首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Characteristics of water exchange in the Luzon Strait during September 2006   总被引:7,自引:1,他引:6  
The Luzon Strait is the only deep channel that connects the South China Sea(SCS) with the Pacific.The transport through the Luzon Strait is an important process influencing the circulation,heat and water budgets of the SCS.Early observations have suggested that water enters the SCS in winter but water inflow or outflow in summer is quite controversial.On the basis of hydrographic measurements from CTD along 120° E in the Luzon Strait during the period from September 18 to 20 in 2006,the characteristics of t...  相似文献   

2.
The seasonal variations of several main water masses in the southern Yellow Sea (SYS) and East China Sea (ECS) in 2011 were analyzed using the in-situ data collected on four cruises. There was something special in the observations for the Yellow Sea Warm Current (YSWC), the Yellow Sea Cold Water Mass (YSCWM) and the Changjiang Diluted Water (CDW) during that year. The YSWC was confirmed to be a seasonal current and its source was closely associated with the Kuroshio onshore intrusion and the northerly wind. It was also found that the YSCWM in the summer of 2011 occupied a more extensive area in comparison with the climatologically-mean case due to the abnormally powerful wind prevailing in the winter of 2010 and decaying gradually thereafter. Resulting from the reduced Changjiang River discharge, the CDW spreading toward the Cheju Island in the summer of 2011 was weaker than the long-term mean and was confined to flow southward in the other seasons. The other water masses seemed normal without noticeable anomalies in 2011. The Yellow Sea Coastal Current (YSCC) water, driven by the northerly wind, flowed southeastward as a whole except for its northeastward surface layer in summer. The Taiwan Warm Current (TWC) was the strongest in summer and the weakest in winter in its northward movement. The Kuroshio water with an enhanced onshore intrusion in autumn was stable in hydrographic features apart from the seasonal variation of its surface layer.  相似文献   

3.
Water masses in the South China Sea (SCS) were identified and analyzed with the data collected in the summer and winter of 1998. The distributions of temperature and salinity near the Bashi Channel (the Luzon Strait) were analyzed by using the data obtained in July and December of 1997. Based on the results from the data collected in the winter of 1998, waters in the open sea areas of the SCS were divided into six water masses: the Surface Water Mass of the SCS (S), the Subsurface Water Mass of the SCS (U), the Subsurface-Intermediate Water Mass of the SCS (UI), the Intermediate Water Mass of the SCS (I), the Deep Water Mass of the SCS (D) and the Bottom Water Mass of the SCS(B). For the summer of 1998, the Kuroshio Surface Water Mass (KS) and the Kuroshio Subsurface Water Mass (KU) were also identified in the SCS. But no Kuroshio water was found to pass the 119.5°E meridian and enter the SCS in the time of winter observations. The Sulu Sea Water (SSW) intruded into the SCS through the Mindoro Channel between 50–75 m in the summer of 1998. However, the data obtained in the summer and winter of 1997 indicated that water from the Pacific had entered the SCS through the northern part of the Luzon Strait in these seasons, but water from the SCS had entered the Pacific through the southern part of the Strait. These phenomena might correlate with the 1998 El-Niño event.  相似文献   

4.
Warming trend in northern East China Sea in recent four decades   总被引:2,自引:0,他引:2  
Global warming has become a notable trend especially since an abrupt climate change in 1976. Response of the East China Sea (ECS) to the global warming trend, however, is not well understood because of sparse long-term observation. In this paper, hydrographic observation data of 1957–1996 are collected and reviewed to study climatological variability in northern ECS. Significant warming trends are found in both summer and winter. In summer, the average SST is about 0.46°C higher during the period of 1977-19...  相似文献   

5.
In a study of surface monsoon winds over the China marginal seas, Sun et al. (2012) use singular value decomposition method to identify regional dominant modes and analyze their interdecadal variability. This paper continues to evaluate the interannual variability of each dominant mode and its relation to various atmospheric, oceanic and land factors. The findings include: 1) The intensity of the winter monsoon over the East China Sea is highly correlated with the Siberian High intensity and anti-correlated with the latitudinal position of the Aleutian Low as well as the rainfall in eastern China, Korean Peninsula and Japan; 2) The western Pacific subtropical high is significantly correlated with the summer monsoon intensity over the East China Sea and anti-correlated with the summer monsoon over the South China Sea; 3) The winter monsoon in a broad zonal belt through the Luzon Strait is dominated by the ENSO signal, strengthening in the La Ni a phase and weakening in the El Ni o phase. This inverse relation exhibits interdecadal shift with a period of weak correlation in the 1980s; 4) Analysis of tidal records validates the interdecadal weakening of the East Asian summer monsoon and reveals an atmospheric bridge that conveys the ENSO signal into the South China Sea via the winter monsoon.  相似文献   

6.
Circulation in China Seas has been investigated by Chinese oceanographers in some detail for many years. However, owing to data being sparse and scarce, studies were basically concerned in interseasonal (mainly summer and winter) fluctuations and almost none was in the interannual variability of the circulation in China Seas. It is pointed out that the routine (monthly or bimonthly) hydrographical section data on the continental shelf of China Seas accumulated since 1975, can be used to examine the interannual variability of the shelf circulation. An example is given to show there is interannual variability of shelf circulation in the East China Sea. And what is more, a hypothesis is proposed to describe where the interannual variability comes from and to explain why it is strongly correlated with El Niño events. It is strongly suggested that the interannual variability of the shelf circulation in China Seas be studied, as a strategy, with the routine hydrographical survey, which should be seriously continued, combined with cooperative study in the Philippine Sea and the western tropical Pacific Ocean.  相似文献   

7.
For understanding more about the water exchange between the Kuroshio and the East China Sea,We studied the variability of the Kuroshio in the East China Sea(ECS) in the period of 1991 to 2008 using a three-dimensional circulation model,and calculated Kuroshio onshore volume transport in the ECS at the minimum of 0.48 Sv(1 Sv ;106 m3/s) in summer and the maximum of 1.69 Sv in winter.Based on the data of WOA05 and NCEP,The modeled result indicates that the Kuroshio transport east of Taiwan Island decreased since 2000.Lateral movements tended to be stronger at two ends of the Kuroshio in the ECS than that of the middle segment.In addition,we applied a spectral mixture model(SMM) to determine the exchange zone between the Kuroshio and the shelf water of the ECS.The result reveals a significantly negative correlation(coefficient of-0.78) between the area of exchange zone and the Kuroshio onshore transport at 200 m isobath in the ECS.This conclusion brings a new view for the water exchange between the Kuroshio and the East China Sea.Additional to annual and semi-annual signals,intra-seasonal signal of probably the Pacific origin may trigger the events of Kuroshio intrusion and exchange in the ECS.  相似文献   

8.
Based on the field data obtained during cruises on the shelf of the East China Sea from 1997 to 1999, seasonal variations of coastal upwelling on the inner shelf are discussed by using cross-shelf transect profiles and horizontal distributions of chemical and hydrographic variables. Results show that the coastal upwelling was year-round, but the areas and intensities of the upwelling were quite different in season. The coastal upwelling occurred in all of the coastal areas of the region in spring and summer, but in autumn only in the area off Zhejiang Province, and in winter in the area off Fujian Prov- ince. It was the strongest in summer and the weakest in winter. Geographically, it was the strongest in the area off Zhejiang Province and the weakest in the southmost or northmost parts of the East China Sea. The estimated nutrient fluxes upward into euphotic zone through coastal upwelling were quite large, es- pecially for phosphate, which contributed significantly to primary production and improved the nutrient structure of the coastal ecosystem in the East China Sea.  相似文献   

9.
The abyssal circulation in the Philippine Sea(PS)is investigated,with outputs from the Simple Ocean Data Assimilation version 2.2.4(SODA224).The deep-water currents in SODA224 are carefully evaluated,with sparse in situ observations in the North Pacific Ocean.In the upper deep layer(20003000 m)of the PS,a strong westward current,which originates from the Northeast Pacific Basin and enters the PS through the Yap-Mariana Junction,exists along 1114 N.This strong westward current bifurcates into two western boundary currents off the Philippines.The northward-flowing current flows out of the PS around 2021 N,whereas the southward-flowing current transports deep water from the northern hemisphere to the southern hemisphere.In the lower deep layer(30004500 m),the inflow water first flows northward to the east of the Western Mariana Basin and then turns westward at approximately 18 N.The inflow water mainly enters the Philippine Basin(PB),with a small part turning southward to constitute a weak cyclonic circulation.The water entering the PB mainly merges into a strong southward western boundary current in the south-ern PB.In the bottom layer(below 4500 m),both the northeast and northwest PB show single cyclonic gyres,whereas the south PB shows a single anticyclonic gyre.Moreover,comparisons with the observations indicate the possible existence of a cyclonic sense of circulation over the Philippine Trench.The current study provides the implications for future observations,which are needed to fur-ther investigate the temporospatial variations of the abyssal circulation in the PS on multiple scales.  相似文献   

10.
深水峡谷是当今海洋油气勘探领域的研究热点。南海西北部琼东南盆地的中央峡谷已部署了多口深水钻井来勘探沉积充填的岩性油气藏,然而,由于这些探井数量相对有限、井间距离大以及地震资料分辨率较低,峡谷内砂体的叠复关系、边界接触关系以及沉积演化等问题尚不清楚,严重制约着储层空间分布与储层物性的精细刻画。对琼东南盆地陵水区中央峡谷开展了沉积数值模拟研究,根据研究区具体地质背景建立了地质模型和数学模型,通过流体动力学软件ANSYS FLUENT正演模拟了多个沉积期次和多套砂组在不同初始条件(如物源和入流速度)下的浊流沉积几何形态,包括砂体平面分布特征和隔夹层分布特征。模拟结果表明:峡谷平直段内,浊流受底床摩擦力的持续影响,流速降低且湍流强度减弱,使得较粗颗粒可沉降于底床,细颗粒可随浊流头部涡流悬浮;峡谷狭窄段内,浊流头部的湍流较强,侵蚀峡谷壁并使峡谷走向发生偏移,悬浮颗粒受离心力作用形成溢岸沉积;峡谷内砂体展布具有垂向分异性,砂体内部泥岩以夹层为主,厚度一般较小且横向连续性差。与现有地震、钻井资料的对比分析显示本次数值模拟结果具有有效性。本研究成果揭示了中央峡谷不同沉积期次和不同砂组的沉积水动力学过程,进而预测了砂体的空间展布特征,为储层物性预测提供了坚实支撑。   相似文献   

11.
Based on HYbrid Coordinate Ocean Model (HYCOM) assimilation and observations, we analyzed seasonal variability of the salinity budget in the southeastern Arabian Sea (AS) and the southern part of the Bay of Bengal (BOB), as well as water exchange between the two basins. Results show that fresh water flux cannot explain salinity changes in salinity budget of both regions. Oceanic advection decreases salinity in the southeastern AS during the winter monsoon season and increases salinity in the southern BOB during the summer monsoon season. In winter, the Northeast Monsoon Current (NMC) carries fresher water from the BOB westward into the southern AS; this westward advection is confined to 4°-6°N and the upper 180 m south of the Indian peninsula. Part of the less saline water then turns northward, decreasing salinity in the southeastern AS. In summer, the Southwest Monsoon Current (SMC) advects high-salinity water from the AS eastward into the BOB, increasing salinity along its path. This eastward advection of high-salinity water south of the India Peninsula extends southward to 2°N, and the layer becomes shallower than in winter. In addition to the monsoon current, the salinity difference between the two basins is important for salinity advection.  相似文献   

12.
A model study is conducted to examine the role of Pacific water in the dramatic retreat of arctic sea ice during summer 2007. The model generally agrees with the observations in showing considerable seasonal and interannual variability of the Pacific water inflow at Bering Strait in response to changes in atmospheric circulation. During summer 2007 anomalously strong southerly winds over the PaCific sector of the Arctic Ocean strengthen the ocean circulation and bring more Pacific water into the Arctic than the recent (2000-2006) average. The simulated summer (3 months ) 2007 mean Pacific water inflow at Bering Strait is 1.2 Sv, which is the highest in the past three decades of the simulation and is 20% higher than the recent average. Particularly, the Pacific water inflow in September 2007 is about 0.5 Sv or 50% above the 2000-2006 average. The strengthened warm Pacific water inflow carries an additional 1.0 x 1020 Joules of heat into the Arctic, enough to melt an additional 0.5 m of ice over the whole Chukchi Sea. In the model the extra summer oceanic heat brought in by the Pacific water mainly stays in the Chukchi and Beaufort region, contributing to the warming of surface waters in that region. The heat is in constant contact with the ice cover in the region in July through September. Thus the Pacific water plays a role in ice melting in the Chukchi and Beaufort region all summer long in 2007, likely contributing to up to O. 5 m per month additional ice melting in some area of that region.  相似文献   

13.
INTRODUCTIONTheSouthChinaSea(SCS)isapartly enclosedoceanbasinoverlaidbyapronouncedmonsoonsurfacewind .Paststudies (Chenetal.,1 991 ;DingandMurakami,1 994 ;Yan ,1 997;LiangBiqi,1 991 ;LiangJianyin ,1 991 )indicatethatahugewarmwaterpooljointlycontributedbythewesternPacific ,ea…  相似文献   

14.
Based on observed temperature data since the 1950s, long-term variability of the summer sharp thermocline in the Yellow Sea Cold Water Mass (YSCWM) and East China Sea Cold Eddy (ECSCE) areas is examined. Relationships between the thermocline and atmospheric and oceanic forcing were investigated using multiyear wind, Kuroshio discharge and air temperature data. Results show that: 1) In the YSCWM area, thermocline strength shows about 4-year and 16-year period oscillations. There is high correlation between summer thermocline strength and local atmospheric temperature in summer and the previous winter; 2) In the ECSCE area, interannual oscillation of thermocline strength with about a 4-year period (stronger in El Ni o years) is strongly correlated with that of local wind stress. A transition from weak to strong thermocline during the mid 1970s is consistent with a 1976/1977 climate shift and Kuroshio volume transport; 3) Long-term changes of the thermocline in both regions are mainly determined by deep layer water, especially on the decadal timescale. However, surface water can modify the thermocline on an interannual timescale in the YSCWM area.  相似文献   

15.
Future temperature distributions of the marginal Chinese seas are studied by dynamic downscaling of global CCSM3 IPCC_AR4 scenario runs.Different forcing fields from 2080-2099 Special Report on Emissions Scenarios(SRES) B1,A1,and A2 to 1980-1999 20C3M are averaged and superimposed on CORE2 and SODA2.2.4 data to force high-resolution regional future simulations using the Regional Ocean Modeling System(ROMS).Volume transport increments in downscaling simulation support the CCSM3 result that with a weakening subtropical gyre circulation,the Kuroshio Current in the East China Sea(ECS) is possibly strengthened under the global warming scheme.This mostly relates to local wind change,whereby the summer monsoon is strengthened and winter monsoon weakened.Future temperature fluxes and their seasonal variations are larger than in the CCSM3 result.Downscaling 100 years’ temperature increments are comparable to the CCSM3,with a minimum in B1 scenario of 1.2-2.0°C and a maximum in A2 scenario of 2.5-4.5°C.More detailed temperature distributions are shown in the downscaling simulation.Larger increments are in the Bohai Sea and middle Yellow Sea,and smaller increments near the southeast coast of China,west coast of Korea,and southern ECS.There is a reduction of advective heat north of Taiwan Island and west of Tsushima in summer,and along the southern part of the Yellow Sea warm current in winter.There is enhancement of advective heat in the northern Yellow Sea in winter,related to the delicate temperature increment distribution.At 50 meter depth,the Yellow Sea cold water mass is destroyed.Our simulations suggest that in the formation season of the cold water mass,regional temperature is higher in the future and the water remains at the bottom until next summer.In summer,the mixed layer is deeper,making it much easier for the strengthened surface heat flux to penetrate to the bottom of this water.  相似文献   

16.
Diatom data of 192 surface sediment samples from the marginal seas in the western Pacific together with modern summer and winter sea surface temperature and salinity data were analyzed.The results of canonical correspondence analysis show that summer sea-surface salinity(SSS) is highly positively correlated with winter SSS and so is summer sea-surface temperature(SST) with winter SST.The correlations between SSSs and SSTs are less positively correlated,which may be due to interactions of regional current pa...  相似文献   

17.
The principal variability patterns (EOF) of the anomalies of total heat transfer from ocean to atmosphere computed from 30 years' monthly averaged data over the North Pacific Ocean (20°–60°N) showed variability was dominated by two patterns: a bipolar pattern and a dominantly positive or negative pattern depending on the sign of the time series coefficients. The atmosphere contributes greatly to the marine heating anomalies in most of the North Pacific in all seasons. In winter, a positive feedback is formed between the Aleutian Low and the marine heating anomalies; in summer, the marine heating anomalies are controlled by the heating on the Qinghai-Tibetan Plateau. Both patterns have a winter correlation with the Southern Oscillation Index. Contribution No. 1534 from the Institute of Oceanology, Academia Sinica  相似文献   

18.
Using hydrographic measurements from three recent surveys in the western tropical Pacific, this study revealed the existence and general features of thermohaline finestructure near the northern Philippine coast. Pronounced finestructures were detected in the layers of the North Pacific Tropical Water (NPTW) and the North Pacific Intermediate Water (NPIW) during all three cruises and shown to be mainly thermohaline intrusions. Characteristics of the intrusions were further investigated with spiciness curvature and salinity anomaly methods. The vertical scale of the intrusions was 20-50m and 50-100m in the NPTW and NPIW layers, respectively. Within the NPTW layer, the Turner angle distribution and correlation between salinity and density anomalies suggested that diffusive convection between surface fresh water and subsurface saline water played an important role in the development and maintenance of the intrusions. In addition, connection between thermohaline finestructure and larger-scale oceanic processes was explored using historical hydrographic data. The results reveal that the salinity field and the distribution of the intrusions in this region were largely determined by mesoscale eddies. As a result of eddy stirring, both isopycnal and diapycnal temperature/salinity gradients were strengthened, which gave rise to the development of thermohaline intrusions. The intrusions acted to enhance heat and salt fluxes and resulted in the mixing of water masses being more efficient. By linking mesoscale eddy stirring to micro-scale diffusion, thermohaline finestructure plays a vital role in the ocean energy cascade and water mass conversion in the northern Philippine Sea.  相似文献   

19.
After the winter and summer current structures on two or three latitudinal sections in Taiwan Strait were obtained from the measured current data, the seawater fluxs through the sections were calculated. In summer, the currents in the central and northern part of Taiwan Strait normally flow northward at a net flux of 3.32×106m3/s. In winter, the high temperature and salinity Kuroshio and South China Sea water enter Taiwan Strait from the southem section at 1.69×106m3/s and 0.59×106 m3/s respectively, while the East China Sea water enters Taiwan Strait from the northern section at 1.02×106m3/s. About 0.40×106 m3/s of the seawater enters the South China Sea along the coast of Fujian and Guangdong; the other 0.62×106 m3/s of the seawater is mixed with the Kuroshio water and the South China Sea water in the northern sea areas. The net northward flux is 1.74×106m3/s in winter.  相似文献   

20.
In this paper, the authors used the Princeton Ocean Model (POM) to simulate the seasonal evolutions of circulation and thermal structure in the Yellow Sea. The simulated circulation showed that the Yellow Sea Warm Current (YSWC) was a compensation current of monsoon-driven current, and that in winter, the YSWC became stronger with depth, and could flow across the Bohai Strait in the north. Sensitivity and controlling tests led to the following conclusions, In winter, the direction of the Yellow Sea Coastal Current in the surface layer was controlled partly by tide instead of wind, In summer, a cyclonic horizontal gyre existed in the middle and eastern parts of the Yellow Sea below 10 m. The downwelling in upper layer and upwelling in lower layer were somehow similar to Hu et al. (1991) conceptual model. The calculated thermal structure showed an obvious northward extending YSWC tongue in winter, its position and coverage of the Yellow Sea Cold Water Mass in summer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号