首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Comparison of surface and borehole locations of induced seismicity   总被引:1,自引:0,他引:1  
Monitoring of induced microseismic events has become an important tool in hydraulic fracture diagnostics and understanding fractured reservoirs in general. We compare microseismic event and their uncertainties using data sets obtained with surface and downhole arrays of receivers. We first model the uncertainties to understand the effect of different acquisition geometries on location accuracy. For a vertical array of receivers in a single monitoring borehole, we find that the largest part of the final location uncertainty is related to estimation of the backazimuth. This is followed by uncertainty in the vertical position and radial distance from the receivers. For surface monitoring, the largest uncertainty lies in the vertical position due to the use of only a single phase (usually P‐wave) in the estimation of the event location. In surface monitoring results, lateral positions are estimated robustly and are not sensitive to the velocity model. In this case study, we compare event location solutions from two catalogues of microseismic events; one from a downhole array and the second from a surface array of 1C geophone. Our results show that origin time can be reliably used to find matching events between the downhole and surface catalogues. The locations of the corresponding events display a systematic shift consistent with a poorly calibrated velocity model for downhole dataset. For this case study, locations derived from surface monitoring have less scatter in both vertical and horizontal directions.  相似文献   

2.
Microseismic monitoring in petroleum settings provides insights into induced and naturally occurring stress changes. Such data are commonly acquired using an array of sensors in a borehole, providing measures of arrival times and polarizations. Events are located using 1D velocity models, P‐ and S‐wave arrival times and the azimuths of P‐wave particle motions. However in the case of all the sensors being deployed in a vertical or near‐vertical borehole, such analysis leads to an inherent 180° ambiguity in the source location. Here we present a location procedure that removes this ambiguity by using the dip of the particle motion as an a priori information to constrain the initial source location. The new procedure is demonstrated with a dataset acquired during hydraulic fracture stimulation, where we know which side of the monitoring well the events are located. Using a 5‐step location procedure, we then reinvestigate a microseismic data set acquired in April 1997 at the Ekofisk oilfield in the North Sea. Traveltimes for 2683 candidate events are manually picked. A noise‐weighted analytic‐signal polarization analysis is used to estimate the dip and azimuth of P‐wave particle motions. A modified t‐test is used to statistically assess the reliability of event location. As a result, 1462 events are located but 627 are deemed to be statistically reliable. The application of a hierarchal cluster analysis highlights coherent structures that cluster around wells and inferred faults. Most events cluster at a depth of roughly 3km in the Ekofisk chalk formation but very little seismicity is observed from the underlying Tor chalk formation, which is separated from the Ekofisk formation by an impermeable layer. We see no evidence for seismicity in the overburden but such events may be too distant to detect. The resulting picture of microseismicity at Ekofisk is very different from those presented in previous studies.  相似文献   

3.
During seismic monitoring of hydraulic fracturing treatment, it is very common to ignore the deviations of the monitoring or treatment wells from their assumed positions. For example, a well is assumed to be perfectly vertical, but in fact, it deviates from verticality. This can lead to significant errors in the observed azimuth and other parameters of the monitored fracture‐system geometry derived from microseismic event locations. For common hydraulic fracturing geometries, a 2° deviation uncertainty on the positions of the monitoring or treatment well survey can cause a more than 20° uncertainty of the inverted fracture azimuths. Furthermore, if the positions of both the injection point and the receiver array are not known accurately and the velocity model is adjusted to locate perforations on the assumed positions, several‐millisecond discrepancies between measured and modeled SH‐P traveltime differences may appear along the receiver array. These traveltime discrepancies may then be misinterpreted as an effect of anisotropy, and the use of such anisotropic model may lead to the mislocation of the detected fracture system. The uncertainty of the relative positions between the monitoring and treatment wells can have a cumulative, nonlinear effect on inverted fracture parameters. We show that incorporation of borehole deviation surveys allows reasonably accurate positioning of the microseismic events. In this study, we concentrate on the effects of horizontal uncertainties of receiver and perforation positions. Understanding them is sufficient for treatment of vertical wells, and also necessary for horizontal wells.  相似文献   

4.
Microseismic monitoring is an approach for mapping hydraulic fracturing. Detecting the accurate locations of microseismic events relies on an accurate velocity model. The one‐dimensional layered velocity model is generally obtained by model calibration from inverting perforation data. However, perforation shots may only illuminate the layers between the perforation shots and the recording receivers with limited raypath coverage in a downhole monitoring problem. Some of the microseismic events may occur outside of the depth range of these layers. To derive an accurate velocity model covering all of the microseismic events and locating events at the same time, we apply the cross double‐difference method for the simultaneous inversion of a velocity model and event locations using both perforation shots and microseismic data. The cross double‐difference method could provide accurate locations in both the relative and absolute sense, utilizing cross traveltime differences between P and S phases over different events. At the downhole monitoring scale, the number of cross traveltime differences is sufficiently large to constrain events locations and velocity model as well. In this study, we assume that the layer thickness is known, and velocities of P‐ and S‐wave are inverted. Different simultaneous inversion methods based on the Geiger's, double‐difference, and cross double‐difference algorithms have been compared with the same input data. Synthetic and field data experiments suggest that combining both perforation shots and microseismic data for the simultaneous cross double‐difference inversion of the velocity model and event locations is available for overcoming the trade‐offs in solutions and producing reliable results.  相似文献   

5.
In downhole microseismic monitoring, accurate event location relies on the accuracy of the velocity model. The model can be estimated along with event locations. Anisotropic models are important to get accurate event locations. Taking anisotropy into account makes it possible to use additional data – two S-wave arrivals generated due to shear-wave splitting. However, anisotropic ray tracing requires iterative procedures for computing group velocities, which may become unstable around caustics. As a result, anisotropic kinematic inversion may become time consuming. In this paper, we explore the idea of using simplified ray tracing to locate events and estimate medium parameters. In the simplified ray-tracing algorithm, the group velocity is assumed to be equal to phase velocity in both magnitude and direction. This assumption makes the ray-tracing algorithm five times faster compared to ray tracing based on exact equations. We present a set of tests showing that given perforation-shot data, one can use inversion based on simplified ray-tracing even for moderate-to-strong anisotropic models. When there are no perforation shots, event-location errors may become too large for moderately anisotropic media.  相似文献   

6.
The knowledge of the velocity model in microseismic jobs is critical to achieving statistically reliable microseismic event locations. The design of microseismic networks and the limited sources for calibration do not allow for a full tomographic inversion. We propose optimizing a priori velocity models using a few active shots and a non‐linear inversion, suitable to poorly constrained systems. The considered models can be described by several layers with different P‐ and S‐wave velocities. The velocities may be constant or have 3D gradients; the layer interfaces may be simple dipping planes or more complex 3D surfaces. In this process the P‐ and S‐ wave arrival times and polarizations measured on the seismograms constitute the observed data set. They are used to estimate two misfit functions: i) one based on the measurement residuals and ii) one based on the inaccuracy of the source relocation. These two functions are minimized thanks to a simulated annealing scheme, which decreases the risk of converging to a local solution within the velocity model. The case study used to illustrate this methodology highlights the ability of this technique to constrain a velocity model with dipping layers. This was performed by jointly using sixteen perforation shots recorded during a multi‐stage fracturing operation from a single string of 3C‐receivers. This decreased the location inaccuracies and the residuals by a factor of six. In addition, the retrieved layer dip was consistent with the pseudo‐horizontal trajectories of the wells and the background information provided by the customer. Finally, the theoretical position of each calibration shot was contained in the uncertainty domain of the relocation of each shot. In contrast, single‐stage inversions provided different velocity models that were neither consistent between each other nor with the well trajectories. This example showed that it is essential to perform a multi‐stage inversion to derive a better updated velocity model.  相似文献   

7.
针对波速分层的区域岩体,在异向波速模型的基础上,对垂向上的应力波按岩体波速值大小作分段区别,推导震源应力波走时关系式,建立分层速度定位目标函数,基于此提出一种由参数准备、层速度反演、微震定位三个模块组成的分层速度定位模型SV,并采用遗传算法进行优化求解.然后,对分层速度定位模型在已构建微震监测系统的白鹤滩水电站左岸岩质边坡进行验证.微震事件重定位结果表明,分层速度定位模型定位微震事件的最大、最小和平均偏离层内错动带程度指标较单一速度模型分别降低了57.17%、36.51%和57.35%,证明了定位模型在波速分层的区域岩体微震定位应用中比单一速度定位模型更加合理可靠.  相似文献   

8.
田宵  汪明军  张雄  张伟  周立 《中国地震》2021,37(2):452-462
微地震事件的空间分布可以用来监测水力压裂过程中裂缝的发育情况。因此,震源定位是微震监测中重要的环节。震源定位依赖准确的速度模型,而震源位置和速度模型的耦合易导致线性迭代的同时反演方法陷入局部极小值。邻近算法作为一种非线性全局优化算法,能够最大程度地避免陷入局部最优解。本文将邻近算法应用于单井监测的微震定位和一维速度模型同时反演,首先利用邻近算法搜索一维速度模型,再使用网格搜索方法进行震源定位,并根据定位的走时残差产生新的速度模型,最后通过若干次迭代使其收敛到最优解。理论和实际数据结果均表明该方法能够避免局部最优解,得到较为可靠的震源位置和一维速度模型。  相似文献   

9.
Microseismic monitoring has proven invaluable for optimizing hydraulic fracturing stimulations and monitoring reservoir changes. The signal to noise ratio of the recorded microseismic data varies enormously from one dataset to another, and it can often be very low, especially for surface monitoring scenarios. Moreover, the data are often contaminated by correlated noises such as borehole waves in the downhole monitoring case. These issues pose a significant challenge for microseismic event detection. In addition, for downhole monitoring, the location of microseismic events relies on the accurate polarization analysis of the often weak P‐wave to determine the event azimuth. Therefore, enhancing the microseismic signal, especially the low signal to noise ratio P‐wave data, has become an important task. In this study, a statistical approach based on the binary hypothesis test is developed to detect the weak events embedded in high noise. The method constructs a vector space, known as the signal subspace, from previously detected events to represent similar, yet significantly variable microseismic signals from specific source regions. Empirical procedures are presented for building the signal subspace from clusters of events. The distribution of the detection statistics is analysed to determine the parameters of the subspace detector including the signal subspace dimension and detection threshold. The effect of correlated noise is corrected in the statistical analysis. The subspace design and detection approach is illustrated on a dual‐array hydrofracture monitoring dataset. The comparison between the subspace approach, array correlation method, and array short‐time average/long‐time average detector is performed on the data from the far monitoring well. It is shown that, at the same expected false alarm rate, the subspace detector gives fewer false alarms than the array short‐time average/long‐time average detector and more event detections than the array correlation detector. The additionally detected events from the subspace detector are further validated using the data from the nearby monitoring well. The comparison demonstrates the potential benefit of using the subspace approach to improve the microseismic viewing distance. Following event detection, a novel method based on subspace projection is proposed to enhance weak microseismic signals. Examples on field data are presented, indicating the effectiveness of this subspace‐projection‐based signal enhancement procedure.  相似文献   

10.
三峡库区地震精定位中确定速度模型的方法   总被引:2,自引:1,他引:1  
研究三峡库区地震精定位中确定速度模型的方法,分析不同速度模型对地震定位精度的影响,并选取多种方法来定量评价不同速度模型的地震定位精度。当地震分布或台站能够较好的覆盖研究区域,采用Kissling方法拟合观测数据得到的速度模型地震定位精度最高。当地震分布不能较好的覆盖研究区域,由人工地震测深结果得到的速度模型地震定位精度次之。当没有足够的观测数据,也没有人工地震测深结果,综合研究区域内的相关研究成果确定的速度模型也是可用的,但是地震定位的精度不高,特别是震源深度的精度很差。  相似文献   

11.
—?A crustal velocity model has been developed for Fennoscandia, the Baltic shield and adjacent areas. This model represents a simplified average of various models developed for parts of this region. We show that P-wave travel times calculated with this model provide an excellent fit to observations at the Fennoscandian, KRSC and IRIS station networks for a set of seismic events with known or very well-constrained locations. The station-event paths cover large parts of Western Russia and the Barents Sea, thus indicating that this model, which we denote the Barents model, is appropriate for this entire region. We show by examples that significant improvements in event location precision can be achieved compared to using the IASPEI model. We finally use the Barents model to calculate locations of recent small seismic events in the Novaya Zemlya region of interest in a CTBT monitoring context.  相似文献   

12.
Testing the ability of surface arrays to monitor microseismic activity   总被引:2,自引:0,他引:2  
Recently there has been much interest in the use of data from surface arrays in conjunction with migration‐based processing methods for passive seismic monitoring. In this study we use an example of this kind of data recorded whilst 18 perforation shots, with a variety of positions and propellant amounts, were detonated in the subsurface. As the perforation shots provide signals with known source positions and origin times, the analysis of these data is an invaluable opportunity to test the accuracy and ability of surface arrays to detect and locate seismic sources in the subsurface. In all but one case the signals from the perforation shots are not visible in the raw or preprocessed data. However, clear source images are produced for 12 of the perforation shots showing that arrays of surface sensors are capable of imaging microseismic events, even when the signals are not visible in individual traces. We find that point source locations are within typically 45 m (laterally) of the true shot location, however the depths are less well constrained (~150 m). We test the sensitivity of our imaging method to the signal‐to‐noise ratio in the data using signals embedded in realistic noise. We find that the position of the imaged shot location is quite insensitive to the level of added noise, the primary effect of increased noise being to defocus the source image. Given the migration approach, the array geometry and the nature of coherent noise during the experiment, signals embedded in noise with ratios ≥0.1 can be used to successfully image events. Furthermore, comparison of results from data and synthetic signals embedded in noise shows that, in this case, prestack corrections of traveltimes to account for near‐surface structure will not enhance event detectability. Although, the perforation shots have a largely isotropic radiation pattern the results presented here show the potential for the use of surface sensors in microseismic monitoring as a viable alternative to classical downhole methods.  相似文献   

13.
通过福建及台湾海峡地区的新一维速度模型与现有华南速度模型的对比,讨论了新一维速度模型在福建地震观测台网的适用性。理论走时分析结果表明,尽管两个速度模型差异明显,但震中距在0—100 km范围内的震相理论走时相差较小,一定程度上说明两速度模型所给出的本区域地壳平均速度差异较小。对利用18次人工定点爆破记录的地震定位结果的分析表明:当震源深度不受约束时,应用华南速度模型的定位结果精度稍优于新一维速度模型;将震源深度固定为0 km后,应用新一维速度模型的定位结果精度则明显优于华南模型。对19个仙游震群序列事件进行定位的结果显示,由于华南地区速度结构的横向变化较小,应用两模型的地震定位精度结果基本相当,但新一维速度模型定位的发震时刻较华南速度模型普遍早0.61 s左右,因此使得事件定位残差显著增大。   相似文献   

14.
Locating microseismic events using borehole data   总被引:1,自引:0,他引:1  
Constraining microseismic hypocentres in and around hydrocarbon reservoirs and their overburdens is essential for the monitoring of deformation related to hydraulic fracturing, production and injection and the assessment of reservoir security for CO2 and wastewater storage. Microseismic monitoring in hydrocarbon reservoirs can be achieved via a variety of surface and subsurface acquisition geometries. In this study we use data from a single, subsurface, vertical array of sensors. We test an existing technique that uses a 1D velocity model to constrain locations by minimizing differential S‐to‐P arrival times for individual sensors. We show that small errors in either arrival time picks or the velocity model can lead to large errors in depth, especially near velocity model discontinuities where events tend to cluster. To address this issue we develop two methods that use all available arrival times simultaneously in the inversion, thus maximizing the number of potential constraints from to N, where N is the number of phase picks. The first approach minimizes all available arrival time pairs whilst the second approach, the equal distance time (EDT) method defines the hypocentre as the point where the maximum number of arrival time surfaces intersect. We test and compare the new location procedures with locations using differential S‐to‐P times at each individual sensor on a microseismic data set recorded by a vertical array of sensors at the Ekofisk reservoir in the North Sea. Specifically, we test each procedure's sensitivity to perturbations in measured arrival times and the velocity model using Monte Carlo analysis. In general, location uncertainties increase with increasing raypath length. We show that errors in velocity model estimates are the most significant source of uncertainty in source location with these experiments. Our tests show that hypocentres determined by the new procedures are less sensitive to erroneous measurements and velocity model uncertainties thus reducing the potential for misinterpretation of the results.  相似文献   

15.
在台网比较稀疏的情况下,台站走时标定是提高低震级事件定位、识别能力的重要手段.为了提高稀疏台网的定位精度,首先利用标定事件和IASPEI1991走时表以及中国大陆走时表,计算了初至P波和Lg波到AAK,MAKZ,NIL,TLG以及WMQ等5个台站的走时残差;接着,采用非平稳贝叶斯克里金方法和走时残差数据构造上述台站的走时校正曲面;最后,通过加入和不加入走时校正定位一系列位置准确的发生在新疆地区的地震事件评估克里金走时校正的有效性.结果表明,克里金走时校正能够较大地提高稀疏台网的定位精度,同时有效地缩小误差椭圆的面积.   相似文献   

16.
构建区域介质三维速度模型并以之获得准确的区域震相走时, 是提高区域地震定位精度的重要手段之一. 为充分利用已有的一维模型、 GT事件、 地质资料等实现三维模型构建, 尝试基于目标区域内已有的部分局部一维模型, 通过克里金空间插值建立初始三维模型, 然后利用GT事件走时数据并参考其它地震地质资料对其不断进行修正, 使得其走时偏差图与GT事件走时偏差图一致, 进而获得能够提高区域地震定位精度的三维模型. 使用不同模型进行的地震定位实验表明, 以此方法建立的三维模型的定位偏差较初始模型减少约20%, 较好地起到了减小区域震相走时残差, 提高区域地震定位精度的作用.   相似文献   

17.
In this study, a locally linear model tree algorithm was used to optimize a neuro‐fuzzy model for prediction of effective porosity from seismic attributes in one of Iranian oil fields located southwest of Iran. Valid identification of effective porosity distribution in fractured carbonate reservoirs is extremely essential for reservoir characterization. These high‐accuracy predictions facilitate efficient exploration and management of oil and gas resources. The multi‐attribute stepwise linear regression method was used to select five out of 26 seismic attributes one by one. These attributes introduced into the neuro‐fuzzy model to predict effective porosity. The neuro‐fuzzy model with seven locally linear models resulted in the lowest validation error. Moreover, a blind test was carried out at the location of two wells that were used neither in training nor validation. The results obtained from the validation and blind test of the model confirmed the ability of the proposed algorithm in predicting the effective porosity. In the end, the performance of this neuro‐fuzzy model was compared with two regular neural networks of a multi‐layer perceptron and a radial basis function, and the results show that a locally linear neuro‐fuzzy model trained by a locally linear model tree algorithm resulted in more accurate porosity prediction than standard neural networks, particularly in the case where irregularities increase in the data set. The production data have been also used to verify the reliability of the porosity model. The porosity sections through the two wells demonstrate that the porosity model conforms to the production rate of wells. Comparison of the locally linear neuro‐fuzzy model performance on different wells indicates that there is a distinct discrepancy in the performance of this model compared with the other techniques. This discrepancy in the performance is a function of the correlation between the model inputs and output. In the case where the strength of the relationship between seismic attributes and effective porosity decreases, the neuro‐fuzzy model results in more accurate prediction than regular neural networks, whereas the neuro‐fuzzy model has a close performance to neural networks if there is a strong relationship between seismic attributes and effective porosity. The effective porosity map, presented as the output of the method, shows a high‐porosity area in the centre of zone 2 of the Ilam reservoir. Furthermore, there is an extensive high‐porosity area in zone 4 of Sarvak that extends from the centre to the east of the reservoir.  相似文献   

18.
Microseismic monitoring in the oil and gas industry commonly uses migration‐based methods to locate very weak microseismic events. The objective of this study is to compare the most popular migration‐based methods on a synthetic dataset that simulates a strike‐slip source mechanism event with a low signal‐to‐noise ratio recorded by surface receivers (vertical components). The results show the significance of accounting for the known source mechanism in the event detection and location procedures. For detection and location without such a correction, the ability to detect weak events is reduced. We show both numerically and theoretically that neglecting the source mechanism by using only absolute values of the amplitudes reduces noise suppression during stacking and, consequently, limits the possibility to retrieve weak microseismic events. On the other hand, even a simple correction to the data polarization used with otherwise ineffective methods can significantly improve detections and locations. A simple stacking of the data with a polarization correction provided clear event detection and location, but even better results were obtained for those data combined with methods that are based on semblance and cross‐correlation.  相似文献   

19.
For faster and more robust ray tracing in 1-D velocity models and also due to the lack of reliable 3-D models, most seismological centers use 1-D models for routine earthquake locations. In this study, as solution to the coupled hypocenter-velocity problem, we compute a regional P-wave velocity model for southern Iran that can be used for routine earthquake location and also a reference initial model for 3-D seismic tomography. The inversion process was based on travel time data from local earthquakes paired reports obtained by merging the catalogues of Iranian Seismic Center (IRSC, 6422 events) and by the Broadband Iranian National Seismic Network (BIN, 4333 events) for southern Iran in the period 2006 through July 2017. After cleaning the data set from large individual reading errors and by identifying event reports from both networks belonging to same earthquake (a process called event pairing), we obtained a data set of 1115 well-locatable events with a total number of 24,606 P-wave observations. This data set was used to calculate a regional minimum 1-D model for southern Iran as result of an extensive model search by trial-and-error process including several dozens of inversions. Significantly different from previous models, we find a smoothly increasing P-velocity by depth with velocities of 5.8 km/s at shallow and velocities of 6.4 km/s at deepest crustal levels. For well-locatable events, location uncertainties are estimated in the order of ±?3 km for epicenter and double this uncertainty for hypocentral depth. The use of the minimum 1-D model with appropriate station delays in routine hypocenter location processing will yield a high-quality seismic catalogue with consistent uncertainty estimates across the region and it will also allow detection of outlier observations. Based on the two catalogues by IRSC and BIN and using the minimum 1-D model and station delays for all stations in the region, we established a new combined earthquake catalogue for southern Iran. While the general distribution of the seismicity corresponds well with that of the two individual catalogues by IRSC and BIN, the new catalogue significantly enhances the correlation of seismicity with the regional fault systems within and between the major crustal blocks that as an assembly build this continental region. Furthermore, the unified seismic catalogue and the minimum 1-D model resulting from this study provide important ingredients for seismic hazard studies.  相似文献   

20.
—?An important requirement for a comprehensive seismic monitoring system is the capability to accurately locate small seismic events worldwide. Accurate event location can improve the probability of determining whether or not a small event, recorded predominantly by local and regional stations, is a nuclear explosion. For those portions of the earth where crustal velocities are not well established, reference event calibration techniques offer a method of increased locational accuracy and reduced locational bias.¶In this study, data from a set of mining events with good ground-truth data in the Powder River Basin region of eastern Wyoming are used to investigate the potential of event calibration techniques in the area. Results of this study are compared with locations published in the prototype International Data Center's Reviewed Event Bulletin (REB). A Joint Hypocenter Determination (JHD) method was applied to a s et of 23 events. Four of those events with superior ground-truth control (mining company report or Global Positioning System data) were used as JHD reference events. Nineteen (83%) of the solutions converged and the resulting set of station-phase travel-time corrections from the JHD results was then tested. When those travel-time corrections were applied individually to the four events with good ground-truth control, the average locational error reduced the original REB location error from 16.1?km to 5.7?km (65% improvement). The JHD locations indicated reduced locational bias and all of the individual error ellipses enclosed the actual known event locations.¶Given a set of well-recorded calibration events, it appears that the JHD methodology is a viable technique for improving locational accuracy of future small events where the location depends on arrival times from predominantly local and/or regional stations. In this specific case, the International Associ ation of Seismology and the Physics of the Earth's Interior (IASPEI) travel-time tables, coupled with JHD-derived travel-time corrections, may obviate the need for an accurately known regional velocity structure in the Powder River Basin region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号