首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 217 毫秒
1.
Paleoclimate modelling is one of the core topics in the Past Global Changes project under the International Geosphere-Biosphere Programme and has received much attention worldwide in recent decades. Here we summarize the research on the Paleoclimate modeling, including the Holocene, Last Glacial Maximum, and pre-Quaternary climate intervals or events performed at the Institute of Atmospheric Physics under the Chinese Academy of Sciences (IAP/CAS) for over one decade. As an attempt to review these academic activities, we emphasize that vegetation and ocean feedbacks can amplify East Asian climate response to the Earth’s orbital parameters and atmospheric CO2 concentration at the mid-Holocene. At the Last Glacial Maximum, additional cooling in interior China is caused by the feedback effects of East Asian vegetation and the ice sheet over the Tibetan Plateau, and the regional climate model RegCM2 generally reduces data-model discrepancies in East Asia. The simulated mid-Pliocene climate is characterized by warmer and drier conditions as well as significantly weakened summer and winter monsoon systems in interior China. On a tectonic timescale, both the Tibetan Plateau uplift and the Paratethys Sea retreat play important roles in the formation of East Asian monsoon-dominant environmental pattern during the Cenozoic.  相似文献   

2.
杨崧  邓开强  段晚锁 《大气科学》2018,42(3):570-589
本文主要基于对Webster and Yang(1992)一文的回顾,讨论了年循环在季风和ENSO相互作用中的作用、春季预报障碍(SPB)、Webster-Yang指数(WYI)、以及亚洲夏季风的前期讯号等内容。亚洲季风和ENSO作为全球天气和气候变率的主要来源,它们之间的相互作用存在明显的年变化和季节“锁相”特征:在北半球秋冬季,亚洲季风对流活动最弱,此时ENSO的信号最强;但是到了北半球春季,亚洲季风对流快速爆发,而此时的ENSO信号却迅速衰减。亚洲季风和ENSO位相的错位变化使得热带海—气系统的不稳定性在北半球春季达到最大,此时任意一个微小的扰动都容易快速增长,最终导致基于ENSO的预报技巧减小。亚洲夏季风环流本质上可以看成是大气对副热带地区潜热加热的低频罗斯贝波响应,它具有很强的垂直风切变,这是WYI定义的物理基础。WYI数值越大,代表垂直东风切变越大,即亚洲季风环流增强,反之亦然。利用WYI与前期大气环流场、欧亚雪盖、土壤湿度等物理量进行回归分析,结果表明:当亚洲夏季风增强时,前期冬季和春季,在北印度洋和亚洲副热带地区上空出现东风异常,同时在更高纬度地区伴随出现西风的异常;此外,副热带地区如印度次大陆、中南半岛和东亚的土壤湿度增大;中纬度地区尤其是青藏高原中西部的积雪密度明显减小。这些前期讯号的发现有助于我们构建动力统计模型,进而提高对亚洲夏季风的季节预报水平。  相似文献   

3.
青藏高原积雪对亚洲夏季风影响的诊断及数值研究   总被引:60,自引:15,他引:60       下载免费PDF全文
张顺利  陶诗言 《大气科学》2001,25(3):372-390
通过对青藏高原多、少雪年的合成分析及数值试验,研究了青藏高原积雪对亚洲 夏季风和我国东部气候异常的影响。结果表明:青藏高原积雪造成亚洲大气环流较大的年际变化。高原积雪改变了高原陆面春、夏季的热状况,使亚洲夏季风爆发推迟20天左右。高原积雪通过以下物理过程影响亚洲夏季风和我国东部气候:高原积雪多(少)→高原春、夏季的感热弱(强)→感热加热引起的上升运动弱(强),高原强(弱)环境风场→不利(有利)于高原感热通量向上输送→高原上空对流层加热弱(强)→高原对流层温度低(高)→高原南侧温度对比弱(强)→造成亚洲夏季风弱(强)→我国长江流域易涝(旱)。  相似文献   

4.
青藏高原积雪与亚洲季风环流年代际变化的关系   总被引:12,自引:1,他引:12  
利用高原测站的月平均雪深资料和NCEP/NCAR再分析资料,分析了20世纪70年代末以来,青藏高原积雪的显著增多与亚洲季风环流转变的联系。研究表明,高原南侧冬春季西风的增强及西风扰动的活跃是造成青藏高原冬春积雪显著增多的主要原因,高原积雪的增多与亚洲夏季风的减弱均是亚洲季风环流转变的结果;20世纪70年代末以来,夏季华东降水的增多、华南降水的减少及华北的干旱化与青藏高原冬春积雪增多及东亚夏季风的减弱是基本同步的,高原冬春积雪与华东夏季降水的正相关、与华北及华南夏季降水的负相关主要是建立在年代际时间尺度上,因此,高原积雪与我国夏季降水关系的研究应以亚洲季风环流的年代际变化为背景。  相似文献   

5.
应用IAP9L-AGCM对2002年中国夏季气候的预测及效果检验   总被引:10,自引:0,他引:10  
利用中科院大气所9层大气环流格点模式(IAP9L—AGCM)和IAP—ENSO预测系统对2002年中国夏季气候进行实时集合预测及其检验。结果显示,IAP9L—AGCM较好地预测出了2002年夏季我国大范围旱涝的分布形势,如华南、我国西部多雨,黄河和长江流域之间大范围干旱等;850hPa减弱的夏季风、青藏高原辐散中心以及北太平洋上空的异常气旋性环流中心亦被较好地预报出来;不足的是,模式对降水异常细致分布的预测能力有限。预测结果还表明,该模式对夏季(6—8月)平均降水的预报技巧要高于月平均状况,且月平均预报的准确度从6—8月依次递减。  相似文献   

6.
青藏高原影响亚洲夏季气候研究的最新进展   总被引:40,自引:6,他引:40  
文中回顾了近 10a来吴国雄等在青藏高原影响亚洲夏季气候研究方面的最新进展。通过分析东西风交界面的演变证明 ,由于青藏高原的春季加热 ,亚洲季风区对流层低层冬季盛行偏东风转变为夏季偏西南风最早发生在孟加拉湾东部 ,与其相伴随的激烈对流降水出现在其东面。因此孟加拉湾东部至中印半岛西部是亚洲季风最早爆发的地区。同时也指出盛夏伊朗高原和青藏高原加热所激发的同相环流嵌套在欧亚大陆尺度的热力环流中 ,从而加强了东亚的夏季风 ,加剧了中西亚的干旱 ;并通过其所激发的波动对夏季东亚的气候格局产生重要影响。文中还比较了夏季南亚高压的伊朗模态和青藏模态性质的异同及其对亚洲夏季降水异常分布的不同影响。  相似文献   

7.
有关南半球大气环流与东亚气候的关系研究的若干新进展   总被引:14,自引:15,他引:14  
范可  王会军 《大气科学》2006,30(3):402-412
南半球大气环流是全球大气环流的重要组成部分,也是影响气候变化和亚洲季风系统的一个重要因素.中国气象学家很早就注意到南半球大气环流对东亚夏季风降水的影响.近年来,有关南半球气候变率的研究目前正受到世界气象学家越来越多的关注.南半球中高纬大气资料的丰富及南极涛动的确定,使得认识南半球高中纬环流的年际变动规律及其与东亚气候关系成为可能.本文主要介绍近年来有关南极涛动的年际变化与沙尘天气发生频次及东亚冬春季气候的关系,古气候资料揭示的南极涛动与华北降水的关系,以及南半球大气环流与长江中下游夏季降水的关系和南极涛动变率的可预测性等方面的研究进展.并对未来研究方向作了初步的展望.  相似文献   

8.
Extreme precipitation events in the upper Yangtze River Valley (YRV) have recently become an increasingly important focus in China because they often cause droughts and floods. Unfortunately, little is known about the climate processes responsible for these events. This paper investigates factors favorable to frequent extreme precipitation events in the upper YRV. Our results reveal that a weakened South China Sea summer monsoon trough, intensified Eurasian-Pacific blocking highs, an intensified South Asian High, a southward subtropical westerly jet and an intensified Western North Pacific Subtropical High (WNPSH) increase atmospheric instability and enhance the convergence of moisture over the upper YRV, which result in more extreme precipitation events. The snow depth over the eastern Tibetan Plateau (TP) in winter and sea surface temperature anomalies (SSTAs) over three key regions in summer are important external forcing factors in the atmospheric circulation anomalies. Deep snow on the Tibetan Plateau in winter can weaken the subsequent East Asian summer monsoon circulation above by increasing the soil moisture content in summer and weakening the land–sea thermal contrast over East Asia. The positive SSTA in the western North Pacific may affect southwestward extension of the WNPSH and the blocking high over northeastern Asia by arousing the East Asian-Pacific pattern. The positive SSTA in the North Atlantic can affect extreme precipitation event frequency in the upper YRV via a wave train pattern along the westerly jet between the North Atlantic and East Asia. A tripolar pattern from west to east over the Indian Ocean can strengthen moisture transport by enhancing Somali cross-equatorial flow.  相似文献   

9.
The current progresses in the study of impacts of the Tibetan Plateau on Asian summer climate in the last decade are reviewed. By analyzing evolution of the transitional zone between westerly to the north and easterly to the south (WEB), it is shown that due to the strong heating over the Tibetan Plateau in spring, the overturning in the prevailing wind direction from easterly in winter to westerly in summer occurs firstly over the eastern Bay of Bengal (BOB), accompanied with vigorous convective precipitation to its east. The area between eastern BOB and western Indo-China Peninsula thus becomes the area with the earliest onset of Asian monsoon, which may be referred as BOB monsoon in short. It is shown that the summertime circulations triggered by the thermal forcing of the Iranian Plateau and the Tibetan Plateau are embedded in phase with the continental-scale circulation forced by the diabatic heating over the Eurasian Continent. As a result, the East Asian summer monsoon is intensified and the drought climate over the western and central Asian areas is enhanced. Together with perturbations triggered by the Tibetan Plateau, the above scenarios and the associated heating have important influences on the climate patterns over Asia. Furthermore, the characteristics of the Tibetan mode of the summertime South Asian high are compared with those of Iranian mode. Results demonstrate that corresponding to each of the bimodality of the South Asian high, the rainfall anomaly distributions over Asia exhibit different patterns.  相似文献   

10.
Using a regional climate model with detailed land surface processes (RegCM2), East Asian monsoon climates at 6 ka BP and 21 ka BP are simulated by prescribing vegetation and employing paleovegetation respectively in order to examine land surface effects on East Asian climate system and the potential mechanisms for climate change. The RegCM2 with a 120 × 120 km2 resolution has simulated the enlargement of the seasonal cycle of insolation, the temperature rising the whole year, and the reduction of perpetual snow in high latitudes at 6 ka BP. The simulation shows the East Asian summer monsoon strengthening, precipitation and PE increasing, and the monsoon rain belt shifting westwards and northwards. Effect of paleovegetation included in the modeling reduced surface albedo and caused an increase in the winter temperature, which led to weakening of the winter continental cold anticyclone over China. The results make the seasonal characteristics of simulated temperature changes in better agreement with the geological records, and are an improvement over previous simulations of Paleoclimate Modeling Intercomparison Project (PMIP). The RegCM2 simulated the 21 ka BP climate with lowered temperature throughout the year, and with precipitation reduced in most areas of East Asia (but increased in both the Tibetan Plateau and Central Asia). Low temperature over East Asia led to the strengthening of the East Asian winter monsoon and the shrinking of the summer monsoon. The effect of paleovegetation included in the experiment has enlarged the glacial climate influence in East Asia, which is closer to geological data than the PMIP simulations directly driven by insolation, glaciation and low CO2 concentration.  相似文献   

11.

Relations between Tibetan Plateau precipitation and large-scale climate indices are studied based on the Standardized Precipitation Index (SPI) and the boreal summer season. The focus is on the decadal variability of links between the large-scale circulation and the plateau drought and wetness. Analysis of teleconnectivity of the continental northern hemisphere standardized summer precipitation reveals the Tibetan Plateau as a major SPI teleconnectivity center in south-eastern Asia connecting remote correlation patterns over Eurasia. Employing a moving window approach, changes in covariability and synchronizations between Tibetan Plateau summer SPI and climate indices are analyzed on decadal time scales. Decadal variability in the relationships between Tibetan Plateau summer SPI and the large-scale climate system is characterized by three shifts related to changes in the North Atlantic, the Indian Ocean, and the tropical Pacific. Changes in the North Atlantic variability (North Atlantic Oscillation) result in a stable level of Tibetan Plateau summer SPI variability; the response to changes in tropical Pacific variability is prominent in various indices such as Asian monsoon, Pacific/North America, and East Atlantic/Western Russia pattern.

  相似文献   

12.
Recent Progress in the Impact of the Tibetan Plateau on Climate in China   总被引:14,自引:0,他引:14  
Studies of the impacts of the Tibetan Plateau (TP) on climate in China in the last four years are reviewed. It is reported that temperature and precipitation over the TP have increased during recent decades. From satellite data analysis, it is demonstrated that most of the precipitation over the TP is from deep convection clouds. Moreover, the huge TP mechanical forcing and extraordinary elevated thermal forcing impose remarkable impacts upon local circulation and global climate. In winter and spring, stream flow is deflected by a large obstacle and appears as an asymmetric dipole, making East Asia much colder than mid Asia in winter and forming persistent rainfall in late winter and early spring over South China. In late spring, TP heating contributes to the establishment and intensification of the South Asian high and the abrupt seasonal transition of the surrounding circulations. In summer, TP heating in conjunction with the TP air pump cause the deviating stream field to resemble a cyclonic spiral, converging towards and rising over the TP. Therefore, the prominent Asian monsoon climate over East Asia and the dry climate over mid Asia in summer are forced by both TP local forcing and Eurasian continental forcing.
Due to the longer memory of snow and soil moisture, the TP thermal status both in summer and in late winter and spring can influence the variation of Eastern Asian summer rainfall. A combined index using both snow cover over the TP and the ENSO index in winter shows a better seasonal forecast.
On the other hand, strong sensible heating over the Tibetan Plateau in spring contributes significantly to anchor the earliest Asian monsoon being over the eastern Bay of Bengal (BOB) and the western Indochina peninsula. Qualitative prediction of the BOB monsoon onset was attempted by using the sign of meridional temperature gradient in March in the upper troposphere, or at 400 hPa over the TP. It is also demonstrated by a numerical experiment and theoretical study that the heating over the TP lea  相似文献   

13.
The effect of anomalous snow cover over the Tibetan Plateau upon the South Asian summer monsoon is investigated by numerical simulations using the NCAR regional climate model (RegCM2) into which gravity wave drag has been introduced. The simulations adopt relatively realistic snow mass forcings based on Scanning Multi-channel Microwave Radiometer (SMMR) pentad snow depth data. The physical mechanism and spatial structure of the sensitivity of the South Asian early summer monsoon to snow cover anomaly over the Tibetan Plateau are revealed. The main results are summarized as follows. The heavier than normal snow cover over the Plateau can obviously reduce the shortwave radiation absorbed by surface through the albedo effect, which is compensated by weaker upward sensible heat flux associated with colder surface temperature, whereas the effects of snow melting and evaporation are relatively smaller.The anomalies of surface heat fluxes can last until June and become unobvions in July. The decrease of the Plateau surface temperature caused by heavier snow cover reaches its maximum value from late April to early May. The atmospheric cooling in the mid-upper troposphere over the Plateau and its surrounding areas is most obvious in May and can keep a fairly strong intensity in June. In contrast, there is warming to the south of the Plateau in the mid-lower troposphere from April to June with a maximum value in May.The heavier snow cover over the Plateau can reduce the intensity of the South Asian summer monsoon and rainfall to some extent, but this influence is only obvious in early summer and almost disappears in later stages.  相似文献   

14.
The effect of anomalous snow cover over the Tibetan Plateau upon the South Asian summer monsoon is investigated by numerical simulations using the NCAR regional climate model (RegCM2) into which gravity wave drag has been introduced. The simulations adopt relatively realistic snow mass forcings based on Scanning Multi-channel Microwave Radiometer (SNINIR) pentad snow depth data. The physical mechanism and spatial structure of the sensitivity of the South Asian early summer monsoon to snow cover anomaly over the Tibetan Plateau are revealed. The main results are summarized as follows. The heavier than normal snow cover over the Plateau can obviously reduce the shortwave radiation absorbed by surface through the albedo effect, which is compensated by weaker upward sensible heat flux associated with colder surface temperature, whereas the effects of snow melting and evaporation are relatively smaller.The anomalies of surface heat fluxes can last until June and become unobvious in July. The decrease of the Plateau surface temperature caused by heavier snow cover reaches its maximum value from late April to early May. The atmospheric cooling in the mid-upper troposphere over the Plateau and its surrounding areas is most obvious in May and can keep a fairly strong intensity in June. In contrast, there is warming to the south of the Plateau in the mid-lower troposphere from April to June with a maximum value in May.The heavier snow cover over the Plateau can reduce the intensity of the South Asian summer monsoon and rainfall to some extent, but this influence is only obvious in early summer and almost disappears in later stages.  相似文献   

15.
An atmospheric general circulation model (AGCM) and an oceanic general circulation model (OGCM) are asynchronously coupled to simulate the climate of the mid-Holocene period. The role of the solar radiation and ocean in the mid-Holocene East Asian monsoon climate is analyzed and some mechanisms are revealed. At the forcing of changed solar radiation induced by the changed orbital parameters and the changed SST simulated by the OGCM, compared with when there is orbital forcing alone, there is more precipitation and the monsoon is stronger in the summer of East Asia, and the winter temperature increases over China. These agree better with the reconstructed data. It is revealed that the change of solar radiation can displace northward the ITCZ and the East Asia subtropical jet, which bring more precipitation over the south of Tibet and North and Northeast China. By analyzing the summer meridional latent heat transport, it is found that the influence of solar radiation change is mainly to increase the convergence of atmosphere toward the land, and the influence of SST change is mainly to transport more moisture to the sea surface atmosphere. Their synergistic effect on East Asian precipitation is much stronger than the sum of their respective effects.  相似文献   

16.
关于中国重大气候灾害与东亚气候系统之间关系的研究   总被引:42,自引:10,他引:42       下载免费PDF全文
在总结中国国旱涝等重大气候灾害的种类、时空分布特征及其形成机理研究的基础上,分析东亚气候系统对东亚地区水分循环和中国旱涝等重大气候灾害发生的影响;并且,从东亚气候系统各成员,特别是从大气圈中的东亚季风、西太平洋副热带高压、中纬度扰动,海洋圈中的ENSO循环、热带西太平洋暖池和印度洋的热力状态,以及从青藏高原的动力、热力作用、高原积雪等来分析和讨论中国重大气候灾害的形成机理.此外,还结合1998年夏季长江流域的特大洪涝以及从20世纪70年代末迄今华北地区的持续干旱所发生的具体实际,进一步分析了东亚气候系统异  相似文献   

17.
In order to better understand the evolution of the Afro-Asian monsoon in the early Holocene, we investigate the impact on boreal summer monsoon characteristics of (1) a freshwater flux in the North Atlantic from the surrounding melting ice sheets and (2) a remnant ice sheet over North America and Europe. Sensitivity experiments run with the IPSL_CM4 model show that both the meltwater flux and the remnant ice sheets induce a cooling of similar amplitude of the North Atlantic leading to a southward shift of the Inter-Tropical Convergence Zone over the tropical Atlantic and to a reduction of the African monsoon. The two perturbations have different impacts in the Asian sector. The meltwater flux results in a weakening of the Indian monsoon and no change in the East Asian monsoon, whereas the remnant ice sheets induce a strengthening of the Indian monsoon and a strong weakening of the East Asian monsoon. Despite the similar coolings in the Atlantic Ocean, the ocean heat transport is reduced only in the meltwater flux experiment, which induces slight differences between the two experiments in the role of the surface latent heat flux in the tropical energetics. In the meltwater experiment, the southward shift of the subtropical jet acts to cool the upper atmosphere over the Tibetan Plateau and hence to weaken the Indian monsoon. In the ice sheet experiment this effect is overwhelmed by the changes in extratropical stationary waves induced by the ice sheets, which are associated with a larger cooling over the Eurasian continent than in the meltwater experiment. However these sensitivity experiments suggest that insolation is the dominant factor explaining the relative changes of the African, Indian and East Asian monsoons from the early to the mid-Holocene.  相似文献   

18.
青藏高原积雪对中国夏季风气候的影响   总被引:39,自引:7,他引:32  
利用SVD等方法对青藏高原积雪与中国区域降水的关系作了诊断分析。并用区域气候模式(RegCM2)对高原积雪的气候效应进行了模拟。结果表明:青藏高原积雪对中国夏季风气候的影响是显著的。积雪的增加会明显减弱亚洲夏季风的强度,使华南的降水减少,江淮流域的降水增多。高原冬季积雪深度的增加,比积雪面积的扩大和春季积雪深度的增加对后期气候的影响更大。  相似文献   

19.
The seasonal variations of the Asian monsoon were explored by applying the atmospheric general circulation model R42L9 that was developed recently at the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences (LASG/IAP/CAS). The 20-yr (1979-1998) simulation was done using the prescribed 20-yr monthly SST and sea-ice data as required by Atmospheric Model Intercomparison Project (AMIP)Ⅱ in the model. The monthly precipitation and monsoon circulations were analyzed and compared with the observations to validate the model‘s performance in simulating the climatological mean and seasonal variations of the Asian monsoon. The results show that the model can capture the main features of the spatial distribution and the temporal evolution of precipitation in the Indian and East Asian monsoon areas. The model also reproduced the basic patterns of monsoon circulation. However, some biases exis tin this model. The simulation of the heating over the Tibetan Plateau in summer was too strong. The overestimated heating caused a stronger East Asian monsoon and a weaker Indian monsoon than the observations. In the circulation fields, the South Asia high was stronger and located over the Tibetan Plateau. The western Pacific subtropical high was extended westward, which is in accordance with the observational results when the heating over the Tibetan Plateau is stronger. Consequently, the simulated rainfall around this area and in northwest China was heavier than in observations, but in the Indian monsoon area and west Pacific the rainfall was somewhat deficient.  相似文献   

20.
A global atmospheric general circulation model has been used to perform eleven idealized numerical experiments, i.e., TP10, TP10, .., TP100, corresponding to different percentages of the Tibetan Plateau altitude. The aim is to explore the sensitivity of East Asian climate to the uplift and expansion of the Tibetan Plateau under the reconstructed boundary conditions for the mid-Pliocene about 3 Ma ago. When the plateau is progressively uplifted, global annual surface temperature is gradually declined and statistically significant cooling signals emerge only in the Northern Hemisphere, especially over and around the Tibetan Plateau, with larger magnitudes over land than over the oceans. On the contrary, annual surface temperature rises notably over Central Asia and most parts of Africa, as well as over northeasternmost Eurasia in the experiments TP60 to TP100. Meanwhile, the plateau uplift also leads to annual precipitation augmentation over the Tibetan Plateau but a reduction in northern Asia, the Indian Peninsula, much of Central Asia, parts of western Asia and the southern portions of northeastern Europe. Additionally, it is found that an East Asian summer monsoon system similar to that of the present initially exists in the TP60 and is gradually intensified with the continued plateau uplift. At 850 hPa the plateau uplift induces an anomalous cyclonic circulation around the Tibetan Plateau in summertime and two anomalous westerly currents respectively located to the south and north of the Tibetan Plateau in wintertime. In the mid-troposphere, similarto-modern spatial pattern of summertime western North Pacific subtropical high is only exhibited in the experiments TP60 to TP100, and the East Asian trough is steadily deepened in response to the progressive uplift and expansion of the Tibetan Plateau.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号