首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 69 毫秒
1.
The literature on placer formation processes within fluvial systems is widespread and ranges between detailed laboratory studies of the hydrodynamic segregation processes through to the intuitive interpretation of the distribution of minerals within geological sections. However, there are few, if any, comprehensive reviews of the literature. Surprisingly, given the economic importance of placers, the theoretical framework relating to the hydrodynamics of physical grain sorting is not well developed and there are relatively few detailed laboratory hydraulic investigations to inform theory. In this wide-ranging review, the history of the development of principles of placer formation is explored as far as possible in a non-technical fashion. A consideration is given to the hydrodynamics of physical grain sorting above lower-stage and upper-stage bedforms and the typical internal sedimentary structures associated with placer concentrations are detailed. Finally, examples of the depositional environment of diamond, tin and gold placers are considered.  相似文献   

2.
The sorting of sediment mixtures at the lee slope of deltas (at the angle of repose) is studied with experiments in a narrow, deep flume with subaqueous Gilbert-type deltas using varied flow conditions and different sediment mixtures. Sediment deposition and sorting on the lee slope of the delta is the result of (i) grains falling from suspension that is initiated at the top of the delta, (ii) kinematic sieving on the lee slope, (iii) grainflows, in which protruding large grains are dragged downslope by subsequent grainflows. The result is a fining upward vertical sorting in the delta. Systematic variations in the trend depend on the delta height, the migration celerity of the delta front and the flow conditions above the delta top. The dependence on delta height and migration celerity is explained by the sorting processes in the grainflows, and the dependence on flow conditions above the delta top is explained by suspension of fine sediment and settling on the lee side and toe of the delta. Large differences in sorting trends were found between various sediment mixtures. The relevance of these results with respect to sorting in dunes and bars in rivers and laboratory flumes is discussed and the elements for a future vertical sorting model are suggested.  相似文献   

3.
The mode of material transportation and differentiation in the coastal zone of shelf is analyzed with the Val'kumei coastal-marine tin placer (Chaun Gulf, East Siberian Sea) as example. The placer incorporates two zones of cassiterite concentration. The first zone with coarse-grained cassiterite is located within the beach and adjacent coastal water area. The second zone with relatively fine-grained cassiterite is located on the submarine coastal slope in the distal area. This type of placer structure reflects the polymodal grain-size distribution of cassiterite in the bedrock source and peculiarities of material distribution in the alongshore debris flow. The proposed mathematical diffusive–convective model of coastal-marine placer formation adequately reflects the real placer structure and makes it possible to predict placer parameters in unilateral (alongshore) debris flow areas based on the composition of placer-forming source and lithodynamic parameters of the coastal water area.  相似文献   

4.
Sheng  Li-Tsung  Hsiau  Shu-San  Hsu  Nai-Wen 《Landslides》2021,18(6):2095-2110

From the understanding of dynamics and processes of rapid granular flows and the granular-segregation mechanism in gravity-driven flow, we can clarify the particle-composition structure in the downstream areas of avalanches in geophysical contexts, such as landslides, rock falls, and snow-slab avalanches. Such dynamics also provide a basis for geophysical studies. This study experimentally investigates the dynamic behavior and segregation phenomena of a density-bidisperse, rapid, granular flow down a quasi-2D, rough, inclined rectangular chute. Particles with two density ratios are used to investigate the mechanism of density-induced segregation, and four chute-inclination angles are tested to examine the influence of driving forces. The dynamics of the mixture flow—which includes the flow-depth evolution, stream-wise and depth-wise velocity profiles, shear rate, and granular temperature in the upper high-shear band of the flow—are obtained from particle image velocimetry (PIV) measurements. The two-dimensional concentration distributions of the particles in the stream-wise direction are also obtained using 2D image processing to determine the segregation state. In the upstream region, the variation in the concentration of heavier particles is defined as the strength of the density-induced segregation state, Sd. Our results indicate that the mixture-flow parameter—particularly the shear rate and the granular temperature in the upper high-shear band—crucially influence the strength of particle segregation in granular avalanches. In the upstream region, a higher shear rate and a higher granular temperature in the upper high-velocity band result in a smaller drag force in the mixture flow, causing stronger density-induced particle segregation. These results well describe the entire processes of dense granular flows, from upstream initiation to the downstream steady state. Therefore, they reveal the structure of the mixed flow in the depth direction and are expected to explain various gravity-driven mixture granular flows.

  相似文献   

5.
Sorting and selective transport of particles by material density is important for understanding a wide range of processes, including the formation of mineral placers, deposition of mine tailings and routing of tracers and contaminants. This article describes an experimental study of the transport of mixtures of particles of differing density in a sediment‐feed flume. During the runs, a downstream prograding wedge‐shaped deposit was formed. Results show two sorting processes: (i) longitudinal sorting characterized by preferential deposition of heavy particles in the upstream part of the deposit – downstream lightening; and (ii) vertical sorting with less dense particles preferentially deposited in the lowermost portion of the migrating front – upward heavying. Downstream lightening is the analogue of the well‐known downstream fining observed in the more studied case of mixtures of heterogeneous size with the same density. In both cases, the lighter particles are carried further downstream than the heavier particles. Upward heavying is unexpected when compared with deposits of heterogeneous size and same‐density particles, where the heaviest (i.e. coarsest) particles are deposited in the lowermost part of the front. The physical mechanism underlying this upward heavying might be related to the physics of gravity‐driven granular flows; the front of the deposit acts like a dense granular flow down an inclined plane. In this case, the denser particles settle away from the free surface and at the top of the heap, while the lighter particles flow to the bottom. As the front of the deposit advances, this progressively gives rise to an upward heavying pattern. The application of classical surface‐based fractional bedload transport models suggests that equal mobility is not approached in the case of mixtures of particles with uniform size and different densities. This study hypothesizes that other mechanics related to the physics of the segregation processes in these systems contribute to these results.  相似文献   

6.
Understanding the fundamental dynamics of interaction between multi-phase geophysical flows and engineering structures is crucial for mitigating geophysical hazards. Specifically, liquid phase between particles induces matric suction which could play a significant part in regulating flow dynamics and warrants further consideration. In this study, flume model tests were conducted to investigate the effects of water content (0–30%) on the impact behavior of granular flows. The particle image velocimetry technique was adopted to visualize the impact kinematics and the impact force was measured through a model barrier system. Results revealed that, besides geometric effects (kinetic sieving), mechanical effects (shearing and collision) are also vital for the mechanism of reverse segregation. At higher water contents, 20 and 30% in this study, discrete-surge impact, rather than a progressive impact process, was observed. The discrete surges induce impulses on the barrier. The discrete surges result from self-organization of unsaturated granular flows to overcome the enhanced shear strength induced by matric suction. Finally, a dimensionless index, namely the suction number, is used to quantify the effect of suction on the dynamic behavior of granular flows. Even for large-scale geophysical flows, if the content of fine particles is high, effect of suction should not be neglected.  相似文献   

7.
激光粒度仪测试结果及其与沉降法、筛析法的比较   总被引:33,自引:5,他引:33  
程鹏  高抒  李徐生 《沉积学报》2001,19(3):449-455
分析了Cilas 940L激光粒度仪的测试结果,并与沉降法、筛析法进行了比较。激光粒度仪测试结果的重复性较好,测量精度较高。对于玻璃珠样品,激光粒度仪和筛析法测试结果十分接近,对于天然沉积物,激光粒度仪测定的平均粒径偏粗,分选偏差。和沉降法相比,激光粒度仪测定的粘土组份 (<8%)的含量为沉降法的 46.7%~ 70.5 %,平均为 6 0 %,测定的平均粒径较沉降法偏粗,分选偏差。造成激光粒度仪与沉降法、筛析法之间差异的原因主要在于这些测试方法原理的不同和天然沉积物不规则的形状。  相似文献   

8.
Field observations are made of the formation of backwash ripples on the beach face, formed by undular hydraulic jumps generated by backwash down the beach face colliding with wave bores. Measured ripple wavelengths range from set averages of 48 to 70 cm. Within a particular set of ripples the spacing tends to decrease in the offshore direction. These observations are compared with laboratory experiments where undular jumps are generated in a flume, and with a computer simulation model which calculates both the flow within an undular hydraulic jump and the resulting sediment transport which gives rise to the backwash ripples. The computer model involves a numerical solution of the Bousssinesq equations which govern the fluid flow, and sediment transport equations which relate the sand transport rate to the local mean flow velocity. The model permits a study of the detailed time-history of the undular jump development and the formation of the backwash ripples and shows good agreement with the field observations of backwash ripples, predicting an offshore decrease in their spacings. The laboratory experiments showed a similar result so long as the Froude number of the supercritical flow before the jump occurs is small (c. 1–4). Small differences between the computer model and experiments arose principally from the neglect of internal friction and surface tension in the model.  相似文献   

9.
淤泥质浅滩泥沙临界起动切应力剖面确定   总被引:1,自引:0,他引:1       下载免费PDF全文
为了确定淤泥质浅滩泥沙的临界起动切应力垂线剖面,采用音叉密度计在淤泥质连云港徐圩浅滩进行了定点密度垂线分布测量,并针对该海域的泥沙利用长水槽和环形槽开展了泥沙起动室内试验。淤泥密度现场结果表明,浅滩泥沙密度与深度满足对数型关系;室内试验得出密度1 050~1 400 kg/m3的泥沙临界起动切应力值为0.1~1.0 Pa,泥沙临界切应力与密度呈指数关系;进而确定了临界起动切应力与深度的关系即临界起动切应力剖面,该剖面关系式可供数学模型模拟淤泥质浅滩的泥沙起动过程参考。  相似文献   

10.
Morphologies of placer platinum group minerals (PGM) are more variable and resistant to modification during transport than placer gold grains. This study documents morphological evolution of PGM placer grains during up to 120 km of transport in beach placers after river transport from inferred sources up to 200 km inland. PGM morphological changes are calibrated with changes in morphology of associated placer gold. Most of the PGM are Pt-Fe alloy and have been fed into the beach placer system from a large river at the western end of the beaches on the south coast of New Zealand. The incoming fluvial PGM suite includes Os, Ir and Ru alloys which may have been derived from distal ophiolitic sources. More proximal sources have Ural-Alaskan affinities and these contributed cooperite and braggite, or sperrylite, locally, as well as Pt-Fe alloy grains. Some PGM may have been recycled through Cretaceous-Quaternary fluvial sediments before entering the modern placer system. Recycled placer PGM grains have also been derived from elevated Quaternary beaches near the coastline. PGM grains entering beach placers have rough surfaces, with remnants of crystal faces, and these evolve to smooth flakes with progressive long-shore transport. PGM flakes have slightly thickened rims caused by impacts by saltating sand on windy beaches, and the most distal beach placers contain flakes with incipient toroidal shapes. These PGM incipient toroids are poorly developed compared to accompanying well-formed toroidal gold that has developed in nearly all beach placers, including those on elevated Quaternary beaches. Typical PGM and gold placer grain size decreases with increasing distance of transport, from fluvial grain size of 400–1,000 to ~200 microns on the most distal beaches, accompanied by eastward loss of equant PGM grains and associated increase in proportion of flakes. Although net transport distance is ~120 km in the beach placer complex, frequent aeolian transport of grains from beach to dunes and subsequent recycling by storm surges substantially increased total transport distance in a dynamic windy tectonic environment.  相似文献   

11.
罗章  蔡斌  陈沈良 《沉积学报》2016,34(5):881-891
筛析法是海滩沉积物粒度分析较经典和常用的方法。随着科学技术的发展,利用动态图像法分析沉积物粒度逐渐得到推广。本文利用动态图形法和筛析法对海南岛5个海滩剖面20组沉积物样品进行粒度粒形测试,并将两种方法所测得的粒度进行比较。测试分析结果显示,该方法的测试结果重复性好,精度高;通过与筛析法的对比显示,动态图像法与筛析法的测试结果非常接近,粒度级配曲线基本一致,各个粒度参数值很接近且相关性非常好(R2>0.94);由动态图像法得出的粒形参数可以看出,粒径相当的不同海滩沉积物粒形参数有很大差别,同一海滩不同部位的球形度和宽长比变化很大,对称度和凹凸度变化稍小。研究表明,动态图像法与筛析法之间的粒度分析差异主要来自于两者测量原理的不同和天然海滩砂颗粒形状的不规则;动态图像法解决了不规则沉积物粒度的测量。因此,动态图像法可以替代筛析法来测量沉积物粒度,应用前景广阔。  相似文献   

12.
Grain size and sorting represent two key parameters when characterizing sediments or modelling beach morphology and sediment transport. Traditionally, an average value for grain size or sorting is often assumed for the entire area, determined from only a few sediment samples, ignoring any spatial (or temporal) variability in sediment characteristics. This contribution uses a data set of physical surface sediment samples from 53 beach locations around the south‐west peninsula of the United Kingdom, in addition to bi‐monthly, high spatial resolution (mean 240 samples) digital grain‐size surveys from a high‐energy, oceanic, sandy beach (Perranporth, North Cornwall). Systematic spatial variations in grain size and sorting were consistently observed in the seaward direction across the intertidal zone of sandy beaches, with grain‐sizes coarsening and sorting improving by up to 51·7% and 64·3%, respectively. This variability was deterministically related to the time‐averaged, antecedent‐adjusted energy dissipated by breaking waves, with the observed maximum grain‐size and sorting values correlating with the location of peak wave energy dissipation (r2 = 0·998, < 0·01).  相似文献   

13.
Mixed sand and gravel beaches have been the subject of comparatively few studies in the UK. This paper describes the sediment distribution before, during and after a programme of beach nourishment along a section of mixed sand and gravel beach forming part of the Pevensey Bay Coastal Defences, in East Sussex, UK. The beach was recharged in September 2002, and beach profiles were measured along three cross-shore transects from August 2002 to February 2003. Sediment samples were taken along the transects between August and November 2002, and a total of 147 sediment samples were analysed, 40 before nourishment and 107 after nourishment. The majority of the sediment samples were strongly bimodal, with mean sizes varying between a minimum of 0.18 mm (2.48 ?) for the sand fraction and a maximum of 27 mm (− 4.74 ?) for the gravel. The recharge material was also bimodal but contained more fine sediment than the natural beach material, particularly on the upper beach. The recharge sediment had grain sizes and sorting similar to some of the natural material but lower bimodality parameters than any of the natural sediment. The sediment distributions after recharge contained significantly more fine sediment, particularly on the upper beach. Over time, the beach profile lowered and fine sediment appeared to be selectively transported seawards from the beachface.  相似文献   

14.
Economic concentrations of heavy-minerals are often associated with fluvial point-bars but prospecting models identifying the heaviest concentrations are poorly developed. Consequently, the dispersal and storage of a heavy-mineral bedload tracer–magnetite–across a rapidly evolving point-bar was studied using magnetic susceptibility as a surrogate measure of magnetite concentration. The bar-head was a preferential area for the development of a placer owing to a lag accumulation of magnetite over an armoured bed surface. In contrast, when viewed in plan, the bar-platform and bar-tail were regions of tracer dilution owing to downstream dispersion and mixing with shale in the vertical as the bar-top rapidly aggraded. However, in section, false-bottom placers developed along bedding planes were evident. The latter consisted of thin layers of concentrated magnetite resulting from the passage of bedload sheets, consisting of a mix of shale and magnetite, moving repeatedly from the bar-head to accrete over the bar-tail. Differential density-sorting of magnetite and shale occurred during transport and deposition, such that the heavier magnetite tended to accumulate as a visible concentrated bed-layer, later to be over-run by layers of shale-sediment in which magnetite was present diffusely. However, the placer thickness was greater than that visible because finer fractions of magnetite from each concentrated layer infiltrated the interstices of the top of the shale bed below. The placer thickness, the infiltration potential of the sediment bed and the actual rate of infiltration of the tracer were determined by fitting a mathematical function to measured variation in magnetic susceptibility with depth in the sediment body. Finally, a simple mathematical model, described in the literature as reproducing the plan-view of flow and topographic patterns in river bends, was found to reproduce patterns of depth, velocity, shear stress and competence in the point-bar environment which were in accordance with the interpretation of the field data. It was concluded that such a model when linked to entrainment functions for sediments of mixed density might be suitable for prospecting for economic heavy minerals in the point-bar environment.  相似文献   

15.
Prabir Dasgupta  Priyanka Manna 《Earth》2011,104(1-3):186-198
The grain-flow has so far been defined with reference to the distinctive sediment-support mechanism, the dispersive pressure. The role of sediment-support mechanism, however, is required in a multiphase flow to prevent the gravitational settling of the particles through the driving medium during the flow. In a single-phase flow of non-cohesive grains no such secondary mechanism is required to counteract the gravitational pull, the driving force of the flow. So the definition of grain-flow needs a critical revision. This, in turn, involves proper understanding of the grain-flow mechanism, so that the relation between the process and the product can be properly established. The most distinctive feature often demonstrated by a grain-flow deposit is the particle size segregation, which leads to the development of inverse grading. The available explanations for this phenomenon find theoretical constraints. In the present study an attempt was made to understand the mechanism of single-phase non-cohesive granular flow of different flow regime and the particle segregation pattern in the resultant deposit through laboratory simulation. The experimental observations revealed that no sustained granular flow sets in on a slope deviating much from the limiting value of the angle of repose of the granular material. A persistent simple shear flow develops on slopes of this critical value. Each of the grains rolls in response to simple shearing. If the shear stress attains a critical value, theoretically the larger grains can even climb up the adjacent smaller ones towards the down-slope direction. In reality, however, high angle climb is not very common. The larger grains preferably roll over the smaller grains when the common tangent becomes almost horizontal or makes a very low angle with the direction of flow, and by this process gradually reaches the upper surface of the flow causing the development of inverse grading. The upper surface of the resultant deposit remains parallel to the sloping substratum. These properties readily distinguish this variety of granular flow from the other natural flows, and the flow may thus be assigned the distinct status of grain-flow.  相似文献   

16.
Coastal communities in the western United States face risks of inundation by distant tsunamis that propagate across the Pacific Ocean as well as local tsunamis produced by great (Mw?>?8) earthquakes on the Cascadia subduction zone. In 1964, the Mw 9.2 Alaska earthquake launched a Pacific-wide tsunami that flooded Cannon Beach, a small community (population 1640) in northwestern Oregon, causing over $230,000 in damages. However, since the giant 2004 Indian Ocean tsunami, the 2010 Chile tsunami and the recent 2011 Tohoku-Oki tsunami, renewed concern over potential impacts of a Cascadia tsunami on the western US has motivated closer examination of the local hazard. This study applies a simple sediment transport model to reconstruct the flow speed of the most recent Cascadia tsunami that flooded the region in 1700 using the thickness and grain size of sand layers deposited by the waves. Sedimentary properties of sand from the 1700 tsunami deposit provide model inputs. The sediment transport model calculates tsunami flow speed from the shear velocity required to suspend the quantity and grain size distribution of the observed sand layers. The model assumes a steady, spatially uniform tsunami flow and that sand settles out of suspension forming a deposit when the flow velocity decreases to zero. Using flow depths constrained by numerical tsunami simulations for Cannon Beach, the sediment transport model calculated flow speeds of 6.5?C7.6?m/s for sites within 0.6?km of the beach and higher flow speeds (~8.8?m/s) for sites 0.8?C1.2?km inland. Flow speed calculated for sites within 0.6?km of the beach compare well with maximum velocities estimated for the largest tsunami simulation. The higher flow speeds calculated for the two sites furthest landward contrast with much lower maximum velocities (<3.8?m/s) predicted by numerical simulations. Grain size distributions of sand layers from the most distal sites are inconsistent with deposition from sediment falling out of suspension. We infer that rapid deceleration in tsunami flow and convergences in sediment transport formed unusually thick deposits. Consequently, higher flow speeds calculated by the sediment model probably overestimate the actual wave speed at sites furthest inland.  相似文献   

17.
Open‐framework gravel (OFG) in river deposits is important because of its exceptionally high permeability, resulting from the lack of sediment in the pore spaces between the gravel grains. Fluvial OFG occurs as planar strata and cross strata of varying scale, and is interbedded with sand and sandy gravel. The origin of OFG has been related to: (1) proportion of sand available relative to gravel; (2) separation of sand from gravel during a specific flow stage and sediment transport rate (either high, falling or low); (3) separation of sand from gravel in bedforms superimposed on the backs of larger bedforms; (4) flow separation in the lee of dunes or unit bars. Laboratory flume experiments were undertaken to test and develop these theories for the origin of OFG. Bed sediment size distribution (sandy gravel with a mean diameter of 1·5 mm) was kept constant, but flow depth, flow velocity and aggradation rate were varied. Bedforms produced under these flow conditions were bedload sheets, dunes and unit bars. The fundamental cause of OFG is the sorting of sand from gravel associated with flow separation at the crest of bedforms, and further segregation of grain sizes during avalanching on the steep lee side. Sand in transport near the bed is deposited in the trough of the bedform, whereas bed‐load gravel avalanches down the leeside and overruns the sand in the trough. The effectiveness of this sorting mechanism increases as the height of the bedform increases. Infiltration of sand into the gravel framework is of minor importance in these experiments, and occurs mainly in bedform troughs. The geometry and proportion of OFG in fluvial deposits are influenced by variation in height of bedforms as they migrate, superposition of small bedforms on the backs of larger bedforms, aggradation rate, and changes in sediment supply. If the height of a bedform increases as it migrates downstream, so does the amount of OFG. Changes in the character of OFG on the lee‐side of unit bars depend on grain‐size sorting in the superimposed bedforms (dunes and bedload sheets). Thick deposits of cross‐stratified OFG require high bedforms (dunes, unit bars) and large amounts of aggradation. These conditions might be expected to occur during high falling stages in the deeper parts of river channels adjacent to compound‐bar tails and downstream of confluence scours. Increase in the amount of sand supplied relative to gravel reduces the development of OFG. Such increases in sand supply may be related to falling flow stage and/or upstream erosion of sandy deposits.  相似文献   

18.
19.
A linear stability analysis of the partial differential equations of granular flow is performed. The constitutive relations include (i) elastic effects, (ii) non-associated flow rules and (iii) shear-strain hardening. Conditions for the equations to be well-posed and to be stable are derived. It turns out that there are two qualitatively different kinds of instability; which appears first depends on the parameters of the constitutive relations. If one kind appears first, then in a constitutive test a period of inhomogeneous deformation is predicted to occur before the formation of shear bands. If the other kind appears first, then shear bands are predicted to form in an approximately homogeneous sample. Some constitutive experiments are analysed from this viewpoint, and the analysis suggests some new experimental work.  相似文献   

20.
流态化运动是高速远程滑坡的主要运动形式,是揭示高速远程滑坡运动机理的重要基础。基于粒子图像测速(PIV)分析方法,采用物理模型试验对不同粒径组成条件下的颗粒流内部的速度分布、剪切变形及流态特征进行了研究,并对高速远程滑坡流态化运动特征进行了讨论分析。结果表明:碎屑流流态化运动特征与颗粒粒径呈显著的相关性,随着粒径的减小或细颗粒含量的增加,颗粒流底部相对于边界的滑动速度以及整体的运动速度均呈逐渐减小的趋势,颗粒流内部剪切变形程度增加,颗粒的运动形式由“滑动”向“流动”转变;当颗粒粒径较小或细颗粒含量较高时,颗粒流内部剪切速率增大的趋势在颗粒流底部更加显著,反映了粒径减小有助于促进颗粒流内部剪切向底部的集中;在同一颗粒流的不同运动阶段及不同纵向深度,其流态特征具有显著差别,颗粒流前缘及尾部主要呈惯性态,颗粒间以碰撞作用为主,而主体部分则主要呈密集态,颗粒间以摩擦接触作用为主;在颗粒流表面及底部,颗粒间相互作用方式主要是碰撞作用,中间部分则以摩擦作用为主;对于不同粒径的颗粒流,随着粒径的增大或粗颗粒含量的增加,颗粒流内部颗粒的碰撞作用加强,颗粒流整体趋于向惯性态转变。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号