首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As salinity stratification is necessary to form the barrier layer (BL), the quantification of its role in BL interannual variability is crucial. This study assessed salinity variability and its effect on the BL in the equatorial Pacific using outputs from Beijing Normal University Earth System Model (BNU-ESM) simulations. A comparison between observations and the BNU-ESM simulations demonstrated that BNU-ESM has good capability in reproducing most of the interannual features observed in nature. Despite some discrepancies in both magnitude and location of the interannual variability centers, the displacements of sea surface salinity (SSS), barrier layer thickness (BLT), and SST simulated by BNU-ESM in the equatorial Pacific are realistic. During El Niño, for example, the modeled interannual anomalies of BLT, mixed layer depth, and isothermal layer depth, exhibit good correspondence with observations, including the development and decay of El Niño in the central Pacific, whereas the intensity of the interannual variabilities is weaker relative to observations. Due to the bias in salinity simulations, the SSS front extends farther west along the equator, whereas BLT variability is weaker in the central Pacific than in observations. Further, the BNU-ESM simulations were examined to assess the relative effects of salinity and temperature variability on BLT. Consistent with previous observation-based analyses, the interannual salinity variability can make a significant contribution to BLT relative to temperature in the western-central equatorial Pacific.  相似文献   

2.
Freshwater flux (FWF) directly affects sea surface salinity (SSS) and hence modulates sea surface temperature (SST) in the tropical Pacific. This paper quantifies a positive correlation between FWF and SST using observations and simulations of the fifth phase of the Coupled Model Intercomparison Project (CMIP5) to analyze the interannual variability in the tropical Pacific. Comparisons among the displacements of FWF, SSS and SST interannual variabilities illustrate that a large FWF variability is located in the west-central equatorial Pacific, covarying with a large SSS variability, whereas a large SST variability is located in the eastern equatorial Pacific. Most CMIP5 models can reproduce the fact that FWF leads to positive feedback to SST through an SSS anomaly as observed. However, the difference in each model's performance results from different simulation capabilities of the CMIP5 models in the magnitudes and positions of the interannual variabilities, including the mixed layer depth and the buoyancy flux in the equatorial Pacific. SSS anomalies simulated from the CMIP5 multi-model are sensitive to FWF interannual anomalies, which can lead to differences in feedback to interannual SST variabilities. The relationships among the FWF, SSS and SST interannual variabilities can be derived using linear quantitative measures from observations and the CMIP5 multi-model simulations. A 1 mm d-1 FWF anomaly corresponds to an SSS anomaly of nearly 0.12 psu in the western tropical Pacific and a 0.11°C SST anomaly in the eastern tropical Pacific.  相似文献   

3.
The El Nin o-Southern Oscillation (ENSO) is modulated by many factors; most previous studies have emphasized the roles of wind stress and heat flux in the tropical Pacific. Freshwater flux (FWF) is another environmental forcing to the ocean; its effect and the related ocean salinity variability in the ENSO region have been of increased interest recently. Currently, accurate quantifications of the FWF roles in the climate remain challenging; the related observations and coupled ocean-atmosphere modeling involve large elements of uncertainty. In this study, we utilized satellite-based data to represent FWF-induced feedback in the tropical Pacific climate system; we then incorporated these data into a hybrid coupled ocean-atmosphere model (HCM) to quantify its effects on ENSO. A new mechanism was revealed by which interannual FWF forcing modulates ENSO in a significant way. As a direct forcing, FWF exerts a significant influence on the ocean through sea surface salinity (SSS) and buoyancy flux (Q B ) in the western-central tropical Pacific. The SSS perturbations directly induced by ENSO-related interannual FWF variability affect the stability and mixing in the upper ocean. At the same time, the ENSO-induced FWF has a compensating effect on heat flux, acting to reduce interannual Q B variability during ENSO cycles. These FWF-induced processes in the ocean tend to modulate the vertical mixing and entrainment in the upper ocean, enhancing cooling during La Nin a and enhancing warming during El Nin o, respectively. The interannual FWF forcing-induced positive feedback acts to enhance ENSO amplitude and lengthen its time scales in the tropical Pacific coupled climate system.  相似文献   

4.
El Nio events in the central equatorial Pacific (CP) are gaining increased attention,due to their increasing intensity within the global warming context.Various physical processes have been identified in the climate system that can be responsible for the modulation of El Nio,especially the effects of interannual salinity variability.In this work,a comprehensive data analysis is performed to illustrate the effects of interannual salinity variability using surface and subsurface salinity fields from the Met Office ENSEMBLES (EN3) quality controlled ocean dataset.It is demonstrated that during the developing phase of an El Nio event,a negative sea surface salinity (SSS) anomaly in the western-central basin acts to freshen the mixed layer (ML),decrease oceanic density in the upper ocean,and stabilize the upper layers.These related oceanic processes tend to reduce the vertical mixing and entrainment of subsurface water at the base of the ML,which further enhances the warm sea surface temperature (SST) anomalies associated with the El Nio event.However,the effects of interannually variable salinity are much more significant during the CP-El Nio than during the eastern Pacific (EP) El Nio,indicating that the salinity effect might be an important contributor to the development of CP-El Nio events.  相似文献   

5.
石世玮  智海  林鹏飞  陈涛 《大气科学》2020,44(5):1057-1075
海洋盐度变化为研究气候变化的机制提供了一个新的视角。本文通过对比1997/1998年、2015/2016年两次强厄尔尼诺(El Ni?o)事件和2014/2015年特殊El Ni?o事件,对盐度变化及其影响海表面温度异常(SSTA)的物理过程进行了比较分析。研究表明,El Ni?o和南方涛动(El Ni?o–Southern Oscillation, ENSO)发展的强弱与热带西太平洋大范围海表层盐度异常(SSSA)及其向东扩散的差异有明显关联。1997/1998、2015/2016年赤道东太平洋SSTA的增暖,对应两次强El Ni?o事件,在发生年4月,中西太平洋海域出现了明显的负SSSA,之后东移至日期变更线以西,SSSA引发的混合层深度(MLD)变浅、障碍层厚度(BLT)变厚,导致热带中—西太平洋表层升温增强,促使了赤道中太平洋的早期变暖;2014/2015年弱El Ni?o事件虽然在发生年4月,位于赤道中西太平洋出现了负SSSA,但没有发展东移,导致BLT的增厚过程减弱,对表层温度的调制作用减弱甚至消失。三次事件对应的盐度变化过程中,水平平流和淡水通量(FWF)引起的表层强迫是影响盐度收支的主要因子,水平平流影响盐度异常的前期变化,触发事件的发生;热带太平洋西部降水引起的FWF负异常的影响最为显著,对ENSO异常信号出现后SSSA的维持起决定性作用。相比较两次强El Ni?o事件,2014/2015年El Ni?o对应的早期FWF负异常没有发展和东移,并且之后迅速减弱,导致中西太平洋盐度负趋势减缓,MLD加深,BLT变薄,促使上表层海水冷却,抑制了赤道东太平洋的早期变暖和ENSO发展。研究结果表明,盐度变化与ENSO密切相关,热带中西太平洋海域早期表层盐度变化可能可以作为SSTA的指数。特别地,SSSA在调节SSTA时,不仅影响它的强度,而且可以作为判断ENSO是否发展及其强弱的前兆因子。  相似文献   

6.
This paper assesses the interannual variabilities of simulated sea surface salinity (SSS) and freshwater flux (FWF) in the tropical Pacific from phases 5 and 6 of the Coupled Model Intercomparison Project (CMIP5 and CMIP6). The authors focus on comparing the simulated SSS and FWF responses to El Niño–Southern Oscillation (ENSO) from two generations of models developed by the same group. The results show that CMIP5 and CMIP6 models can perform well in simulating the spatial distributions of the SSS and FWF responses associated with ENSO, as well as their relationship. It is found that most CMIP6 models have improved in simulating the geographical distribution of the SSS and FWF interannual variability in the tropical Pacific compared to CMIP5 models. In particular, CMIP6 models have corrected the underestimation of the spatial relationship of the FWF and SSS variability with ENSO in the central-western Pacific. In addition, CMIP6 models outperform CMIP5 models in simulating the FWF interannual variability (spatial distribution and intensity) in the tropical Pacific. However, as a whole, CMIP6 models do not show improved skill scores for SSS interannual variability, which is due to their overestimation of the intensity in some models. Large uncertainties exist in simulating the interannual variability of SSS among CMIP5 and CMIP6 models and some improvements with respect to physical processes are needed.摘要通过比较CMIP5和CMIP6来自同一个单位两代模式模拟, 表明CMIP5和CMIP6均能较好地模拟出热带太平洋的海表盐度 (SSS) 和淡水通量 (FWF) 对ENSO响应的分布及其响应间的关系. 与CMIP5模式相比, 大部份CMIP6模式模拟的SSS和FWF年际变化分布均呈现改进, 特别是纠正了较低的中西太平洋SSS和FWF变化的空间关系. 但是, 整体上, CMIP6模式模拟的SSS年际变化技巧没有提高, 与SSS年际变率的强度被高估有关. CMIP5和CMIP6模式模拟SSS的年际变化还存在较大的不确定性, 在物理方面需要改进.  相似文献   

7.
ABSTRACT In this paper, interannual variations in the barrier layer thickness (BLT) are analyzed using Argo three-dimensional temperature and salinity data, with a locus on the effects of interannually varying salinity on the evolution of the El Nifio Southern Oscillation (ENSO). The interannually varying BLT exhibits a zonal seesaw pattern across the equatorial Pacific during ENSO cycles. This phenomenon has been attributed to two different physical processes. During E1 Nifio (La Nifia), the barrier layer (BL) is anomalously thin (thick) west of about 160°E, and thick (thin) to the east. In the western equatorial Pacific (the western part: 130°-160°E), interannual variations of the BLT indicate a lead of one year relative to those of the ENSO onset. The interannual variations of the BLT can be largely attributed to the interannual temperature variability, through its dominant effect on the isothermal layer depth (ILD). However, in the central equatorial Pacific (the eastern part: 160~E- 170~W), interannual variations of the BL almost synchronously vary with ENSO, with a lead of about two months relative to those of the local SST. In this region, the interannual variations of the BL are significantly affected by the interannually varying salinity, mainly through its modulation effect on the mixed layer depth (MLD). As evaluated by a onedimensional boundary layer ocean model, the BL around the dateline induced by interannual salinity anomalies can significantly affect the temperature fields in the upper ocean, indicating a positive feedback that acts to enhance ENSO.  相似文献   

8.
An ensemble of twenty four coupled ocean-atmosphere models has been compared with respect to their performance in the tropical Pacific. The coupled models span a large portion of the parameter space and differ in many respects. The intercomparison includes TOGA (Tropical Ocean Global Atmosphere)-type models consisting of high-resolution tropical ocean models and coarse-resolution global atmosphere models, coarse-resolution global coupled models, and a few global coupled models with high resolution in the equatorial region in their ocean components. The performance of the annual mean state, the seasonal cycle and the interannual variability are investigated. The primary quantity analysed is sea surface temperature (SST). Additionally, the evolution of interannual heat content variations in the tropical Pacific and the relationship between the interannual SST variations in the equatorial Pacific to fluctuations in the strength of the Indian summer monsoon are investigated. The results can be summarised as follows: almost all models (even those employing flux corrections) still have problems in simulating the SST climatology, although some improvements are found relative to earlier intercomparison studies. Only a few of the coupled models simulate the El Niño/Southern Oscillation (ENSO) in terms of gross equatorial SST anomalies realistically. In particular, many models overestimate the variability in the western equatorial Pacific and underestimate the SST variability in the east. The evolution of interannual heat content variations is similar to that observed in almost all models. Finally, the majority of the models show a strong connection between ENSO and the strength of the Indian summer monsoon.  相似文献   

9.
利用CMIP5提供的25个工业革命前控制试验(piControl)模拟数据评估了热带太平洋两类El Ni(n)o(即东部EP和中部CP型El Ni(n)o)的海表盐度(SSS)空间结构差异及其与海表温度(SST)和降水的关系.结果表明:(1)大部分模式能够模拟出EP和CP型空间结构,两类El Ni(n)o中的SST、降水和SSS的空间技巧评分依次减小,其中,EP型SST和降水水平分布的模拟能力强于CP型,SSS则为CP型强于EP型,CP型模拟的SST、SSS和降水异常中心位置较EP型偏西且强度偏弱;(2) CP型SST、降水和SSS三者空间分布的线性一致性比EP型好,即在CP型中,SST影响降水,进而影响SSS,同时SSS对SST调制的反馈机制较显著,而对于EP型,由于海洋水平平流和非局地效应等因素,使得SST与SSS空间对应较差;(3)依据多模式模拟的SSS空间技巧评分高低将CMIP5模式分为两类,技巧评分低(高)的模式模拟的SST、SSS和降水异常值的中心位置偏西(偏东),引起中心位置偏移的原因与模式模拟赤道太平洋冷舌的位置有关,即赤道太平洋冷舌西伸显著,导致发生El Ni(n)o时SST异常变暖西伸显著,进而使得降水异常和SSS异常位置偏西.同时,技巧评分低的模式还易出现向东南延伸的负SSS异常,原因是双赤道辐合带的东南分支过于明显,即降水偏多,导致SSS偏淡.SSS变化会影响ENSO的发生发展.因此,探讨两类El Ni(n)o盐度分布的差异及相关物理场的关系,为提高模式的气候模拟和预测提供有益的借鉴.  相似文献   

10.
白文蓉  智海  林鹏飞 《大气科学》2017,41(3):629-647
利用CMIP5提供的25个工业革命前控制试验(piControl)模拟数据评估了热带太平洋两类El Ni?o(即东部EP和中部CP型El Ni?o)的海表盐度(SSS)空间结构差异及其与海表温度(SST)和降水的关系。结果表明:(1)大部分模式能够模拟出EP和CP型空间结构,两类El Ni?o中的SST、降水和SSS的空间技巧评分依次减小,其中,EP型SST和降水水平分布的模拟能力强于CP型,SSS则为CP型强于EP型,CP型模拟的SST、SSS和降水异常中心位置较EP型偏西且强度偏弱;(2)CP型SST、降水和SSS三者空间分布的线性一致性比EP型好,即在CP型中,SST影响降水,进而影响SSS,同时SSS对SST调制的反馈机制较显著,而对于EP型,由于海洋水平平流和非局地效应等因素,使得SST与SSS空间对应较差;(3)依据多模式模拟的SSS空间技巧评分高低将CMIP5模式分为两类,技巧评分低(高)的模式模拟的SST、SSS和降水异常值的中心位置偏西(偏东),引起中心位置偏移的原因与模式模拟赤道太平洋冷舌的位置有关,即赤道太平洋冷舌西伸显著,导致发生El Ni?o时SST异常变暖西伸显著,进而使得降水异常和SSS异常位置偏西。同时,技巧评分低的模式还易出现向东南延伸的负SSS异常,原因是双赤道辐合带的东南分支过于明显,即降水偏多,导致SSS偏淡。SSS变化会影响ENSO的发生发展。因此,探讨两类El Ni?o盐度分布的差异及相关物理场的关系,为提高模式的气候模拟和预测提供有益的借鉴。  相似文献   

11.
The predictability of El Ni?o?Southern Oscillation (ENSO) has been an important area of study for years. Searching for the optimal precursor (OPR) of ENSO occurrence is an effective way to understand its predictability. The CNOP (conditional nonlinear optimal perturbation), one of the most effective ways to depict the predictability of ENSO, is adopted to study the optimal sea surface temperature (SST) precursors (SST-OPRs) of ENSO in the IOCAS ICM (intermediate coupled model developed at the Institute of Oceanology, Chinese Academy of Sciences). To seek the SST-OPRs of ENSO in the ICM, non-ENSO events simulated by the ICM are chosen as the basic state. Then, the gradient-definition-based method (GD method) is employed to solve the CNOP for different initial months of the basic years to obtain the SST-OPRs. The experimental results show that the obtained SST-OPRs present a positive anomaly signal in the western-central equatorial Pacific, and obvious differences exist in the patterns between the different seasonal SST-OPRs along the equatorial western-central Pacific, showing seasonal dependence to some extent. Furthermore, the non-El Ni?o events can eventually evolve into El Ni?o events when the SST-OPRs are superimposed on the corresponding seasons; the peaks of the Ni?o3.4 index occur at the ends of the years, which is consistent with the evolution of the real El Ni?o. These results show that the GD method is an effective way to obtain SST-OPRs for ENSO events in the ICM. Moreover, the OPRs for ENSO depicted using the GD method provide useful information for finding the early signal of ENSO in the ICM.  相似文献   

12.
关于ENSO本质的进一步研究   总被引:28,自引:5,他引:23  
基于ENSO是热带太平洋海气相互作用产物的科学观点,一系列的分析研究表明:赤道太平洋次表层海温异常(SOTA)有明显的年际变化(循环),并且与ENSO发生密切相关;ENSO的真正源区在赤道西太平洋暖池,赤道西太平洋暖池正(负)SOTA沿赤道温跃层东传到东太平洋,导致El Nino(La Nina)的爆发;在暖池正(负)SOTA沿赤道温跃层东传的同时,将有负(正)SOTA沿10°N和10°S两个纬度带向西传播,从而构成SOTA的循环;热带太平洋SOTA年际循环的驱动者主要是由异常东亚季风所引起的赤道西太平洋纬向风的异常.进而,可以提出关于ENSO本质的一种新理论,即ENSO实质上主要是由异常东亚季风引起的赤道西太平洋异常纬向风所驱动的热带太平洋次表层海温距平的年际循环.    相似文献   

13.
Impacts of convective momentum transport (CMT) on tropical Pacific climate are examined, using an atmospheric (AGCM) and coupled GCM (CGCM) from Seoul National University. The CMT scheme affects the surface mainly via a convection-compensating atmospheric subsidence which conveys momentum downward through most of the troposphere. AGCM simulations—with SSTs prescribed from climatological and El Nino Southern Oscillation (ENSO) conditions—show substantial changes in circulation when CMT is added, such as an eastward shift of the climatological trade winds and west Pacific convection. The CMT also alters the ENSO wind anomalies by shifting them eastward and widening them meridionally, despite only subtle changes in the precipitation anomaly patterns. During ENSO, CMT affects the low-level winds mainly via the anomalous convection acting on the climatological westerly wind shear over the central Pacific—so that an eastward shift of convection transfers more westerly momentum toward the surface than would occur without CMT. By altering the low-level circulation, the CMT further alters the precipitation, which in turn feeds back on the CMT. In the CGCM, CMT affects the simulated climatology by shifting the mean convection and trade winds eastward and warming the equatorial SST; the ENSO period and amplitude also increase. In contrast to the AGCM simulations, CMT substantially alters the El Nino precipitation anomaly patterns in the CGCM. Also discussed are possible impacts of the CMT-induced changes in climatology on the simulated ENSO.  相似文献   

14.
The effects of freshwater flux (FWF) on modulating ENSO have been of great interest in recent years. Large FWF bias is evident in Coupled General Circulation Models (CGCMs), especially over the tropical Pacific where large precipitation bias exists due to the so-called "double ITCZ" problem. By applying an empirical correction to FWF over the tropical Pacific, the sensitivity of ENSO variability is investigated using the new version (version 1.0) of the NCAR's Community Earth System Model (CESM1.0), which tends to overestimate the interannual variability of ENSO accompanied by large FWF into the ocean. In response to a small adjustment of FWF, interannual variability in CESM1.0 is reduced significantly, with the amplitude of FWF being reduced due to the applied adjustment part whose sign is always opposite to that of the original FWF field. Furthermore, it is illustrated that the interannual variability of precipitation weakens as a response to the reduced interannual variability of SST. Process analysis indicates that the interannual variability of SST is damped through a reduced FWF-salt-density-mixing-SST feedback, and also through a reduced SST-wind-thermocline feedback. These results highlight the importance of FWF in modulating ENSO, and thus should be adequately taken into account to improve the simulation of FWF in order to reduce the bias of ENSO simulations by CESM.  相似文献   

15.
殷永红  倪允琪 《气象学报》2001,59(4):459-471
采用 NCEP/NCAR的 1 979~ 1 998年逐月平均的海表温度及 1 0 0 0 h Pa风场资料 ,进行滤波和均方差计算 ,得到了热带太平洋、印度洋、大西洋海表温度 (SST)和风场的年际变化特征。用旋转主分量 (RPC)方法和投影法对热带三大洋海表温度距平 (SSTA)进行分析 ,得到了各大洋 SSTA演变的主要时空特征和相应的距平风场特征 ;并用相关分析研究热带三大洋与ENSO相关的特征 ,得到三大洋间的同期相关关系为 :印度洋 SSTA与赤道东太平洋 SSTA成正相关 ,而赤道东大西洋 SSTA与赤道东太平洋 SSTA成弱的负相关 ;赤道印度洋在落后于赤道东太平洋 3个月左右时正相关达到最大 ,赤道大西洋在超前于赤道东太平洋 6个月左右时负相关达到最大 ;热带印度洋和大西洋与 ENSO相关的分量对各自大洋海表温度年际变化的方差贡献数值相近 ,最大在 40 %以上 ,平均解释方差分别为 1 4%和 1 2 %。  相似文献   

16.
Historically, El Nino-like events simulated in global coupled climate models have had reduced amplitude compared to observations. Here, El Nino-like phenomena are compared in ten sensitivity experiments using two recent global coupled models. These models have various combinations of horizontal and vertical ocean resolution, ocean physics, and atmospheric model resolution. It is demonstrated that the lower the value of the ocean background vertical diffusivity, the greater the amplitude of El Nino variability which is related primarily to a sharper equatorial thermocline. Among models with low background vertical diffusivity, stronger equatorial zonal wind stress is associated with relatively higher amplitude El Nino variability along with more realistic east–west sea surface temperature (SST) gradient along the equator. The SST seasonal cycle in the eastern tropical Pacific has too much of a semiannual component with a double intertropical convergence zone (ITCZ) in all experiments, and thus does not affect, nor is it affected by, the amplitude of El Nino variability. Systematic errors affecting the spatial variability of El Nino in the experiments are characterized by the eastern equatorial Pacific cold tongue regime extending too far westward into the warm pool. The time scales of interannual variability (as represented by time series of Nino3 SSTs) show significant power in the 3–4 year ENSO band and 2–2.5 year tropospheric biennial oscillation (TBO) band in the model experiments. The TBO periods in the models agree well with the observations, while the ENSO periods are near the short end of the range of 3–6 years observed during the period 1950–94. The close association between interannual variability of equatorial eastern Pacific SSTs and large-scale SST patterns is represented by significant correlations between Nino3 time series and the PC time series of the first EOFs of near-global SSTs in the models and observations. Received: 17 April 2000 / Accepted: 17 August 2000  相似文献   

17.
张东凌  卢姁  张铭 《大气科学》2019,43(4):741-758
本文对1950~2001年1月份的大气风场和大洋流场做了联合复EOF(Empirical Orthogonal Function)分解,用以探讨1月份两类ENSO(El Ni?o-Southern Oscillation)的海气环流及耦合情况,所得结果主要有:该分解第1、2模态空间场分别相应于东部型、中部型ENSO,前者在赤道太平洋东部和中部都有海温动力异常,并以东部异常最强,后者仅在中部存在此异常,两模态的时间系数都与ENSO有很好相关,为此第1、2模态可分别称为东部型、中部型ENSO的风场流场(异常)模态。东部型ENSO模态具有3~6年的年际变化和13~14年的年代际变化,中部型则有明显的7年年际变化和12、17年的年代际变化,两者中约13年的周期与冬季北太平洋NPGO(North Pacific Gyre Oscillation)的周期相同。东、中部型El Ni?o期间,沃克环流上升支分别从印尼东移至赤道西、中太平洋,并有所减弱;南、北支哈得莱环流则分别位于日界线以东及该线附近,且均有所加强,从而使南、北太平洋副热带高压偏强;而在5°S的南美沿岸则分别有垂直运动上升和下沉异常。在海气耦合上,两类ENSO模态在赤道中太平洋均存在西风异常与海洋赤道Kelvin波和Rossby波的波包解耦合,而海温动力异常对大气的影响则都起到负反馈作用,从而有利于ENSO的维持和稳定。  相似文献   

18.
气候系统模式FGOALS_gl模拟的赤道太平洋年际变率   总被引:4,自引:1,他引:3  
满文敏  周天军  张丽霞 《大气科学》2010,34(6):1141-1154
本文分析了中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室 (LASG/IAP) 发展的气候系统模式FGOALS_gl对赤道太平洋年际变率的模拟能力。结果表明, FGOALS_gl可以较好地模拟出赤道太平洋SST异常年际变率的主要特征, 但模拟的ENSO事件振幅偏大, 且变率周期过于规则。耦合模式模拟的气候平均风应力在热带地区比ERA40再分析资料的风应力强度偏弱30%左右, 由此引起的海洋平均态的变化, 是造成模拟的ENSO振幅偏强的主要原因。FGOALS_gl模拟的ENSO峰值多出现在春季或夏季, 原因可归之于模式模拟的SST季节循环偏差。耦合模式可以合理再现ENSO演变过程, 但观测中SST异常的东传特征在模式中没有得到再现, 这与模拟的ENSO发展模态表现为单一的 “SST模态” 有关。模拟的ENSO位相转换机制与 “充电—放电” 概念模型相符合, 赤道太平洋热含量的变化是维持ENSO振荡的机制。在ENSO暖位相时期, 赤道中东太平洋与印度洋—西太平洋暖池区的海平面气压距平型表现为南方涛动型 (SO型), 200 hPa位势高度分布表现为太平洋—北美遥相关型 (PNA型)。  相似文献   

19.
Using observational data and the pre-industrial simulations of 19 models from the Coupled Model Intercomparison Project Phase 5(CMIP5), the El Ni o(EN) and La Ni a(LN) events in positive and negative Pacific Decadal Oscillation(PDO) phases are examined. In the observational data, with EN(LN) events the positive(negative) SST anomaly in the equatorial eastern Pacific is much stronger in positive(negative) PDO phases than in negative(positive) phases. Meanwhile,the models cannot reasonably reproduce this difference. Besides, the modulation of ENSO frequency asymmetry by the PDO is explored. Results show that, in the observational data, EN is 300% more(58% less) frequent than LN in positive(negative)PDO phases, which is significant at the 99% confidence level using the Monte Carlo test. Most of the CMIP5 models exhibit results that are consistent with the observational data.  相似文献   

20.
利用一个全球海气耦合模式(BCM),结合观测资料,讨论了热带太平洋强迫对北大西洋年际气候变率的影响。研究表明,BCM能够相对合理地模拟赤道太平洋的年际变率模态及相应的海温距平型和大气遥相关型,尽管其准3年的振荡周期过于规则。来自数值模式和观测上的证据都表明,北大西洋冬季海温的主导性变率模态,即自北而南出现的“- -”的海温距平型,受到来自热带太平洋强迫的显著影响,其正位相与赤道中东太平洋冷事件相对应。换言之,赤道太平洋暖事件的发生,在太平洋-北美沿岸激发出PNA遥相关型,进而通过在北大西洋产生类似NAO负位相的气压距平型,削弱本来与NAO正位相直接联系的三核型海温距平。北大西洋三核型海温距平对热带太平洋强迫的响应,要滞后2—3个月的时间。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号