首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
陆面模式CLM4.5在青藏高原土壤冻融期的偏差特征及其原因   总被引:2,自引:0,他引:2  
李时越  杨凯  王澄海 《冰川冻土》2018,40(2):322-334
利用中国区域地面气象要素数据集制作的大气强迫场驱动通用陆面模式CLM4.5(Community Land Model version 4.5)对青藏高原区域进行离线模拟试验,模拟结果与D66、沱沱河(TTH)和玛曲(Maqu)3个站点的观测资料以及GLDAS(Global Land Data Assimilation System)-CLM2模拟结果进行了对比,并分析了陆面模式对冻融过程中土壤温度和湿度模拟的偏差及其可能原因。结果表明:CLM4.5对土壤温度模拟较好(平均RMSE≈3℃),而GLDAS-CLM2计算的土壤温度偏高,偏差较大(平均RMSE>6℃),且其偏差大于CLM4.5,尤其在冻融期;CLM4.5能较好地模拟出冻融过程中土壤湿度季节变化,但土壤湿度的模拟值与观测值存在一定偏差(平均RMSE≈0.1 mm3·mm-3),GLDAS-CLM2不能反映出土壤湿度在冻融过程中的变化特征。CLM4.5的模拟偏差主要来自大气强迫场,而GLDAS-CLM2的偏差除了大气强迫场的不确定性外,还来自于模式冻融参数化方案的不完善。大气强迫场中的气温和降水对土壤温度和湿度的影响在冻融期和非冻融期表现不同。在非冻融期,土壤温度的模拟主要受气温的影响(r>0.6),气温偏差对土壤温度偏差的贡献率大于50%;土壤湿度的变化则主要受降水的影响,降水偏差对土壤湿度偏差的贡献率为20%~40%。在冻融期,受土壤水热相互作用的影响,气温和降水对土壤温度和湿度的作用效果减弱;土壤湿度的变化受气温影响显著,其贡献率为10%~20%。陆面模式中冻融参数方案的不完善是冻融过程中土壤温度和湿度偏差的重要来源之一。  相似文献   

2.
环北极多年冻土区碳循环研究进展与展望   总被引:2,自引:1,他引:1  
环北极多年冻土区作为全球碳库的重要组成部分,它以一种独特的方式响应着气候变化。在气候变暖的背景下,冻土中的有机碳将在全球碳循环中扮演着更活跃的角色。为增进对环北极多年冻土区碳循环的认识,分析了近年来北极多年冻土区碳储量和碳迁移状况,以及相关模型在模拟碳循环应用方面的最新进展。目前,对北极多年冻土区碳源/汇的时空分布格局、碳循环过程的关键驱动因子以及碳循环对全球变化的响应等一系列问题尚不能作出完整的、系统性的科学解释。同时,还进一步分析了北极多年冻土区碳循环模拟的三大不确定性因素。基于以上分析,提出未来对北极多年冻土区碳循环的研究还应在典型研究区开展长期的野外系统监测、创新研究方法,深化碳循环机制研究,重视学科交叉以及多模型集成,宏观与微观相结合、多途径与多尺度综合研究。  相似文献   

3.
PROGRESS IN GLOBAL PERMAFROST AND CLIMATE CHANGE STUDIES   总被引:4,自引:0,他引:4  
多年冻土热状态和土壤季节冻融过程的变化对陆地生态系统、地-气间温室气体交换、水文和地貌过程以及工程基础设施的建设和运行都具有很大的影响.活动层和多年冻土及其变化数据信息对于验证在不同尺度的陆面过程、水文、生态和气候模型至关重要.本文就目前全球多年冻土与气候变化研究现状进行概括性总结.在全球变暖的影响下,全球范围内多年冻土发生了不同程度的退化.自20世纪70年代末以来,北极高纬度低温多年冻土温度升高可达3℃.由于受相变潜热的影响,在不连续多年冻土区相对较高温度的多年冻土温度增加幅度较小.受局地条件的影响,个别站点多年冻土温度几乎没有发生变化,甚至有降温的趋势.高纬度多年冻土南界向北移动,而中纬度高山地区多年冻土下界向高海拔移动,导致全球多年冻土面积减少.活动层厚度变化具有较强的区域差异,其深度增加范围从几厘米到1m多不等.新的融区在形成,融区厚度在增加且其范围在扩大.导致全球范围内多年冻土温度升高、活动层厚度增加以及融区的形成主要是受气温升高和积雪条件变化所致.未来多年冻土研究应包括不同时-空尺度上的长期监测和数值模拟、多年冻土变化与大气、水文、生态系统、碳循环以及地貌过程的相互作用等方面.  相似文献   

4.
CLM3和SHAW模式在青藏高原中部NMQ站的模拟研究   总被引:3,自引:0,他引:3  
利用那曲地区NMQ站2010年11月1日至2011年7月26日的观测资料作为通用陆面过程模式CLM3.0和水热耦合模式SHAW的大气强迫, 在青藏高原中部季节冻土区进行了单点模拟研究.在参照观测资料的基础上, 对两个陆面模式的模拟结果对比发现: SHAW模式和CLM3.0模式模拟的向上短波辐射和向下长波辐射值基本相近或重合, 但两个模式均未考虑新雪存在对向上短波辐射的影响, 以及青藏高原日冻融循环过程中潜热释放对向上长波辐射的影响.此外, SHAW模式和CLM3.0模式均能模拟各层土壤温度的逐日变化, 均是上层土壤的模拟效果较下层好; 相比SHAW模式, CLM3.0各层土壤温度的模拟值更接近于实测值.对土壤含水量的模拟而言, 60 cm以上(包括60 cm)SHAW模式和CLM3.0模式各有其优缺点, 60 cm以下SHAW模式的模拟结果要好于CLM3.0, 尤其是土壤冻结和消融时段的模拟结果.  相似文献   

5.
耦合冻土方案的大气模式对祁连山区春季土壤状况的模拟   总被引:7,自引:3,他引:4  
对黑河流域上游山区水源涵养林区2003年春季土壤温度、湿度变化进行分析,运用耦合冻土参数化和没有耦合冻土参数化的大气模式MM5对该区春季过程进行了模拟,并与观测值进行对比,对模拟的产流量做了初步分析.结果显示:考虑冻土参数化方案对土壤温度模拟的改进主要体现在表层土壤,对深层土壤温度的模拟没有大的改进;考虑冻土参数化方案改进了对100 cm深度以内的土壤含水量的模拟,很大程度上缩小了模拟值与观测值之间的绝对误差.总体来讲,考虑了冻土参数化的模拟结果在一定程度上改进了模式对黑河流域上游季节冻土区土壤温、湿状况的模拟,在一定程度上逼近祁连山区的春季土壤状况.考虑冻土参数化和没有考虑冻土参数化对产流量的模拟表明,冻土参数化对产流量模拟有很大影响,冻土形成的不透水层可以产生更多的地表径流.尽管考虑冻土参数化过程对模拟结果有一定程度的改进,但模拟结果与实测结果还是有一定差距的.因此,进行寒区冻土过程模拟时,还需要进一步对土壤信息、模式物理过程,大气背景场驱动数据以及局地因素进行详细而精确的考虑,以期进一步提高模式在寒区的模拟性能,特别是为高寒山区无观测地带陆气相互作用研究提供依据.  相似文献   

6.
多年冻土区储存着大量的土壤有机碳, 其碳库变化及生态系统碳反馈机制是当前全球气候变化研究中备受关注的热点问题。为了增强对多年冻土碳循环的认识, 通过综合第三极和北极地区多年冻土碳循环研究, 概述了土壤有机碳库大小、 脆弱性及生态系统碳交换过程, 分析了涉及大气、 海洋和陆地综合影响的多年冻土区生态系统碳循环。研究表明: 第三极和北极多年冻土区碳储量不确定性较大, 影响和控制有机碳分解和生态系统碳交换的生物地球化学过程仍需进一步研究, 进而改进生态系统碳循环相关的模拟研究。在全球气候变化背景下, 研究多年冻土碳库变化及其对气候变化的响应, 是预估未来气候变化的关键环节。  相似文献   

7.
李飞  郭佳锴  张世强 《冰川冻土》2021,43(6):1888-1903
冻土水热过程的准确模拟对于理解和预估冰冻圈变化对水资源和生态的影响具有重要意义,其中,导热率和未冻水是多年冻土水热模拟中的两个关键参数。在VIC-CAS模型的基础上,分别尝试用EBM的导热率算法和CLM 5.0的未冻水算法替换VIC-CAS模型中的导热率和未冻水算法,并利用长江源区沱沱河站的观测数据进行了数值模拟对比试验,分析了不同的导热率和未冻水算法对土壤分层温湿度模拟的影响。结果表明:EBM导热率算法对浅层土壤的温度模拟优于原算法,而在深层土壤的模拟效果变差;对浅层土壤湿度模拟改进不明显,而对深层土壤的模拟精度降低。CLM 5.0未冻水算法对土壤温度模拟影响较小,对浅层土壤的湿度模拟效果变差,但在深层土壤上优于原算法。这两种算法的对比实验为进一步改进VIC-CAS模型中冻土水热过程的算法提供了借鉴。  相似文献   

8.
蒸散发是地表水文循环和能量交换过程的重要组成部分,且在高寒山区有极强的时空异质性,准确模拟蒸散发对于研究高寒山区水文循环过程有着重要的意义。CLM5.0(Community Land Model5.0)是CLM模式的最新版本,具有较为完善的水文循环机制,是目前国际上发展最为完善的陆面过程模式之一。基于典型高寒山区黑河上游五个观测站的观测数据,对CLM5.0的蒸散发模拟性能进行评估。结果表明:CLM5.0在模拟蒸散发时结果总体上可信,其R值的范围在0.601~0.839之间,RSR值的范围在0.964~1.145之间,BIAS值的范围在^(-1).220~-0.597 mm·d^(-1)之间。说明CLM5.0在高寒山区可以较好地捕捉观测到蒸散发的时间趋势,但仍存在一定的低估。非生长季的BIAS值的范围在-0.904~-0.367 mm·d^(-1)之间,生长季的BIAS值的范围在-2.094~-0.794 mm·d^(-1)之间,这表明蒸散发模拟值的低估主要来自生长季的模拟。高寒草甸上R值的范围在0.299~0.651之间,RSR值的范围在1.135~1.332之间,高寒草地上R值为0.209,RSR值为1.450,因此,CLM5.0在草甸的模拟性能优于草地。CLM5.0白天R值的范围在0.605~0.840之间,RSR值的范围在0.252~1.193之间,夜晚R值的范围在0.344~0.651之间,RSR值的范围在0.482~2.966之间,对比可知CLM5.0在白天模拟蒸散发的性能优于夜晚。这些结论可为CLM5.0的应用和改进提供科学依据。  相似文献   

9.
唐古拉地区活动层土壤水热特征的模拟研究   总被引:13,自引:8,他引:5  
利用唐古拉监测点实测气象及活动层土壤水热资料,结合SHAW模型,对青藏高原高海拔多年冻土区活动层土壤的水热特征进行了模拟研究,并与观测结果进行了对比.结果显示:SHAW模型对活动层陆面能量通量(净辐射、地表面热通量、潜热及感热)和活动层土壤温度的模拟比较成功;对活动层水分的模拟结果参差不齐,有些深度土壤水分模拟不理想,但有一半以上观测深度的模拟结果相对较好.土壤水分模拟结果产生误差的原因比较复杂,初始含水量的选取、土壤结构参数及水热动力学参数的不确定性是导致模拟结果误差的可能原因.总体上,SHAW模型是研究高海拔多年冻土区活动层土壤水热过程较理想的陆面模式.  相似文献   

10.
下边界条件对多年冻土温度场变化数值模拟的影响   总被引:1,自引:1,他引:0  
在气候变暖背景下,北半球多年冻土呈现不同程度的退化趋势,冻土升温、活动层增厚、地下冰消融改变了区域工程地质条件、地形地貌,不仅对寒区环境和工程稳定性造成潜在的威胁,还影响着这些地区的气候、水文和生态过程。因此,准确评估和预估多年冻土热状况的变化具有重要科学和实践意义。现有用于模拟多年冻土热状况的各类模式重点考虑了近地表温度场变化对多年冻土的影响,主要集中于对气温和浅表层物理过程和参数化方案等改进和优化,而对于下边界条件设置对多年冻土热状况模拟的影响少有讨论。基于一维热传导冻土模型,以五道梁地区的多年冻土为研究对象,通过设置不同的下边界方案进行模拟实验,定量评估百年尺度气候变化下不同下边界条件对多年冻土温度场变化数值模拟的影响。结果表明:近地表层(<3 m)的温度场完全由年际气候变化决定,浅层(3~15 m)及中层(15~30 m)的多年冻土温度场受下边界条件的影响逐渐显著,深层(>30 m)的地温对百年尺度气候变化的响应不仅与气候变化的幅度有关,还与多年冻土相变热的多少有直接的关系。下边界条件不恰当的设置方式会对大尺度的气候变化下多年冻土消融程度的计算造成较大的影响,进而可能对深层地温乃至多年冻土区面积变化造成严重的误判。因此,开展百年尺度多年冻土温度场变化模拟时,应采用深层或多年冻土底板以下融土层的稳定地热流作为下边界条件。  相似文献   

11.
刘杨  赵林  李韧 《冰川冻土》2013,35(2):280-290
利用唐古拉综合观测场活动层及气象塔2007年的数据资料, 结合SHAW模型在3种不同地表反照率选取方案下进行模拟试验, 对唐古拉地区活动层土壤水热特征进行了单点数值模拟研究.通过观测值与3种模拟值的对比分析, 结果表明: SHAW模型能够较为好地模拟多年冻土区地表能量通量、 活动层土壤温度特征, 而对土壤含水量模拟不太理想, 但对其变化趋势模拟较好; 在模拟试验中, 模型输入参数地表反照率取1-12月各月平均地表反照率后, 模型对地表能量通量、 活动层土壤温度和湿度的模拟效果有了明显的提高; 而用一种地表反照率参数化方案的计算结果对模型输入参数进行修正后, 模型对活动层土壤温度和湿度的模拟效果有了明显的提高, 对地表能量通量的模拟效果提高不明显.总体上, SHAW模型对高原多年冻土区土壤冻融过程的模拟具有优势, 是研究高海拔多年冻土区活动层土壤水热过程较为理想的陆面模型.  相似文献   

12.
东北多年冻土退化及环境效应研究现状与展望   总被引:6,自引:3,他引:3  
陈珊珊  臧淑英  孙丽 《冰川冻土》2018,40(2):298-306
东北多年冻土属中高纬度多年冻土,对气候变化非常敏感。数据模型模拟表明,21世纪东北多年冻土区气温会持续上升,显著的变暖将导致多年冻土退化。东北多年冻土呈现自南向北的区域性退化趋势,多年冻土区南部表现为南界的北移、融区的扩大和多年冻土的消失,而北部表现为多年冻土下限的上移、活动层厚度增大及地温升高等。多年冻土的退化会导致寒区生态环境的恶化,如兴安落叶松占绝对优势的天然林带锐减,林带北移,沼泽湿地萎缩等。随着多年冻土的迅速退缩和变薄,原多年冻土中蕴藏的碳将释放出来,对气候变化产生积极的正反馈,加速变暖,并影响全球碳循环。多年冻土退化导致其热状态失稳而造成寒区基础设施损坏,并且影响冻土微生物、碳循环、寒区生态和水文等,而它们是区域气候变化的重要因子,也将成为未来多年冻土研究的重点。而这些研究都需要长期的基础数据作支撑,因此需要进一步完善冻土参数监测网络,用模型厘清气候变化与多年冻土退化及其环境效应之间的关系。  相似文献   

13.
气候变暖对多年冻土区土壤有机碳库的影响   总被引:3,自引:2,他引:1  
马蔷  金会军 《冰川冻土》2020,42(1):91-103
多年冻土区存储了大量土壤有机碳。气候变暖、 多年冻土退化导致其长期封存的有机碳逐渐或快速释放, 进入大气圈或水系统, 改变原有多年冻土区碳循环, 并可能显著加速气候变暖。通过综述气候变暖对多年冻土区碳库的影响研究进展, 主要包括多年冻土碳库储量、 降解机理及变化预测, 研究表明: 北半球多年冻土区的碳储量巨大, 但不确定性很高, 尤其是海底多年冻土和水合物碳库储量的评估; 多年冻土碳库对气候变暖的响应速度受土壤水热特性、 土壤有机质C/N比、 有机碳含量和微生物群落特征等多种环境因素的控制或影响; 目前, 关于北半球多年冻土碳库对气候变暖响应模拟结果说明, 多年冻土退化短期内不会导致经济和生产方面的灾难性后果。但是, 无论是针对多年冻土碳库评估, 还是多年冻土有机碳库对气候变暖的响应模拟研究结果, 都有较大的不确定性。未来多年冻土碳库变化的模拟和预测研究应更多考虑多年冻土快速退化和多年冻土区水合物分解, 如中小尺度热喀斯特的生态环境和碳的源汇效应。准确的多年冻土区有机碳排放模拟可为未来多年冻土碳与气候反馈的预估提供重要支持。  相似文献   

14.
土壤热导率的研究现状及其进展   总被引:5,自引:4,他引:1  
土壤热导率是重要的土壤热参数之一, 在下垫面土壤热量的传输中起到重要作用; 同时也是区域气候模式、 陆面过程模式中重要的输入参数, 在预估未来气候变化等方面也具有重要作用. 根据国内外的研究现状, 评述了土壤热导率的影响因素和模拟方案. 其中, 土壤质地、 温度、 含水(冰)量和孔隙度等是影响土壤热导率的主要因素, 特别在研究冻土时需重点分析含冰量的变化. 结合影响因素, 比较分析了典型的国内外计算土壤热导率的模型, 得出这些模型多适用于模拟常温下的热导率, 低温条件如青藏高原冻土区模拟结果并不理想. 因此, 多年冻土区土壤热导率的研究多基于观测资料计算或使用陆面模式中的参数化方案估算, 但因多年冻土内部水热传输过程的复杂性, 青藏高原多年冻土区热导率的模型模拟仍需进一步研究.  相似文献   

15.
气候模式中积雪覆盖率参数化方案的对比研究   总被引:5,自引:0,他引:5  
利用基于NCEP再分析的近地面气候资料驱动陆面过程模型NCAR CLM3,检验了6种积雪覆盖率参数化方案(CLM3、Douville1995、Roesch2001、Wu2004、Yang1997、Niu2007)模拟的积雪覆盖率的季节变化,并与NOAA AVHRR得到的观测结果进行了对比分析.结果表明,在NCARCLM3的物理过程框架之下,CLM3、Douville1995、Roesch2001三种方案低估了广大地区的积雪覆盖率,模拟的雪线位置偏北,尤其是在秋季积雪初期;Wu2004方案低估了秋季欧亚大陆的积雪覆盖率;Yang1997方案模拟的积雪覆盖率有些偏高,尤其是在积雪覆盖区的南部边缘;考虑积雪密度变化的Niu2007方案一定程度上克服了Yang1997方案的正偏差.春季末期,6种方案模拟的雪线位置都偏北.在地形比较平缓的地区,Niu2007方案的整体效果最好.观测和模拟的积雪覆盖率的出现频数大部分集中在低(小于0.2)和高(大于0.8)覆盖率等级,中等覆盖率所占比例很少.  相似文献   

16.
从第三极到北极: 热喀斯特及其对碳循环影响研究进展   总被引:2,自引:2,他引:0  
北半球多年冻土区储存着大量的土壤有机碳, 气候变暖加剧了多年冻土退化, 多年冻土退化最明显的特征是热喀斯特。热喀斯特会直接导致活动层及多年冻土层土壤有机质暴露, 并改变水文、 植被和土壤生物环境条件, 对生态系统碳循环具有重要影响。热喀斯特对碳循环的影响是评估多年冻土碳循环和气候变化关系不确定性的关键问题之一。然而, 在气候变暖背景下热喀斯特地貌的发育及其对碳循环影响有多大, 目前对这个问题仍然缺乏足够的认识。通过综合比较第三极和北极热喀斯特相关研究, 分析了第三极和北极地区热喀斯特地貌特征及其变化趋势, 阐述了热喀斯特对植被演替、 土壤碳损失和生态系统温室气体排放过程的影响, 并提出了未来热喀斯特研究可能遇到的挑战。认识热喀斯特碳循环过程, 是评估气候变化对多年冻土碳循环影响的关键环节, 有助于加强多年冻土区生态系统碳循环与气候变暖之间反馈关系的认知。  相似文献   

17.
基于CoupModel的青藏高原多年冻土区土壤水热过程模拟   总被引:6,自引:5,他引:1  
张伟  王根绪  周剑  刘光生  王一博 《冰川冻土》2012,34(5):1099-1109
近年来, 青藏高原多年冻土区生态环境呈现出逐年恶化趋势, 从而对多年冻土活动层水热过程造成显著影响. 此外, 如何构建更加有效、 针对寒区的陆面过程模式成为寒区研究的重点、 热点之一. 作为一种有效的参数估计方法, Bayes参数估计算法具有准确估计陆面过程模式参数的能力. 因此, 基于2005-2008年观测数据, 利用CoupModel模型对青藏高原风火山流域土壤水热运移过程进行模拟; 同时, 利用Bayes参数估计方法估计部分水热运移参数. 结果显示: 模型对土壤温度(ST)的模拟效果较好, NSE系数均在0.90以上; 也能够较好模拟浅层(0~40 cm)土壤水分, NSE值均达到0.80以上, 而对40 cm以下土壤水分的模拟结果较差. 模型也能够较准确模拟活动层土壤的冻结-融化过程. 模型对温度水分极值和40 cm深度以下水分的模拟存在一些偏差. 值得一提的是, 基于重要性采样MCMC方案的Bayes参数估计算法能够有效估计水热运移参数, 模型模拟结果得到极大的改进. Bayes算法能够广泛解决陆面过程模式参数估计问题.  相似文献   

18.
活动层内部的冻融锋面是冻融过程中冻结土层与融化土层的分界面,其上下土层的水热参数有着显著差异。在陆面过程模式中准确描述冻融锋面的移动过程将有助于提高其对多年冻土水热过程的模拟能力。本研究首先将Noah-MP陆面过程模式的模拟深度扩展到20 m,并将原模式的4层土层增加到19层土层,同时引入前人的有机质方案和植被根系方案,然后在此基础上,通过耦合Stefan方法以加强模式对冻融锋面的模拟能力,进而探究耦合Stefan方法的Noah-MP模式对西大滩多年冻土站点水热过程的模拟效果。研究中设置了不耦合Stefan方法的CTL控制试验和耦合Stefan方法的STE对照试验来分别模拟西大滩多年冻土站点2012年0~20 m的土壤温度与土壤液态含水量,模拟结果用站点0~3.2 m内10个深度的日均土壤温度、土壤液态水含量监测数据以及3 m、6 m和10 m的年均地温监测数据来做验证。研究结果表明,由土壤温度模拟值插值得到的冻融锋面(0℃等温线)有明显阶梯状特征,最大冻融深度与实测相比偏大。耦合Stefan方法增强了Noah-MP模式模拟冻融锋面的能力,使得模式能够基于Stefan方法较好地模拟出冻...  相似文献   

19.
植被物候是指示植被对自然环境变化响应的重要指标。大兴安岭多年冻土区是我国唯一的高纬度多年冻土区,该区植被物候的研究有助于认识寒区生态系统对全球气候变化的响应。本文首先比较了归一化植被指数(NDVI)、增强型植被指数(EVI)和日光诱导叶绿素荧光(SIF)在多年冻土区物候研究中的差异和适应性,结果表明EVI的应用效果最佳。其次,结合2000—2019年MODIS EVI时间序列数据和气象数据,采用Savitzky-Golay(S-G)滤波和动态阈值等方法提取植被生长季开始(SOS)、结束(EOS)和长度(LOS)等关键物候参数,分析大兴安岭多年冻土区植被物候的时空变化及其对气候变化的响应。结果表明:(1)NDVI、EVI和SIF的时间序列均能反映研究区植被生长的季节变化,与NDVI相比,EVI与SIF的变化曲线更加一致。(2)研究区2000—2019年SOS变化范围为年序日96~144 d,平均值为129.46 d。EOS变化范围为272~320 d,平均值为295 d。LOS集中分布在128~224 d,平均值为165.65 d。由于植被类型差异和逆温现象的存在,大片连续多年冻土区的LOS大于岛状融区多年冻土区。(3)研究区SOS和EOS变化趋势的平均值分别为-1.23 d·(20a)^(-1)和-0.46 d·(20a)^(-1),均呈提前趋势。LOS变化趋势的平均值为2.39 d·(20a)^(-1),呈延长趋势。研究区植被SOS与3—5月平均气温呈显著负相关,EOS与8—10月平均气温和降水呈显著正相关。  相似文献   

20.
针对Noah-MP模型多参数化方案、模拟结果不确定性范围难以确定的特点,选取北疆地区具有代表性的阿勒泰站气象资料作为模型驱动数据,探讨了积雪对多参数化方案的敏感性。在不考虑模型参数和驱动数据不确定性的条件下,设计了集合数为13824的多参数化方案集合模拟试验。选用Natural selection方法对物理过程的敏感性进行分析,并在敏感性分析结果的基础上进一步讨论了模拟结果的不确定性。结果表明:积雪对地表热交换、雨雪分离、土壤温度底层边界条件和第一层积雪或土壤时间方案4个物理过程敏感;在不考虑驱动数据和模型参数不确定性的条件下,多参数化方案集合模拟试验中的不确定性主要来源于敏感物理过程。去除敏感物理过程中能够明显降低模拟性能的参数化方案后,集合模拟结果的不确定性大幅减小。最后,根据分析结果构建了该站雪深和雪水当量模拟的最优参数化方案组合。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号