sand. The sand phase is quite dense in this region, and its feedback force on fluid motion cannot be ignored. By considering the interparticle collision and two‐phase interaction, four‐way coupling was achieved in the numerical code. Profiles of sand velocity from the simulations were in good agreement with experimental measurements. The mass flux shows an exponential decay and is comparable to reported experimental and field measurements. The turbulence intensities and shear stress of sand particles were estimated from particle root‐mean‐square velocities. Distributions of slip velocity and feedback force were analysed to reveal the interactions between sand particles and the continuous fluid phase.  相似文献   

8.
In this article, we present a numerical method to deal with fluid–solid interactions and simulate particle–fluid systems as encountered in soils. This method is based on a coupling between two methods, now widely used in mechanics of granular media and fluid dynamics respectively: the discrete element (DE) method and the lattice Boltzmann (LB) method. The DE method is employed to model interactions between particles, whereas the LB method is used to describe an interstitial Newtonian fluid flow. The coupling presented here is a full one in the sense that particle motions act on fluid flow and reciprocally. This article presents in details each of the two methods and the principle of the coupling scheme. Determination of hydrodynamic forces and torques is also detailed, and the treatment of boundaries is explained. The coupled method is finally illustrated on a simple example of piping erosion, which puts in evidence that the combined LB–DE scheme constitutes a promising tool to study coupled problems in geomechanics. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
Granular soils subjected to flow through their soil skeleton can show a behaviour in which fine particles migrate through the pore space between coarser particles. This process is called internal instability or suffusion. This contribution deals with the numerical analysis of the migration of fine particles in a soil column subjected to fluid flow with unresolved coupled computational fluid dynamics–discrete element method (CFD–DEM) with special regards to the used drag force correlation. The contribution investigates the influence of the Schiller–Naumann model and its extension with a voidage term on the migration behaviour of fine particles. The voidage term is further varied with a parameter, which controls the impact of the change of the void fraction on the drag force. It could be observed that the Schiller–Naumann model does not yield in a suffusive behaviour while the extended models show significant particle migration. Thereby, increasing the impact of the void fraction on the drag force results in stronger particle migration. These results reveal the need for good validation techniques. They indicate how the drag force correlation can be adapted to depict the correct particle migration behaviour.  相似文献   

10.
Impact of debris flow consists of two distinctive phases due to its physical composition. One is the dynamic impact from fluid phase, and the other is collision from the solid phase. At present, there is no effective way to differentiate these two phases of impact. An empirical mode decomposition (EMD)-based signal process method was proposed in this paper to extract fluid and solid impact force of debris flow from the mixed signal. Miniaturized flume tests have been carried out with 14 work conditions, and the impact signals were captured by a digital logger. From the experiment, frequencies of fluid phase and solid phase impact signals were identified in the range of 0.05–2 Hz and 300–600 Hz, respectively. The impact signals from solid and liquid phases were reconstructed using the proposed method. In addition, the impact force of fluid phase that measured directly from the flume tests and calculated from isolated signals showed good agreement and the average difference was about 10%. However, large deviation of solid phase impact was observed especially when this method was applied to the full-scale debris flow events and the difference ranged from 26.33 to 61.47%. This proposed method provided an alternative approach to study the debris flow impact force in terms of slurry and large particles separately.  相似文献   

11.
We present a stabilized extended finite element formulation to simulate the hydraulic fracturing process in an elasto‐plastic medium. The fracture propagation process is governed by a cohesive fracture model, where a trilinear traction‐separation law is used to describe normal contact, cohesion and strength softening on the fracture face. Fluid flow inside the fracture channel is governed by the lubrication equation, and the flow rate is related to the fluid pressure gradient by the ‘cubic’ law. Fluid leak off happens only in the normal direction and is assumed to be governed by the Carter's leak‐off model. We propose a ‘local’ U‐P (displacement‐pressure) formulation to discretize the fluid‐solid coupled system, where volume shape functions are used to interpolate the fluid pressure field on the fracture face. The ‘local’ U‐P approach is compatible with the extended finite element framework, and a separate mesh is not required to describe the fluid flow. The coupled system of equations is solved iteratively by the standard Newton‐Raphson method. We identify instability issues associated with the fluid flow inside the fracture channel, and use the polynomial pressure projection method to reduce the pressure oscillations resulting from the instability. Numerical examples demonstrate that the proposed framework is effective in modeling 3D hydraulic fracture propagation. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
We have developed a new approach for the numerical modeling of deformation processes combining brittle fracture and viscous flow. The new approach is based on the combination of two meshless particle-based methods: the discrete element method (DEM) for the brittle part of the model and smooth particle hydrodynamics (SPH) for the viscous part. Both methods are well established in their respective application domains. The two methods are coupled at the particle scale, with two different coupling mechanisms explored: one is where DEM particles act as virtual SPH particles and one where SPH particles are treated like DEM particles when interacting with other DEM particles. The suitability of the combined approach is demonstrated by applying it to two geological processes, boudinage, and hydrofracturing, which involve the coupled deformation of a brittle solid and a viscous fluid. Initial results for those applications show that the new approach has strong potential for the numerical modeling of coupled brittle–viscous deformation processes.  相似文献   

13.
Soil–water interaction is a pivotal process in many underwater geohazards such as underwater landslides where soil sediments gradually evolve into turbidity currents after interactions with ambient water. Due to the large deformations, multiphase interactions and phase changes this involves, investigations from numerical modelling of the transition process have been limited so far. This study explores a simple numerical replication of such soil–water mixing with respect to changes in average strength using smoothed particle hydrodynamics (SPH). A uniform viscoplastic model is used for both the solid-like and fluid-like SPH particles. The proposed numerical solution scheme is verified by single-phase dam break tests and multiphase simple shear tests. SPH combinations of solid-like and fluid-like particles can replicate the clay–water mixture as long as the liquidity index of the solid-like particles is larger than unity. The proposed numerical scheme is shown to capture key features of an underwater landslide such as hydroplaning, water entrainment and wave generation and thus shows promise as a tool to simulate the whole process of subaquatic geohazards involving solid–fluid transition during mass transport.  相似文献   

14.
Hydraulic fracturing (HF) treatment often involves particle migration and is applied for propping or plugging fractures. Particle migration behaviors, e.g., bridging, packing, and plugging, significantly affect the HF process. Hence, it is crucial to effectively simulate particle migration. In this study, a new numerical approach is developed based on a coupled element partition method (EPM). The EPM is used to model natural and hydraulic fractures, in which a fracture is allowed to propagate across an element, thereby avoiding remeshing in fracture simulations. To characterize the water flow process in a fracture, a fully hydromechanical coupled equation is adopted in the EPM. To model particle transportation in fractures with water flow, each particle is treated as a discrete element. The particles move in the fracture as a result of being dragged by fluid. Their movement, contact, and packing behaviors are simulated using the discrete element method. To reflect the plugging effect, an equivalent aperture approach is proposed. Using this method, the particle migration and its effect on water flow are well simulated. The simulation results show that this method can effectively reproduce particle bridging, plugging, and unblocking in a hydraulic fracture. Furthermore, it is demonstrated that particle plugging significantly affects water flow in a fracture and hence the propagation of hydraulic fracture. This method provides a simple and feasible approach for the simulation of particle migration in a hydraulic fracture.  相似文献   

15.
Large-scale landslide dams can induce significant hazards to human lives by blocking the river flows and causing inundation upstream. They may trigger severe outburst flooding that may devastate downstream areas once failed. Thus, the advancement in understanding the formation of landslide dams is highly necessary. This paper presents 3D numerical investigations of the formation of landslide dams in open fluid channels via the discrete element method (DEM) coupled with computational fluid dynamics (CFD). By employing this model, the influence of flow velocity on granular depositional morphology has been clarified. As the grains settle downwards in the fluid channel, positive excess water pressures are generated at the bottom region, reducing the total forces acting on the granular mass. In the meantime, the particle sedimentations into the fluid channel with high impacting velocities can generate fluid streams to flow backwards and forwards. The coupled hydraulic effects of excess water pressure and fluid flow would entrain the solid grains to move long distances along the channel. For simulations using different flow velocities, the larger the flow velocity is, the further distance the grains can be transported to. In this process, the solid grains move as a series of surges, with decreasing deposit lengths for the successive surges. The granular flux into the fluid channel has very little influence on the depositional pattern of particles, while it affects the particle–fluid interactions significantly. The results obtained from the DEM-CFD coupled simulations can reasonably explain the mechanisms of granular transportation and deposition in the formation of landslide dams in narrow rivers.  相似文献   

16.
17.
A novel three‐dimensional particle‐based technique utilizing the discrete element method is proposed to analyze the seismic response of soil‐foundation‐structure systems. The proposed approach is employed to investigate the response of a single‐degree‐of‐freedom structure on a square spread footing founded on a dry granular deposit. The soil is idealized as a collection of spherical particles using discrete element method. The spread footing is modeled as a rigid block composed of clumped particles, and its motion is described by the resultant forces and moments acting upon it. The structure is modeled as a column made of particles that are either clumped to idealize a rigid structure or bonded to simulate a flexible structure of prescribed stiffness. Analysis is done in a fully coupled scheme in time domain while taking into account the effects of soil nonlinear behavior, the possible separation between foundation base and soil caused by rocking, the possible sliding of the footing, and the dynamic soil‐foundation interaction as well as the dynamic characteristics of the superstructure. High fidelity computational simulations comprising about half a million particles were conducted to examine the ability of the proposed technique to model the response of soil‐foundation‐structure systems. The computational approach is able to capture essential dynamic response patterns. The cyclic moment–rotation relationships at the base center point of the footing showed degradation of rotational stiffness by increasing the level of strain. Permanent deformations under the foundation continued to accumulate with the increase in number of loading cycles. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
In this paper, a numerical model is developed for the fully coupled hydro‐mechanical analysis of deformable, progressively fracturing porous media interacting with the flow of two immiscible, compressible wetting and non‐wetting pore fluids, in which the coupling between various processes is taken into account. The governing equations involving the coupled solid skeleton deformation and two‐phase fluid flow in partially saturated porous media including cohesive cracks are derived within the framework of the generalized Biot theory. The fluid flow within the crack is simulated using the Darcy law in which the permeability variation with porosity because of the cracking of the solid skeleton is accounted. The cohesive crack model is integrated into the numerical modeling by means of which the nonlinear fracture processes occurring along the fracture process zone are simulated. The solid phase displacement, the wetting phase pressure and the capillary pressure are taken as the primary variables of the three‐phase formulation. The other variables are incorporated into the model via the experimentally determined functions, which specify the relationship between the hydraulic properties of the fracturing porous medium, that is saturation, permeability and capillary pressure. The spatial discretization is implemented by employing the extended finite element method, and the time domain discretization is performed using the generalized Newmark scheme to derive the final system of fully coupled nonlinear equations of the hydro‐mechanical problem. It is illustrated that by allowing for the interaction between various processes, that is the solid skeleton deformation, the wetting and the non‐wetting pore fluid flow and the cohesive crack propagation, the effect of the presence of the geomechanical discontinuity can be completely captured. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
Interaction between solid particles and fluid is of fundamental interest to scientists and engineers in many different applications—cardiopulmonary flows, aircraft and automobile aerodynamics, and wind loading on buildings to name a few. In geomechanics, particle shape significantly affects both particle-particle and particle-fluid interaction. Herein, we present a generalized method for modeling the interaction of arbitrarily shaped polyhedral particles and particle assemblages with fluid using a coupled discrete element method (DEM) and lattice Boltzmann method (LBM) formulation. The coupling between DEM and LBM is achieved through a new algorithm based on a volume-fraction approach to consider three-dimensional convex polyhedral particles moving through fluid. The algorithm establishes the interaction using linear programming and simplex integration and is validated against experimental data. This approach to modeling the interaction between complex polyhedral particles and fluid is shown to be accurate for directly simulating hydrodynamic forces on the particles.  相似文献   

20.
In this paper, a series of multimaterial benchmark problems in saturated and partially saturated two‐phase and three‐phase deforming porous media are addressed. To solve the process of fluid flow in partially saturated porous media, a fully coupled three‐phase formulation is developed on the basis of available experimental relations for updating saturation and permeabilities during the analysis. The well‐known element free Galerkin mesh‐free method is adopted. The partition of unity property of MLS shape functions allows for the field variables to be extrinsically enriched by appropriate functions that introduce existing discontinuities in the solution field. Enrichment of the main unknowns including solid displacement, water phase pressure, and gas phase pressure are accounted for, and a suitable enrichment strategy for different discontinuity types are discussed. In the case of weak discontinuity, the enrichment technique previously used by Krongauz and Belytschko [Int. J. Numer. Meth. Engng., 1998; 41:1215–1233] is selected. As these functions possess discontinuity in their first derivatives, they can be used for modeling material interfaces, generating only minor oscillations in derivative fields (strain and pressure gradients for multiphase porous media), as opposed to unenriched and constrained mesh‐free methods. Different problems of multimaterial poro‐elasticity including fully saturated, partially saturated one, and two‐phase flows under the assumption of fully coupled extended formulation of Biot are examined. As a further development, problems involved with both material interface and impermeable discontinuities, where no fluid exchange is permitted across the discontinuity, are considered and numerically discussed. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号