首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
Melt and fluid inclusions were studied in the minerals of Cenozoic olivine melanephelinites from the Chukchi Peninsula, Russia.The rock contain several generations of olivine phenocrysts varying in composition at mg=0.88~0.77.The phenocrysts bear fluid and melt inclusions recording various stages of melt crystallization in volcanic conduits and shallow magma chambers.Primary fluid inclusions are CO_2-dominated with a density of up to O.93 g/cm~3.All fluid inclusions are partially leaked,which is indicated by haloes of tiny fluid bubbles around large fluid inclusions in minerals.Melt inclusions contain various daughter crystals,which were completely resorbed in thermometric experiments at about 1230℃.Assuming that this temperature corresponds to the entrapment conditions of the CO_2 fluid inclusions,the minimum pressure of the beginning of magma degassing is estimated as 800MPa.Variations in the compositions of homogenized silicate melt inclusions indicate that olivine was the earliest crystalline phase followed by clinopyroxene,nepheline and orthoclase.This sequence is in agreement with the mineralogy of the rocks.The melts are strongly enriched in incompatible trace elements and volatiles(in addition to CO_2,high C1,F,and S contents were detected).There are some differences between the compositions of melts trapped in minerals from different samples.Variations in SiO_2,FeO,and incompatible element contents are probably related to melt generations at various levels in a homogeneous mantle reservoir.  相似文献   

2.
徐九华  谢玉玲 《岩石学报》2007,23(1):117-124
Mantle xenoliths are common in the Cenozoic basalts of the Changbaishan District,Jilin Province,China.Sulfide assemblages in mantle minerals can be divided into three types:isolated sulfide grains,sulfide-meh inclusions and filling sulfides in fractures.Sulfide-meh inclusions occur as single-phase sulfides,sulfide-silicate melt,and CO_2-sulfide-silicate melt inclusions. Isolated sulfide grains are mainly composed of pyrrhotite,but cubanite was found occasionally.Sulfide-meh inclusions are mainly composed of pontlandite and MSS,with small amounts of chalcopyrite and talnakhite.The calculated distribution coefficient K_(D3)for lherzolite are similar to that of mean experimental value.The bulk sulfides in lherzolite were in equilibrium with the enclosing minerals, indicating immiscible sulfide melts captured in partial melting of upper mantle.Sulfide in fractures has higher Ni/Fe and(Fe Ni)/S than those of sulfide melt inclusions.They might represent later metasomatizing fluids in the mantle.Ni/Fe and(Fe Ni)/S increase from isolated grains,sulfide inclusions to sulfides in fractures.These changes were not only affected by temperature and pressure,hut by geochemistry of Ni,Fe and Cu,and sulfur fugacity as well.  相似文献   

3.
The Hujiayu Cu deposit,representative of the "HuBi-type" Cu deposits in the Zhongtiao Mountains district in the southern edge of the North China Craton,is primarily hosted in graphitebearing schists and carbonate rocks.The ore minerals comprise mainly chalcopyrite,with minor sphalerite,siegenite[(Co,Ni)_3S_4],and clausthalite[Pb(S,Se)].The gangue minerals are mainly quartz and dolomite,with minor albite.Four fluid inclusion types were recognized in the chalcopyrite-pyrite-dolomite-quartz veins,including CO_2-rich inclusions(type Ⅰ),low-salinity,liquid-dominated,biphase aqueous inclusions(type Ⅱ),solid-bearing aqueous inclusions(type Ⅲ),and solid-bearing aqueous-carbonic inclusions(type Ⅳ).Type I inclusion can be further divided into two sub-types,i.e.,monophase CO_2 inclusions(type Ⅰa) and biphase CO_2-rich inclusions(with a visible aqueous phase),and type Ⅲ inclusion is divided into a subtype with a halite daughter mineral(type Ⅲa) and a subtype with multiple solids(type Ⅲb).Various fluid inclusion assemblages(FIAs) were identified through petrographic observations,and were classified into four groups.The group-1 FIA,consisting of monophase CO_2 inclusions(type Ⅰa),homogenized into the liquid phase in a large range of temperatures from-1 to 28℃,suggesting post-entrapment modification.The group-2 FIA consists of type Ⅰb,Ⅲb and Ⅳ inclusions,and is interpreted to reflect fluid immiscibility.The group-3 FIA comprises type Ⅱ and Ⅲa inclusions,and the group-4FIA consists of type Ⅱ inclusions with consistent phase ratios.The group-1 and group-2 FIAs are interpreted to be entrapped during mineralization,whereas group-3 and group-4 FIAs probably represent the post-mineralization fluids.The solid CO_2 melting temperatures range from-60.6 to56.6℃ and from-66.0 to-63.4℃ for type Ⅰa and type Ⅳ inclusions,respectively.The homogenization temperatures for type Ⅱ inclusions range from 132 to 170℃ for group-3 FIAs and115 to 219℃ for group-4 FIAs.The halite melting temperatures range from 530 to 562℃ for typeⅢ b and Ⅳ inclusions,whereas those for type Ⅲa inclusions range from 198 to 398℃.Laser Raman and SEM-EDS results show that the gas species in fluid inclusions are mainly CO_2 with minor CH_4,and the solids are dominated by calcite and halite.The calcite in the hosting marble and dolomite in the hydrothermal veins have δ~(13)C_(V-pdb) values of-0.2 to 1.2‰ and-1.2 to-6.3‰,and δ~(18)O_(v-smow) values of 14.0 to 20.8 ‰ and 13.2 to 14.3‰,respectively.The fluid inclusion and carbon-oxygen isotope data suggest that the ore-forming fluids were probably derived from metamorphic fluids,which had reacted with organic matter in sedimentary rocks or graphite and undergone phase separation at 1.4-1.8 kbar and 230-240℃,after peak metamorphism.It is proposed that the Hujiayu Cu deposit consists of two mineralization stages.The early stage mineralization,characterized by disseminated and veinlet copper sulfides,probably took place in an environment similar to sediment-hosted stratiform copper mineralization.Ore minerals formed in this precursor mineralization stage were remobilized and enriched in the late metamorphic hydrothermal stage,leading to the formation of thick quartz-dolomite-sulfides veins.  相似文献   

4.
The Hetai ductile shear zone-hosted gold deposit occurs in the deep-seated fault mylonite zone of the Sinian-Silurian metamorphic rock series. In this study there have been discovered melt inclusions, fluid-melt inclusions and organic inclusions in ore-bearing quartz veins of the ore deposit and mylonite for the first time. The homogenization temperatures of the various types of inclusions are 160℃, 180 - 350℃, 530℃ and 870℃ for organic inclusions, liquid inclusions, two-phase immiscible liquid inclusions and melt inclusions, respectively. Ore fluid is categorized as the neutral to basic K+ -Ca2+ -Mg2+ -Na+ - SO2- 4-HCO3-Cl- system. The contents of trace gases follow a descending order of H2O>CO2>CH4>(or < ) H2>CO>C2H2>C2I-I6>O2>N2.The concentrations of K , Ca2 + ,SO2-4,HCO3-,Cl- H2O and C2H2 in fluid inclusions are related to the contents of gold and the Au/Ag ratios in ores from different levels of the gold deposit. This is significant for deep ore prospecting in the region. Daughter minerals in melt inclusions were analyzed using SEM. Quartz, orthoclase, wollastonite and other silicate minerals were identified. They were formed in different mineral assemblages.This analysis further proves the existence of melt inclusions in ore veins. Sedimentary metamorphic rocks could form silicate melts during metamorphic anatexis and dynamic metamorphism, which possess melt-solution characteristics. Ore formation is related to the multi-stage forming process of silicate melt and fluid.  相似文献   

5.
Melt inclusions in minerals from some volcanoes of the Kurile-Kamchatka region were examined.The studied basaltic andesites and andesites were sampled from volcanoes of the Central Kamchatka depression(Shiveluch and Bezymyannyi),Eastern Kamchatka volcanic belt(Avachinskii and Karymskii),and Iturup Island,Southern Kuriles(Kudryavyi).Basalts of the 1996 eruption of the Karymskii volcanic center and dacites of Dikii Greben'volcano,Southern Kamchatka were also studied.More than 260 melt inclusions from 31 rock samples were homogenized,and quenched glasses were analyzed using electron and ion microprobes.The compositions of melt inclusions in andesitic phenoerysts vary in silica contents from 56 to 80wt%.Al_2 O_3 ,FeO,MgO,CaO decrease and Na_2O and K_2O increase with increasing SiO_2.Many inclusions(about 80% )are dacitic or rhyolitic.However,the compositions of silicic glasses(>65wt% SiO_2)in andesites significantly differ in TiO2,FeO,MgO,CaO,and K_2O contents from those in dacites and rhyolites.High-potassium melts(K_2O 3.8~6.8wt% )with various SiO_2 from 51.4 to 77.2wt% were found in minerals of all volcanoes studied.This indicates a contribution of a component selectively enriched in potassium to magmas of the whole region.A great compositional diversity of melt inclusions in plagioelase phenocrysts from the Bezymyannyi andesites suggests a complex history of plagioclase crystallization and magma evolution in the andesite formation.Melts from different volcanoes strongly vary in volatile contents.The highest H_2O contents are found in the melts from Shiveluch(3.0~7.2wt%,4.7wt% on average)and Avachinskii (4.7~4.8wt%);while those are lower in melts of Kudryavyi(0.1~2.6wt% ),Dikii Greben'(0.4~1.8wt%),and Bezymyannyi (<1wt%).Chlorine contents are also variable.The lowest values are found in the Bezymyannyi melts(0.09wt% on average),the highest Cl contents are typical of melt inclusions in minerals from the Karymskii andesites(0.26wt% on average).The melts from Avachinskii,Dikii Greben',Kudryavyi,and Shiveluch show intermediate Cl contents(0.13~0.20wt% ).The pressure of 350~1600 bar determined by CO_2 fluid inclusions in plagioclase from the Shiveluch andesites suggests a magma chamber at a depth of 1.5~6 km. Concentrations of 17 elements were determined in glasses of melt inclusions in plagioclases from five volcanoes(Avachinskii, Bezymyannyi,Dikii Greben',Kudryavyi,and Shiveluch).The studied melts show similar trace-element patterns with Nb and Ti minima and B,K,Be,and Li maxima.The melts are close to typical island arc magmas by Sr/Y,La/Yb,K/Ti,and Ca/St ratios, and have some specific regional geochemical features.REE patterns sensitive to degree of magma differentiation indicate that Kudryavyi magmas are most primitive,while Shiveluch magmas are most evolved.  相似文献   

6.
The Lugiin Gol nepheline syenite intrusion, Mongolia, hosts a range of carbonatite dikes mineralized in rare-earth elements(REE). Both carbonatites and nepheline syenite-fluorite-calcite veinlets are host to a previously unreported macroscale texture involving pseudo-graphic intergrowths of fluorite and calcite. The inclusions within calcite occur as either pure fluorite, with associated REE minerals within the surrounding calcite, or as mixed calcite-fluorite inclusions, with associated zirconosilicate minerals. Consideration of the nature of the texture, and the proportions of fluorite and calcite present(~29 and 71 mol%,respectively), indicates that these textures most likely formed either through the immiscible separation of carbonate and fluoride melts, or from cotectic crystallization of a carbonatefluoride melt. Laser ablation ICP-MS analyses show the pure fluorite inclusions to be depleted in REE relative to the calcite. A model is proposed, in which a carbonate-fluoride melt phase enriched in Zr and the REE, separated from a phonolitic melt, and then either unmixed or underwent cotectic crystallization to generate an REE-rich carbonate melt and an REE-poor fluoride phase. The separation of the fluoride phase(either solid or melt) may have contributed to the enrichment of the carbonate melt in REE, and ultimately its saturation with REE minerals. Previous data have suggested that carbonate melts separated from silicate melts are relatively depleted in the REE, and thus melt immiscibility cannot result in the formation of REE-enriched carbonatites. The observations presented here provide a mechanism by which this could occur, as under either model the textures imply initial separation of a mixed carbonate-fluoride melt from a silicate magma. The separation of an REEenriched carbonate-fluoride melt from phonolitic magma is a hitherto unrecognized mechanism for REE-enrichment in carbonatites, and may play an important role in the formation of shallow magmatic REE deposits.  相似文献   

7.
High-Al chromite from the Kudi chromitites contains a wide range of mineral inclusions. They include clinopyroxene, amphibole, phlogopite, olivine, orthopyroxene, apatite, base-metal sulfides, calcite and brucite. The modal abundance of inclusions vary greatly among different grains of chromite. The common inclusions are clinopyroxene and amphibole, which occur as monomineral or polymineral associated with other minerals. The shapes of these inclusions tend to follow the growth plane of host chromite. Mineral assemblages and textures demonstrate that some inclusions(olivine, clinopyroxene) are trapped during magmatic stage, and most of the inclusions(e.g., amphibole, phlogopite) are trapped during recrystallization of chromite. Sulfide inclusions are pentlandite, chalcopyrite and cubanite. They occur either as isolated grains or together with silicate minerals, and formed from the separation of sulfide-bearing liquid from silicate magma. The parental magma of chromitites contains Al_2O_3 15.0wt%–16.5wt%, TiO_20.30wt%–1.05wt% based on calculation with the composition of chromite, similar to parental magma of high-Al chromitites from elsewhere and the estimated melt composition is comparable with that of MORB. Considering the high-Mg olivine in disseminated chromitite and abundant hydrous inclusions, we propose that Kudi chromitites formed beneath a volcanic front during the subduction initiation of Proto-Tethys.  相似文献   

8.
The Ailaoshan aquamarine-bearing pegmatites are associated with Proterozoic metamorphic rocks in the southern portion of the Ailaoshan fault-folded complex.The gem-bearing pegmatite mineralization zones of the region occur in areas generally consistent with the regional tectonic trend.The pegmatites are found in metamorphic rocks,migmatites and in the inner/outer contact zones of gneissoid granites. The Rb-Sr isochron drawn for the pegmatites is 26~31 Ma,(i.e.in Himalayan).The homogenization temperatures of melt and liquid inclusions in minerals vary from 185 to 920℃,which are comparable to the inclusions observed in banded migmatites and ptygmatic quartz veins in the surrounding metamorphic rocks. The mineralization fluids of the pegmatite were rich in HCO_3 and CO_2,and their compositional assemblages are comparable to metamorphic fluids.Results of H,O,C,Si etc.isotopic analyses and REE,and Be analyses indicates that the sources of mineralization components that formed the pegmatites are closely associated with metamorphic fluids and the enclosing metamorphic rocks. A pegmatite structure simulation experiment was conducted at high temperature and pressure(840℃and 1,500×105Pa.),with various metamorphic rock samples in a water-rich and volatile-rich environment.When the liquidus was reached,the temperature was gradually decreased at the rate of 5~10℃/day over a time period of three months.SEM energy-dispersive spectrum analyses were performed on the experimental products.A series of pegmatoid textures were observed including zonal texture,megacryst texture,drusy cavities,crystal druses,and vesicular texture along with more than ten types of minerals including plagioclase,microcline,quartz and biotite.Different metamorphic rock melts generated different mineral assemblages.Experiment results revealed that the partial melting of metamorphic rocks could form melts similar to pegmatite magmas. Based upon the geological characteristics,geochemistry,and pegmatite texture simulation experimental results,it is concluded that the mineralization components of Ailaoshan aquamarine-bearing pegmatites came from metamorphic rocks.The petrogenetic model for the origin of pegmatites is related to ultrametamorphism and metamorphic anatexis.  相似文献   

9.
The Talate Pb-Zn deposit,located in the east of the NW-SE extending Devonian Kelan volcanic-sedimentary basin of the southern Altaides,occurs in the metamorphic rock series of the upper second lithological section of the lower Devonian lower Kangbutiebao Formation(D_1k_1~2).The Pb-Zn orebodies are stratiform and overprinted by late sulfide—quartz veins.Two distinct mineralization periods were identified:a submarine volcanic sedimentary exhalation period and a metamorphic hydrothermal mineralization period.The metamorphic overprinting period can be further divided into two stages:an early stage characterized by bedding-parallel lentoid quartz veins developed in the chlorite schist and leptite of the ore-bearing horizon,and a late stage represented by pyritechalcopyrite-quartz veins crosscutting chlorite schist and leptite or the massive Pb-Zn ores.Fluid inclusions in the early metamorphic quartz veins are mainly CO_2-H_2O-NaCI and carbonic(CO_2±CH_4±N_2) inclusions with minor aqueous inclusions.The CO_2-H_2O-NaCl inclusions have homogenization temperatures of 294-368℃,T_(m,CO2) of-62.6 to-60.5℃,T_(h,CO2) of 7.7 to 29.6℃(homogenized into liquid),and salinities of 5.5-7.4 wt%NaCl eqv.The carbonic inclusions have T_(m,CO2)of-60.1 to-58.5℃,and T_(h,Co2) of-4.2 to 20.6℃.Fluid inclusions in late sulfide quartz veins are also dominated by CO_2-H_2O-NaCl and CO_2±CH_4 inclusions.The CO_2-H_2O-NaCl inclusions have T_(b,tot) of142 to 360℃,T_(m,CO2)of-66.0 to-56.6℃,T_(h,CO2) of-6.0 to 29.4℃(homogenized into liquid) and salinities of 2.4-16.5 wt%NaCl eqv.The carbonic inclusions have T_(m,Co2)of-61.5 to-57.3℃,and T_(h,CO2) of-27.0to 28.7℃.The aqueous inclusions(L-V) have T_(m,ice) of-9.8 to-1.3℃ and T_(h,tot) of 205 to 412℃.The P-T trapping conditions of CO_2-rich fluid inclusions(100-370 MPa,250-368℃) are comparable with the late- to post-regional metamorphism conditions.The CO_2-rich fluids,possibly derived from regional metamorphism,were involved in the reworking and metal enrichment of the primary ores.Based on these results,the Talate Pb-Zn deposit is classified as a VMS deposit modified by metamorphic fluids.The massive Pb-Zn ores with banded and breccia structures were developed in the early period of submarine volcanic sedimentary exhalation associated with an extensional subduction-related back-arc basin,and the quartz veins bearing polymetallic sulfides were formed in the late period of metamorphic hydrothermal superimposition related to the Permian-Triassic continental collision.  相似文献   

10.
Crystalline and melt inclusions were studied in garnet,diopside,potassium feldspar,and sphene from the garnet syenite porphyry of the carbonatite-bearing complex Mushugai-Khuduk,southern Mongolia.Phlogopite,clinopyroxene,albite,potassium feldspar,spheric,wollastonite,magnetite,Ca and Sr sulfates,fluorite,and apatite were identified among the crystalline inclusions. The melt inclusions were homogenized at 1010~1080℃and analyzed on an electron microprobe.Silicate,salt,and combined silicate- salt melt inclusions were found.Silicate melts show considerable variations in SiO_2 concentration(56 to 66wt% ),high Na_2O K_2O (up to 17wt% ),and elevated Zr,F,and C1 contents.In terms of bulk rock chemistry,the silicate melts are alkali syenites.During thermometric experiments,salt melt inclusions quenched into homogeneous glasses of predominantly sulfate compositions containing no more than 1.3wt% SiO_2.These melts are enriched in alkalis,Ba,Sr,P,F,and C1.The investigation of the silicate and salt melt inclusions in minerals of the garnet syenite porphyries indicate that these rocks were formed under influence of the processes of crystallization differentiation and magma separation into immiscible silicate and salt(sulfate)liquids.  相似文献   

11.
山东昌乐第三纪玄武岩中产有刚玉巨晶,内含丰富的原生和假次生流体包裹体和熔融包裹体。流体包裹体可分为CO2单相包裹体、H2O-CO2两相和三相包裹体。熔融包裹体类型复杂,其中富流体相包裹体可分为含CO2收缩气泡两相熔融包裹体和气-液-固多相熔融包裹体。诸类包裹体主要赋含在刚玉晶核外的“主体”部分,以CO2单相流体包裹体和两相熔融包裹体最为发育,并且不同类型包裹体常密切伴生,表明它们形成时流体发生了不混溶作用:出现熔浆相(富含挥发分)、气相(CO2为主)和富水相(H2O-CO2为主)等多相体系。激光拉曼分析结果显示,各类包裹体中的气体组分主要是CO2,另有不等量的N2和H2S,据此划分为纯CO2、CO2-N2、CO2-H2S和CO2-N2-H2S等气体组合类型,没有发现O2、CH4和H2等组分。此外,拉曼分析也证实了流体包裹体和熔融包裹体中存在H2O。上述资料表明,昌乐地区深部流体以CO2为主,同时包含H2O、N2和H2S在内的多种组分,这些流体组分也是刚玉母浆系统的重要成分。  相似文献   

12.
运用电子探针测定了云南哀牢山伟晶岩和新疆可可 托海伟晶岩矿物中熔融包裹体及流体-熔融包裹体子矿物成分。据73个包裹体中120个测 点分 析结果,鉴定出锌尖晶石、刚玉、磷灰石、磁铁矿、白云母、黑云母、钾长石、钠长石、绿 柱石和石英等10种 子矿物,并确定矿物组合27个。其中锌尖晶石、刚玉在两地区伟晶岩熔融包裹体中属首次发 现,磷灰石成分属首次测定。两地伟晶岩矿物的熔融及流体-熔融包裹体中子 矿 物成分及矿物组合各异,包裹体中子矿物与主矿物的化学成分存在一定演化规律,可作为了 解伟晶岩浆结晶分异作用、元素演化规律的依据。研究表明,伟晶岩存在局部岩浆分异作 用,岩浆具不混溶性及非均匀性。此成果对了解伟晶岩物质成分、形成机制及成因研究具重 要意义。对岩浆岩、地幔岩及陨石研究也有一定启迪。  相似文献   

13.
Corundum from basaltic terrains: a mineral inclusion approach to the enigma   总被引:13,自引:0,他引:13  
 This paper investigates the origin of corundum megacrysts that occur in many basaltic terrains, and which are considered to be eroded from basaltic rocks. Geochemical data for over 80 primary mineral inclusions within corundum megacrysts are used to gain a new insight into the petrogenetic history of the corundum megacrysts. A wide spectrum of minerals is present as inclusions in the corundum; the most common are Nb−Ta oxides (such as titaniferous columbite and uranpyrochlore), alkali feldspar, low-Ca plagioclase (albite-oligoclase) and zircon. Rare inclusions include Fe,Cu-sulphide (low in Ni), cobalt-rich spinel, Th,Ce-rich phosphate and uraninite. The similar chemistry of some inclusion minerals from corundum occurring in widely separated areas suggests that the corundum megacrysts in basalts have a similar petrogenesis. Geochemical characteristics of the inclusions indicate a bimodal grouping, which is best explained by a mixing-hybridisation process. This study indicates that the corundum megacrysts are not cogenetic with their basaltic hosts but are crustal fragments accidentally incorporated into the erupting magma. It is suggested that interactions between a silicic component and an intruding carbonatitic or similar Si-poor magma is responsible for Al-oversaturation, resulting in locally distributed lenses of corundum-bearing rock of mixed paragenesis (“hybrid rock hypothesis”). Feldspar exsolution textures provide strong evidence that this hybridisation occurred at mid-crustal levels. Subsequent volcanic eruptions brought the corundum-bearing rocks (later disintegrated in the magma) up to the Earth's surface. This petrogenetic model for corundum megacrysts is experimentally testable. Received: 15 March 1995 / Accepted: 30 June 1995  相似文献   

14.
运用电子探针测定了云南哀牢山伟晶岩和新疆可可 托海伟晶岩矿物中熔融包裹体及流体-熔融包裹体子矿物成分。据73个包裹体中120个测 点分 析结果,鉴定出锌尖晶石、刚玉、磷灰石、磁铁矿、白云母、黑云母、钾长石、钠长石、绿 柱石和石英等10种 子矿物,并确定矿物组合27个。其中锌尖晶石、刚玉在两地区伟晶岩熔融包裹体中属首次发 现,磷灰石成分属首次测定。两地伟晶岩矿物的熔融及流体-熔融包裹体中子 矿 物成分及矿物组合各异,包裹体中子矿物与主矿物的化学成分存在一定演化规律,可作为了 解伟晶岩浆结晶分异作用、元素演化规律的依据。研究表明,伟晶岩存在局部岩浆分异作 用,岩浆具不混溶性及非均匀性。此成果对了解伟晶岩物质成分、形成机制及成因研究具重 要意义。对岩浆岩、地幔岩及陨石研究也有一定启迪。  相似文献   

15.
There are many melt and fluid inclusions (mainly CO2-rich) in olivine and pyroxene phenocrysts in basalts from the Ross Island area. The melt inclusions can be classified as follows: (1) crystalline melt inclusions (type I), (2) fluid-melt inclusions (type II) and (3) glass inclusions (type III). The daughter minerals in type I include olivine, plagioclase, ilmenite, etc. Fluid-melt inclusions are a new type which represent the immiscibility of magma and fluid at a particular stage of evolution. Three types of fluid-melt inclusions were examined in this study: a) crystal + liquid + gas, b) inclusions coexisting with glass inclusions and fluid inclusions, and c) crystal + daughter mineral (dissolved salt) + gas. Both primary and secondary melt inclusions are recognizable in the samples. The secondary melt inclusions were formed during healing of fractures in the host minerals in the process of magma rise. The homogenization temperatures (both Leitz 1350 stage and quench method were used) of melt inclusions in basalts range from 1190 to 135°C at high pressure (about 7 kbars), indicating that the basalts may have come from the upper mantle. Melt-fluid immiscibility in basaltic magma shows that the CO2-rich fluids may be the main fluid phase in the upper mantle, which are of significance in understanding the evolution of magma and various processes in the deep levels of the earth. The homogenization temperatures of melt and aqueous fluid inclusions in granites and metamorphic rocks in this area vary from 980 to 1100°C and 279 to 350°C, respectively.  相似文献   

16.
山东昌乐新生代玄武岩内的刚玉巨晶(蓝宝石)中含有多种类型熔融包裹体,其成分对了解华北深部地幔交代过程中的流/熔体性质和刚玉母岩浆特点具有重要意义.详细的岩相学和激光拉曼分析鉴定出一类富碳酸盐和硫酸盐成分的原生熔融包裹体以及一类含硫酸盐和氯化物等成分的次生熔融包裹体,二者同时还含有CO2和H2O.碳酸盐和硫酸盐成分在世界范围玄武岩内刚玉巨晶中是首次发现,结合已有的包裹体稀有气体同位素和测温资料,反映两种成分可能来源于交代地幔的碳酸岩熔体,预示着华北深部地幔不仅经历了硅酸盐成分的交代还经历了富碳酸盐和硫酸盐成分(碳酸岩)的交代,同时也显示刚玉母岩浆成分复杂,至少有富这两类成分物质的参与,刚玉很可能是硅酸盐岩浆/岩石和幔源碳酸岩岩浆相互作用的产物,后被玄武岩喷发携带至地表.  相似文献   

17.
海南蓬莱刚玉巨晶中铌(钽)铁矿包裹体及其意义   总被引:1,自引:0,他引:1  
铌(钽)铁矿是基性岩与超基性岩中极为罕见的矿物,运用电子探针分析了海南蓬莱与碱性玄武岩有密切成生联系的刚玉巨晶中的铌(钽)铁矿包裹体的成分,确定其晶体化学式为(Fe0.726Mn0.168)0.894(Nb1.808Ta0.067Ti0.208)2.083O6。讨论了铌(钽)铁矿的形成与刚玉巨晶的关系,认为刚玉巨晶的形成可能和岩浆混合或上地幔流体交代作用有关。  相似文献   

18.
陕西省华县金堆城斑岩型钼矿床流体包裹体研究   总被引:8,自引:7,他引:1  
杨永飞  李诺  倪智勇 《岩石学报》2009,25(11):2983-2993
陕西省华县金堆城钼矿床位于东秦岭钼矿带西部,形成于燕山期大陆碰撞体制.矿体产出于金堆城花岗斑岩体内部及其内外接触带.流体成矿过程包括早、中、晚3个阶段,分别以石英-钾长石组合、石英-(钾长石)-多金属硫化物-(碳酸盐)组合和石英-碳酸盐组合为标志,矿石矿物主要沉淀于中阶段.早、中阶段石英中可见纯CO_2包裹体(PC型)、CO_2-H_2O型包裹体(C型)、水溶液包裹体(W型)和含子晶多相包裹体(S型),但晚阶段只发育水溶液包裹体(W型).早阶段C型和W型包裹体均一温度集中于280~370℃,盐度为5.68~11.05 wt%NaCl.eqv;中阶段C型和W型流体包裹体均一温度集中于170~270℃,盐度为5.14~12.63 wt%NaCl.eqv.早、中阶段石英中见S型包裹体,加热过程中子矿物不溶.晚阶段流体包裹体均一温度集中于110~1900C,盐度介于7.17%~11.22 wt%NaCl.eqv之间.估算的早、中阶段流体捕获压力分别为143~243MPa和22~115MPa,推测成矿深度约为2.2~8.1km.金堆城钼矿的成矿流体以富CO_2、贫Cl~-为特征.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号