首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Land-based eutrophication is often associated with blooms of green macroalgae, resulting in negative impacts on seagrasses. The generality of this interaction has not been studied in upwelling-influenced estuaries where oceanic nutrients dominate seasonally. We conducted an observational and experimental study with Zostera marina L. and ulvoid macroalgae across an estuarine gradient in Coos Bay, Oregon. We found a gradient in mean summer macroalgal biomass from 56.1 g dw 0.25 m−2 at the marine site to 0.3 g dw 0.25 m−2 at the riverine site. Despite large macroalgal blooms at the marine site, eelgrass biomass exhibited no seasonal or interannual declines. Through experimental manipulations, we found that pulsed additions of macroalgae biomass (+4,000 mL) did not affect eelgrass in marine areas, but it had negative effects in riverine areas. In upwelling-influenced estuaries, the negative effects of macroalgal blooms are context dependent, affecting the management of seagrass habitats subject to nutrient inputs from both land and sea.  相似文献   

2.
An experiment was conducted to quantify the effects of different levels of nutrient enrichment on the plant communities of temperate coastal lagoons, specifically the lagoons of the northeast U.S. Ten mesocosms, each containing coastal water, lagoon sediments, and plants and animals found in natural lagoons, were subjected to five levels of enrichment. Two mesocosms served as controls, and received no experimental nutrient additions. The remaining 8 mesocosms were enriched in duplicate with ammonium plus phosphate at 1.0 and 0.11 mmol N or P m?2 d?1, 2.0 and 0.19 mmol N or P m?2 d?1, 4.0 and 0.35 mmol N or P m?2 d?1, and 8.0 and 0.67 N or P mmol m?2 d?1. At all levels of enrichment, and through much of the experiment, water column concentrations of dissolved inorganic nitrogen (DIN) were drawn down to background levels. Despite the efficient drawdown of added DIN even at the highest loadings, differences in plant biomass among the 5 treatments were difficult to detect. Enrichment at the highest loadings increased standing stocks of phytoplankton for one month mid-experiment. No significant effect of loading could be detected for dry biomass of eelgrass (Zostera marina), epiphytic material, drift macroalgae, or for all plant components combined. The experiment has demonstrated that the enrichment responses of coastal lagoons can be diverse, especially at intermediate loadings.  相似文献   

3.
Quarterly field sampling was conducted to characterize variations in water column and sediment nutrients in a eutrophic southern California estuary with a history of frequent macroalgal blooms. Water column and sediment nutrient measures demonstrated that Upper Newport Bay (UNB) is a highly enriched estuary. High nitrate (NO3 ) loads from the river entered the estuary at all sampling times with a rainy season (winter) maximum estimated at 2,419 mol h−1. This resulted in water NO3 concentration in the estuary near the river mouth at least one order of magnitude above all other sampling locations during every seasons; maximum mean water NO3 concentration was 800 μM during springer 1997. Phosphorus (P)-loading was high year round (5.7–90.4 mol h−1) with no seasonal pattern. Sediment nitrogen (N)-content showed a seasonal pattern with a spring maximum declining through fall. sediment and water nutrients, as well as percent cover of three dominant macroalgae, varied between the main channel and tidal creeks. During all seasons, water column NO3 concentrations were higher in the main channel than in tidal creeks while tidal creeks had higher levels of sediment total Kjeldhal nitrogen (TKN) and P. During each of the four sampling periods, percent cover ofEntermorpha intestinalis andCeramium spp. was higher in tidal creeks than in the main channel, while percent cover ofUlva expansa was always higher in the main channel. Decreases in sediment N in both creek and channel habitats were concurrent with increases in macroalgal cover, possibly reflecting use of stored sediment TKN by macroalgae. Our data suggest a shift in primary nutrient sources for macroalgae in UNB from riverine input during winter and spring to recycling from sediments duirng summer and fall.  相似文献   

4.
Temporal and spatial variations in phytoplankton in Asan Bay, a temperate estuary under the influence of monsoon, were investigated over an annual cycle (2004). Phytoplankton blooms started in February (>20 μg chl l−1) and continued until April (>13 μg chl l−1) during the dry season, especially in upstream regions. The percentage contribution of large phytoplankton (micro-sized) was high (78–95%) during the blooms, and diatoms such as Skeletonema costatum and Thalassiosira spp. were dominant. The precipitation and freshwater discharge from embankments peaked and supplied nutrients into the bay during the monsoon event, especially in July. Species that favor freshwater, such as Oscillatoria spp. (cyanobacteria), dominated during the monsoon period. The phytoplankton biomass was minimal in this season despite nutrient concentrations that were relatively sufficient (enriched), and this pattern differed from that in tropical estuaries affected by monsoon and in temperate estuaries where phytoplankton respond to nutrient inputs during wet seasons. The flushing time estimated from the salinity was shorter than the doubling time in Asan Bay, which suggests that exports of phytoplankton maximized by high discharge directly from embankments differentiate this bay from other estuaries in temperate and tropical regions. This implies that the change in physical properties, especially in the freshwater discharge rates, has mainly been a regulator of phytoplankton dynamics since the construction of embankments in Asan Bay.  相似文献   

5.
The size-fractionated phytoplankton biomass and primary production were investigated in four contrasting areas of Hong Kong waters in 2006. Phytoplankton biomass and production varied seasonally in response to the influence of the Pearl River discharge. In the dry season, the phytoplankton biomass and production were low (<42 mg chl m−2 and <1.8 g C m−2 day−1) in all four areas, due to low temperatures and dilution and reduced light availability due to strong vertical mixing. In contrast, in the wet season, in the river-impacted western areas, the phytoplankton biomass and production increased greater than five-fold compared to the dry season, especially in summer. In summer, algal biomass was 15-fold higher than in winter, and the mean integrated primary productivity (IPP) was 9 g C m−2 day−1 in southern waters due to strong stratification, high temperatures, light availability, and nutrient input from the Pearl River estuary. However, in the highly flushed western waters, chl a and IPP were lower (<30 mg m−2 and 4 g C m−2 day−1, respectively) due to dilution. The maximal algal biomass and primary production occurred in southern waters with strong stratification and less flushing. Spring blooms (>10 μg chl a L−1) rarely occurred despite the high chl-specific photosynthetic rate (mostly >10 μg C μg chl a −1 day−1) as the accumulation of algal biomass was restricted by active physical processes (e.g., strong vertical mixing and freshwater dilution). Phytoplankton biomass and production were mostly dominated by the >5-μm size fraction all year except in eastern waters during spring and mostly composed of fast-growing chain-forming diatoms. In the stratified southern waters in summer, the largest algal blooms occurred in part due to high nutrient inputs from the Pearl River estuary.  相似文献   

6.
We present a comparative analysis of lower depth limits for growth of eelgrass, large brown algae and other macroalgae measured by SCUBA-diving along 162 transects in 27 Danish fjords and coastal waters, coupled to 1,400 data series of water chemistry (especially nitrogen) and Secchi depth transparency collected between March and October. Danish coastal waters are heavily eutrophied and characterized by high particle concentrations, turbid water and lack of macrophyte growth in deep water. Median values are 3.6 m for Secchi depth and median lower-depth limits are 4.0 m for eelgrass, 5.3 m for brown algae and 5.0 m for other macroalgae. Depth limits for growth of eelgrass and macroalgae increase linearly with transparency in the coastal waters. The relationships are highly significant (p<10−6) and transparency accounts for about 60% of the variability of depth limits. Eelgrass extends approximately to half the maximum depth of macroalgae, presumably because of greater respiratory costs to maintain the below-ground rhizomes and roots of eelgrass, which often constitutes half the plant weight. As a reflection of the importance of total nitrogen (TN) in controlling phytoplankton biomass and thus Secchi depth in coastal marine waters, we found that TN could explain 48–73% of the variation in depth limits of eelgrass and macroalgae, according to a multiplicative model (Y=aXb). As with Secchi depth, the relationship to eelgrass showed a lower slope, reflecting the higher respiratory costs of eelgrass. The models show great sensitivity and a profound quantitative response with proportional effects on Secchi depth and depth limits when total-N concentrations are reduced.  相似文献   

7.
We developed light requirements for eelgrass in the Pacific Northwest, USA, to evaluate the effects of short- and long-term reductions in irradiance reaching eelgrass, especially related to turbidity and overwater structures. Photosynthesis-irradiance experiments and depth distribution field studies indicated that eelgrass productivity was maximum at a photosynthetic photon flux density (PPFD) of about 350–550 μmol quanta m−2 s−1. Winter plants had approximately threefold greater net apparent primary productivity rate at the same irradiance as summer plants. Growth studies using artificial shading as well as field monitoring of light and eelgrass growth indicated that long-term survival required at least 3 mol quanta m−2 day−1 on average during spring and summer (i.e., May-September), and that growth was saturated above about 7 mol quanta m−2 day−1. We conclude that non-light-limited growth of eelgrass in the Pacific Northwest requires an average of at least 7 mol quanta m−2 day−1 during spring and summer and that long-term survival requires a minimum average of 3 mol quanta m−2 day−1.  相似文献   

8.
We studied the late June–August fish community in extant and former eelgrass (Zostera marina L.) habitats in 15 estuaries of Buzzards Bay, and in Waquoit Bay, Massachusetts, U.S. Our objective was to quantify the effects of eelgrass habitat loss on fish abundance, biomass, species composition and richness, life-history characteristics, and habitat use by examining the response of the fish community to eelgrass loss in Waquoit and Buttermilk Bays over an 11-yr period (1988–1999) and in 14 other embayments of Buzzards Bay during 1993, 1996, and 1998. Sampling sites were located in present-day or historical eelgrass beds and were classified according to eelgrass habitat complexity (zero complexity: no eelgrass; low complexity: <100 eelgrass shoots or <100 g wet weight m−2; high complexity: ≥100 shoots and ≥100 g wet weight m−2). Habitats that had lost eelgrass included a variety of substratum types, from bare mud bottom to dense accumulations of red, brown, and green macroalgae (up to 7,065 g wet weight m−2). Contemporaneous sampling of fish (by otter trawl) and vegetated habitat (by divers) was conducted at each site. Overall, fish abundance, biomass, species richness, dominance, and life history diversity decreased significantly along the gradient of decreasing eelgrass habitat complexity. Loss of eelgrass was accompanied by significant declines in these measures of fish community integrity. Ten of the 13 most common species collected from 1988–1996 in Waquoit and Buttermilk Bays showed maximum abundance and biomass in sites with high eelgrass habitat complexity. All but two common species declined in abundance and biomass with the complete loss of eelgrass.  相似文献   

9.
The Laguna Madre has experienced a persistent bloom ofAureoumbra lagunensis for over eight years. The persistence of this bloom may be due in part to the often hypersaline conditions in Laguna Madre (40–60 psu) that favor the growth ofA. lagunensis. Above-normal rainfall in the fall of 1997 reduced the salinities in Baffin Bay from >40 to<20 psu.A. lagunensis cell densities dropped from>106 cells ml−1 in July 1997 to c. 200 cells ml−1 in January 1998. During this time of low brown tide density, phytoplankton biomass generally remained high and the Laguna Madre experienced successive blooms of diatoms (Rhizosolenia spp.) and cyanobacteria. Hypersaline conditions returned in 1998 and brown tide densities increased to>0.5 × 106 cells ml−1 by summer. The extraordinary persistence of the brown tide and the unusual sequence of intense blooms may be related in part to the reduction of zooplankton populations. Microzooplankton populations declined following the above-normal rain in the fall of 1997; populations did not recover until fall 1998. Copepod populations also declined sharply and remained low in Laguna Madre, but recovered by summer 1998 in Baffin Bay. Dilution experiments indicated that microzooplankton grazing and phytoplankton growth were usually balanced when measured during our cruises. The rapid recovery of theA. lagunensis bloom suggests that this alga may be a more resilient component of the Laguna Madre flora than previously suspected.  相似文献   

10.
Florida Bay is Florida’s (USA) largest estuary and has experienced harmful picocyanobacteria blooms for nearly two decades. While nutrient loading is the most commonly cited cause of algal blooms in Florida Bay, the role of zooplankton grazing pressure in bloom occurrence has not been considered. For this study, the spatial and temporal dynamics of cyanobacteria blooms, the microbial food web, microzooplankton and mesozooplankton grazing rates of picoplankton, and the effects of nutrients on plankton groups in Florida Bay were quantified. During the study, cyanobacteria blooms (>3 × 105 cells mL−1) persisted in the eastern and central regions of Florida Bay for more than a year. Locations with elevated abundance of cyanobacteria hosted microzooplankton grazing rates on cyanobacteria that were significantly lower (p < 0.001) and less frequently detectable compared to sites without blooms. Consistent with this observation, cyanobacteria abundances were significantly correlated with ciliates and heterotrophic nanoflagellates at low cyanobacteria densities (p < 0.001) but were not correlated during bloom events. The experimental enrichment of mesozooplankton abundance during blooms yielded a significant decrease in the net growth rate of picoplankton but had the opposite effect when blooms were absent, suggesting that the cascading effect of mesozooplankton grazing on the microbial food web was also altered during blooms. While inorganic nutrient enrichment significantly increased the net growth rates of eukaryotic phytoplankton and heterotrophic bacteria, such nutrient loading had no effect on the net growth rates of cyanobacteria. Hence, this study demonstrates that low rates of zooplankton grazing and low rates of inorganic nutrient loading contribute to the persistence of cyanobacteria blooms in Florida Bay.  相似文献   

11.
Seasonal phosphorus limitation occurs on the Louisiana continental shelf as a result of high nitrogen loads in the spring and early summer. Prior studies have assessed such nutrient limitation by laborious and time-consuming nutrient analyses, enzyme assays, and nutrient addition bioassays. We undertook surface (0.5–1 m) mapping of fast repetition rate fluorescence (FRRF) parameters to assess nutrient limitation in real time on the Louisiana continental shelf and Mississippi River plume from 29 June to 08 July, 2002 in an effort to further understand phytoplankton productivity in this region, as well as to better inform effective nutrient management strategies. Surface nutrient concentrations (NO3, NO2, NH4+, PO43−), chlorophyll a biomass, alkaline phosphatase (AP) activity, and four FRRF parameters: the maximum quantum yield of photochemistry (F v /F m ), the functional absorption cross section for PSII, the time constant for Q A reoxidation, and the connectivity factor, were measured during continuous underway mapping. Results from traditional methods to assess phytoplankton nutrient stress indicated widespread phosphorus limitation from the Mississippi River plume to the Atchafalaya River, manifested as high inorganic N/P ratios and elevated AP activities associated with phytoplankton biomass. The FRRF data indicated complex patterns of phytoplankton physiology that were likely driven by the rapidly changing conditions in local surface waters and heterogeneous phytoplankton community structure. Correlations of nutrient data and enzyme assays with FRRF parameters were significant but low, potentially due to differences in the manner and time scale with which nutrient limitation affects the different techniques used, indicating that further work is needed to interpret FRRF parameters in large, heterogeneous environments such as estuaries and continental shelves.  相似文献   

12.
Phytoplankton uptake rates of ammonium (NH4 +), nitrate (NO3 ), and urea were measured at various depths (light levels) in Hong Kong waters during the summer of 2008 using 15N tracer techniques in order to determine which form of nitrogen (N) supported algal growth. Four regions were sampled, two differentially impacted by Pearl River discharge, one impacted by Hong Kong sewage discharge, and a site beyond these influences. Spatial differences in nutrient concentrations, ratios, and phytoplankton biomass were large. Dissolved nutrient ratios suggested phosphorus (P) limitation throughout the region, largely driven by high N loading from the Pearl River in summer. NH4 + and urea made up generally ≥50% of the total N taken up and the f ratio averaged 0.26. Even at the river-impacted site where concentrations of NO3 were >20 μM N, NH4 + comprised >60% of the total N uptake. Inhibition experiments demonstrated that NO3 uptake rates were reduced by 40% when NH4 + was >5 μM N. The relationship between the total specific uptake rates of N (sum of all measured substrates, V, per hour) and the chlorophyll a-specific rates (micromolars of N per microgram of Chl a per hour) varied spatially with phytoplankton biomass. Highest uptake rates and biomass were observed in southern waters, suggesting that P limitation and other factors (i.e., flushing rate) controlled production inshore and that the unincorporated N (mainly NO3 ) was transported offshore. These results suggest that, at the beginning of summer, inshore algal blooms are fueled primarily by NH4 + and urea, rather than NO3 , from the Pearl River discharge. When NH4 + and urea are depleted, then NO3 is taken up and can increase the magnitude of the bloom.  相似文献   

13.
We examined individual and interactive effects of two stressors—nutrients (nitrogen [N] and phosphorus [P]) and trace elements (a mix of arsenic [As], copper [Cu], and cadmium [Cd], and in a second experiment also zinc [Zn] and nickel [Ni])—on phytoplankton of the mesohaline Patuxent River, a tributary of Chesapeake Bay. Experiments were conducted in twenty 1-m3 mesocosms. Four mesocosm runs used two levels of nutrient loadings (0.7–1.0 × ambient N loading and enriched to 1.3–1.6 × ambient N loading) crossed with two levels of trace elements (ambient and enriched approximately 2–5 × higher than ambient concentrations) crossed with five progressive levels of ecosystem complexity. To examine seasonal patterns of responses to stressors, data from these experiments were combined with results of a similar experiment conducted during 1996 (Breitburg et al. 1999a). A second mesocosm experiment examined effects of individual and mixed trace elements, both alone and in combination with nutrients, to further examine which nutrient-trace element interactions were important. Nutrients consistently increased phytoplankton productivity and biomass. Most of the increased biomass was created by large centric diatoms, which increased the mean cell size of the phytoplankton community. Trace element additions decreased phytoplankton productivity and biomass, as well as the contribution of large centric diatoms to phytoplankton biomass. When both trace elements and nutrients were added, trace elements reduced nutrient stimulation. Although the magnitude of the response to nutrient additions tended to be somewhat greater in spring, the seasonal patterns of trace element effects, and nutrient-trace element interactions were far more striking with significant responses restricted to spring mesocosm runs. The second experiment indicated that both As and Cu were more inhibitory to phytoplankton in spring than in summer, but As was more inhibitory in the low nutrient treatments and Cu was more inhibitory in the nutrient enrichment treatments. The potential for strong seasonal patterns and high temporal variability in stressor effects and multiple stressor interactiosn will require close attention in the design and interpretation of management-relevant research and monitoring and may indicate the need for seasonally varying management strategies.  相似文献   

14.
Ten years (1985–1994) of data were analyzed to investigate general patterns of phytoplankton and nutrient dynamics, and to identify major factors controlling those dynamics in the York River Estuary, Virginia. Algal blooms were observed during winter-spring followed by smaller summer blooms. Peak phytoplankton biomass during the winter-spring blooms occurred in the mid reach of the mesohaline zone whereas peak phytoplankton biomass during the summer bloom occurred in the tidal fresh-mesohaline transition zone. River discharge appears to be the major factor controlling the location and timing of the winter-spring blooms and the relative degree of potential N and P limitation. Phytoplankton biomass in tidal fresh water regions was limited by high flushing rates. Water residence time was less than cell doubling time during high flow seasons. Positive correlations between PAR at 1 m depth and chlorophylla suggested light limitation of phytoplankton in the tidal fresh-mesohaline transition zone. Relationships of salinity difference between surface and bottom water with chlorophylla distribution suggested the importance of tidal mixing for phytoplankton dynamics in the mesohaline zone. Accumulation of phytoplankton biomass in the mesohaline zone was generally controlled by N with the nutrient supply provided by benthic or bottom water remineralization.  相似文献   

15.
The climatology and interannual variability of winter phytoplankton was analyzed at the Long Term Ecological Research Station MareChiara (LTER-MC, Gulf of Naples, Mediterranean Sea) using data collected from 1985 to 2006. Background winter chlorophyll values (0.2–0.5 μg chl a dm−3) were associated with the dominance of flagellates, dinoflagellates, and coccolithophores. Winter biomass increases (<5.47 μg chl a dm−3) were often recorded until 2000, generally in association with low-salinity surface waters (37.3–37.9). These blooms were most often caused by colonial diatoms such as Chaetoceros spp., Thalassiosira spp., and Leptocylindrus danicus. In recent years, we observed more modest and sporadic winter biomass increases, mainly caused by small flagellates and small non-colonial diatoms. The resulting negative chl a trend over the time series was associated with positive surface salinity and negative nutrient trends. Physical and meteorological conditions apparently exert a strict control on winter blooms, hence significant changes in winter productivity can be foreseen under different climatic scenarios.  相似文献   

16.
While many coastal ecosystems previously supported high densities of seagrass and abundant bivalves, the impacts of overfishing, eutrophication, harmful algal blooms, and habitat loss have collectively contributed to the decline of these important resources. Despite improvements in wastewater treatment in some watersheds and subsequent reduced nutrient loading to neighboring estuaries, seagrass and bivalve populations in these locations have generally not recovered. We performed three mesocosm experiments to simultaneously examine the contrasting effects of nutrient loading and historic suspension-feeding bivalve densities on the growth of eelgrass (Zostera marina), juvenile bivalves (northern quahogs, Mercenaria mercenaria; eastern oysters, Crassostrea virginica; and bay scallops, Argopecten irradians), and juvenile planktivorous fish (sheepshead minnow, Cyprinodon variegatus). High nutrient loading rates led to significantly higher phytoplankton (chlorophyll a) levels in all experiments, significantly increased growth of juvenile bivalves relative to controls with lower nutrient loading rates in two experiments, and significantly reduced the growth of eelgrass in one experiment. The filtration provided by adult suspension feeders (M. mercenaria and C. virginica) significantly decreased phytoplankton levels in all experiments, significantly increased light penetration and the growth of eelgrass in one experiment, and significantly decreased the growth of juvenile bivalves and fish in two experiments, all relative to controls with no filtration from adult suspension feeders. These results demonstrate that an appropriate level of nutrient loading can have a positive effect on some estuarine resources and that bivalve filtration can mediate the effects of nutrient loading to the benefit or detriment of different estuarine resources. Future ecosystem-based approaches will need to simultaneously account for anthropogenic nutrient loading and bivalve restoration to successfully manage estuarine resources.  相似文献   

17.
Within the KUSTOS program (Coastal Mass and Energy Fluxes-the Land-Sea Transition in the Southeastern North Sea) 28 to 36 German Bight stations were seasonally surveyed (summer 1994, spring 1995, winter 1995–1996) for light conditions, dissolved inorganic nutrient concentrations, chlorophylla (chla), and photosynthesis versus light intensity (P:E) parameters. Combining P:E curve characteristics with irradiance, attenuation, and chlorophyll data resulted in seasonal estimates of the spatial distribution of total primary production. These data were used for an annual estimate of the total primary production in the Bight. In winter 1996 the water throughout the German Bight was well mixed. Dissolved inorganic nutrient concentrations were relatively high (nitrogen [DIN], soluble reactive phosphorus [SRP], and silicate [Si]: 23, 1, and 10 μM, respectively). Chla levels generally were low (< 2 μg l−1) with higher concentrations (4–16 μg l−1) in North Frisian coastal waters. Phytoplankton was limited by light. Total primary production averaged 0.2 g C m−2 d−1. Two surveys in April and May 1995 captured the buildup of a strong seasonal thermo-cline accompained by the development of a typical spring diatom bloom. High nutrient levels in the mixed layer during the first survey (DIN, SRP, and Si: 46, 0.45, and 11 μM, respectively) decreased towards the second survey (DIN, SRP, and Si: 30.5, 0.12, and 1.5 μM, respectively) and average nutrient ratios shifted further towards highly imbalanced values (DIN:SRP: 136 in survey 1, 580 in survey 2; DIN:Si: 13.5 in survey 1, 96 in survey 2). Chla ranged from 2 to 16 μg l−1 for the first survey and rose to 12–50 μg l−1 in the second survey. Phytoplankton in nearshore areas continued to be light limited during the second survey, while data from the stratified regions in the open German Bight indicates SRP and Si limitation. Total primary production ranged from 4.0 to 6.3 g C m−2 d−1. During summer 1994 a strong thermal stratification was present in the German Bight proper and shallow coastal areas showed unusually warm (up to 22°C), mixed waters. Chla concentrations ranged from 2 to 18 μg l−1. P:E characteristics were relatively high despite the low nutrient regime (DIN, SRP, and Si: 2, 0.2, and 1.5 μM, respectively), resulting in overall high total primary production values with an average of 7.7 g C m−2 d−1. Based on the seasonal primary production estimates of the described surveys a budget calculation yielded a total annual production of 430 g C m−2 yr−1 for the German Bight.  相似文献   

18.
Deep Bay is a semienclosed bay that receives sewage from Shenzhen, a fast-growing city in China. NH4 is the main N component of the sewage (>50% of total N) in the inner bay, and a twofold increase in NH4 and PO4 concentrations is attributed to increased sewage loading over the 21-year period (1986–2006). During this time series, the maximum annual average NH4 and PO4 concentrations exceeded 500 and 39 μM, respectively. The inner bay (Stns DM1 and DM2) has a long residence time and very high nutrient loads and yet much lower phytoplankton biomass (chlorophyll (Chl) <10 μg L−1 except for Jan, July, and Aug) and few severe long-term hypoxic events (dissolved oxygen (DO) generally >2 mg L−1) than expected. Because it is shallow (~2 m), phytoplankton growth is likely limited by light due to mixing and suspended sediments, as well as by ammonium toxicity, and biomass accumulation is reduced by grazing, which may reduce the occurrence of hypoxia. Since nutrients were not limiting in the inner bay, the significant long-term increase in Chl a (0.52–0.57 μg L−1 year−1) was attributed to climatic effects in which the significant increase in rainfall (11 mm year−1) decreased salinity, increased stratification, and improved water stability. The outer bay (DM3 to DM5) has a high flushing rate (0.2 day−1), is deeper (3 to 5 m), and has summer stratification, yet there are few large algal blooms and hypoxic events since dilution by the Pearl River discharge in summer, and the invasion of coastal water in winter is likely greater than the phytoplankton growth rate. A significant long-term increase in NO3 (0.45–0.94 μM year−1) occurred in the outer bay, but no increasing trend was observed for SiO4 or PO4, and these long-term trends in NO3, PO4, and SiO4 in the outer bay agreed with those long-term trends in the Pearl River discharge. Dissolved inorganic nitrogen (DIN) has approximately doubled from 35–62 to 68–107 μM in the outer bay during the last two decades, and consequently DIN to PO4 molar ratios have also increased over twofold since there was no change in PO4. The rapid increase in salinity and DO and the decrease in nutrients and suspended solids from the inner to the outer bay suggest that the sewage effluent from the inner bay is rapidly diluted and appears to have a limited effect on the phytoplankton of the adjacent waters beyond Deep Bay. Therefore, physical processes play a key role in reducing the risk of algal blooms and hypoxic events in Deep Bay.  相似文献   

19.
Narragansett Bay has been heavily influenced by human activities for more than 200 years. In recent decades, it has been one of the more intensively fertilized estuaries in the USA, with most of the anthropogenic nutrient load originating from sewage treatment plants (STP). This will soon change as tertiary treatment upgrades reduce nitrogen (N) loads by about one third or more during the summer. Before these reductions take place, we sought to characterize the sewage N signature in primary (macroalgae) and secondary (the hard clam, Mercenaria mercenaria) producers in the bay using stable isotopes of N (δ15N) and carbon (δ13C). The δ15N signatures of the macroalgae show a clear gradient of approximately 4‰ from north to south, i.e., high to low point source loading. There is also evidence of a west to east gradient of heavy to light values of δ15N in the bay consistent with circulation patterns and residual flows. The Providence River Estuary, just north of Narragansett Bay proper, receives 85% of STP inputs to Narragansett Bay, and lower δ15N values in macroalgae there reflected preferential uptake of 14N in this heavily fertilized area. Differences in pH from N stimulated photosynthesis and related shifts in predominance of dissolved C species may control the observed δ13C signatures. Unlike the macroalgae, the clams were remarkably uniform in both δ15N (13.2 ± 0.54‰ SD) and δ13C (−16.76 ± 0.61‰ SD) throughout the bay, and the δ15N values were 2–5‰ heavier than in clams collected outside the bay. We suggest that this remarkable uniformity reflects a food source of anthropogenically heavy phytoplankton formed in the upper bay and supported by sewage derived N. We estimate that approximately half of the N in the clams throughout Narragansett Bay may be from anthropogenic sources.  相似文献   

20.
Dissolved organic carbon (DOC) dynamics in the Pawcatuck River estuary, a small temperate estuary in Rhode Island, United States, were examined through the use of field transect and in situ production studies. In late summer, when river discharge was minimal, phytoplankton blooms occurred in the upper reaches of the estuary and released large amounts of autochthonous DOC that accumulated in the middle reaches of the estuary. DOC production rates in August months, calculated both by mixing diagrams and in situ DOC incubations, ranged from 6.67 to 34.7 μmol C l−1 d−1 and were positively correlated with DCMU-enhanced fluorescence, an estimate of phytoplankton photosynthetic activity (r2=0.796, p<0.001). The percent extracellular release (PER) of DOC from phytoplankton, calculated from measured in situ DOC production and net phytoplankton production (NPP) rates, ranged from 5.8% to 40.6% and was negatively correlated with NPP (r2=0.80, p<0.01). Accumulated DOC was principally nonhumic in nature, and the humic DOC component behaved quite differently with either conservative mixing or significant removal at the head of the estuary. Humic removal at times amounted to approximately 50% of the humic material and 25% of the total incoming riverine DOC. These large humic losses were not observed in bulk DOC-salinity mixing diagrams but required distinct analyses of the humic and nonhumic components. DOC addition and removal processes co-occur in this system and observation of bulk DOC mixing diagrams may mask the true dynamic nature of the estuarine DOC pool. The net result of the DOC addition and removal processes is a seasonally variable transformation of a humic-rich incoming riverine DOC to a nonhumic enriched bulk DOC component that varies seasonally and with river discharge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号