首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 267 毫秒
1.
A geometric method based on the high-order 3D Voronoi tessellation is proposed for identifying single galaxies, pairs and triplets. This approach allows us to select small galaxy groups and isolated galaxies in different environments and to find the isolated systems. The volume-limited sample of galaxies from the Sloan Digital Sky Survey Data Release 5 spectroscopic survey was used. We conclude that in such small groups as pairs and triplets, segregation by luminosity is clearly observed: galaxies in isolated pairs and triplets are on average two times more luminous than isolated galaxies. We consider the dark matter content in different systems. The median values of mass-to-luminosity ratio are  12 M/L  for the isolated pairs and  44 M/L  for the isolated triplets, and 7 (8)  M/L  for the most compact pairs (triplets). We also found that systems in denser environments have greater rms velocity and mass-to-luminosity ratio.  相似文献   

2.
Using images from a charge-coupled device survey with the Wide Field Camera on the Isaac Newton Telescope, we performed B - and I -band photometry on 156 Virgo cluster dwarf elliptical (dE) galaxies, 25 candidate new cluster dwarfs, and nine candidate field dwarfs. Galaxies were modelled with Sérsic profiles, using both 1D χ2 and 2D cross-correlation methods, with nuclei modelled as point sources. The intensity profiles of 50 galaxies previously classified as dE, dE?, or ? are more accurately fitted if a nucleus is included, and this results in the majority of dwarfs now being classified as nucleated dwarf ellipticals (dE,N). Some faint galaxies with B magnitudes of 18–21 have particularly large relative nuclei, while a small number have apparent central dimmings. For cluster dE,N galaxies the nucleus magnitude is correlated with the magnitude of the host galaxy. The profile parameters of dE and dE,N galaxies are not significantly different, and there is no evident discontinuity in relative nucleus size between non-nucleated and nucleated dwarfs, suggesting that they may form a continuum. Nuclei are on average redder than their underlying galaxies, though a spread of relative colours was found, and two-fifths of nuclei are bluer. Formation mechanisms of nuclei are discussed: at least some appear to have formed in an already existing non-nucleated galaxy, though others may have formed simultaneously with their galaxies and subsequently evolved within them.  相似文献   

3.
We present the first 3D observations of a diffuse elliptical galaxy (dE). The good quality data (S/N up to 40) reveal the kinematical signature of an embedded stellar disc, reminiscent of what is commonly observed in elliptical galaxies, though similarity of their origins is questionable. Colour map built from Hubble Space Telescope Advanced Camera for Surveys (ACS) images confirms the presence of this disc. Its characteristic scale (about 3 arcsec =250 pc) is about a half of galaxy's effective radius, and its metallicity is 0.1–0.2 dex larger than the underlying population. Fitting the spectra with synthetic single stellar populations (SSP), we found an SSP-equivalent age of 5 Gyr and nearly solar metallicity [Fe/H]  =−0.06  dex. We checked that these determinations are consistent with those based on Lick indices, but have smaller error bars. The kinematical discovery of a stellar disc in dE gives additional support to an evolutionary link from dwarf irregular galaxies due to stripping of the gas against the intracluster medium.  相似文献   

4.
Radial and 2D colour properties of E+A galaxies   总被引:1,自引:0,他引:1  
We investigated the radial colour gradient and two-dimensional (2D) colour properties of 22 E+A galaxies with  5.5 < Hδ equivalent width(EW) < 8.5 Å  and 49 normal early-type galaxies as a control sample at a redshift of <0.2 in the Second Data Release of the Sloan Digital Sky Survey. We found that a substantial number of E+A galaxies exhibit positive slopes of radial colour gradient (bluer gradients toward the centre) which are seldom seen in normal early-type galaxies. We found irregular 'colour morphologies'– asymmetrical and clumpy patterns – at the centre of g − r and r − i 2D colour maps of E+A galaxies with positive slopes of colour gradient. Kolomogorov–Smirnov two-sample tests show that g − r and r − i colour gradient distributions of E+A galaxies differ from those of early-type galaxies with a more than 99.99 per cent significance level. We also found a tight correlation between radial colour gradients and colours, and between radial colour gradients and the 4000-Å break in the E+A sample; E+A galaxies which exhibit bluer colour or weaker D 4000 tend to have positive slopes of radial colour gradient. We compared the GISSEL model and E+A observational quantities,  Hδ EW, D 4000  and u − g colour, and found that almost all our E+A galaxies are situated along a single evolutionary track. Therefore, these results are interpreted as E+A galaxies evolving from  Hδ EW ∼ 8 Å  to  Hδ EW ∼ 5 Å  , with colour gradients changing from positive to negative, and with the irregular 2D colour map becoming smoother, during a time-scale of ∼300 Myr. Our results favour the hypothesis that E+A galaxies are post-starburst galaxies caused by merger/interaction, having undergone a centralized violent starburst.  相似文献   

5.
We estimate the power spectrum of H  i intensity fluctuations for a sample of eight galaxies (seven dwarf and one spiral). The power spectrum can be fitted to a power-law     for six of these galaxies, indicating turbulence is operational. The estimated best-fitting value for the slope ranges from  ∼−1.5  (AND IV, NGC 628, UGC 4459 and GR 8) to  ∼−2.6  (DDO 210 and NGC 3741). We interpret this bi-modality as being due to having effectively 2D turbulence on length-scales much larger than the scale-height of the galaxy disc and 3D otherwise. This allows us to use the estimated slope to set bounds on the scale-heights of the face-on galaxies in our sample. We also find that the power-law slope remains constant as we increase the channel thickness for all these galaxies, suggesting that the fluctuations in H  i intensity are due to density fluctuations and not velocity fluctuations, or that the slope of the velocity structure function is ∼0. Finally, for the four galaxies with '2D turbulence' we find that the slope α correlates with the star formation rate (SFR) per unit area, with larger SFRs leading to steeper power laws. Given our small sample size, this result needs to be confirmed with a larger sample.  相似文献   

6.
The vertical profiles of disc galaxies are built by the material trapped around stable periodic orbits, which form their 'skeletons'. Therefore, knowledge of the stability of the main families of periodic orbits in appropriate 3D models enables one to predict possible morphologies for edge-on disc galaxies. In a pilot survey we compare the orbital structures that lead to the appearance of 'peanut'- and 'X'-like features with the edge-on profiles of three disc galaxies (IC 2531, NGC 4013 and UGC 2048). The subtraction from the images of a model representing the axisymmetric component of the galaxies reveals the contribution of the non-axisymmetric terms. We find a direct correspondence between the orbital profiles of 3D bars in models and the observed main morphological features of the residuals. We also apply a simple unsharp masking technique in order to study the sharpest features of the images. Our basic conclusion is that the morphology of the boxy 'bulges' of these galaxies can be explained by considering disc material trapped around stable 3D periodic orbits. In most models, these building-block periodic orbits are bifurcated from the planar central family of a non-axisymmetric component, usually a bar, at low-order vertical resonances. In such a case, the boxy 'bulges' are parts of bars seen edge-on. For the three galaxies we study, the families associated with the 'peanut' or 'X'-shape morphology are probably bifurcations at the vertical 2/1 or 4/1 resonance.  相似文献   

7.
While galactic bulges may contain no significant dust of their own, the dust within galaxy discs can strongly attenuate the light from their embedded bulges. Furthermore, such dust inhibits the ability of observationally determined inclination corrections to recover intrinsic (i.e. dust-free) galaxy parameters. Using the sophisticated 3D radiative transfer model of Popescu et al. and Tuffs et al., together with the recent determination of the average face-on opacity by Driver et al. in nearby disc galaxies, we provide simple equations to correct (observed) disc central surface brightness and scalelengths for the effects of both inclination and dust in the B , V , I , J and K passbands. We then collate and homogenize various literature data sets and determine the typical intrinsic scalelengths, central surface brightness and magnitudes of galaxy discs as a function of morphological type. All galaxies have been carefully modelled in their respective papers with a Sérsic   R 1/ n   bulge plus an exponential disc. Using the bulge magnitude corrections from Driver et al., we additionally derive the average, dust-corrected, bulge-to-disc flux ratio as a function of galaxy type. With values typically less than 1/3, this places somewhat uncomfortable constraints on some current semi-analytic simulations. Typical bulge sizes, profile shapes, surface brightness and deprojected densities are provided. Finally, given the two-component nature of disc galaxies, we present luminosity–size and (surface brightness)–size diagrams for discs and bulges. We also show that the distribution of elliptical galaxies in the luminosity–size diagram is not linear but strongly curved.  相似文献   

8.
Based on the Sloan Digital Sky Survey DR6 (SDSS) and the Millennium Simulation (MS), we investigate the alignment between galaxies and large-scale struc-ture. For this purpose, we develop two new statistical tools, namely the alignment cor-relation function and the cos(20)-statistic. The former is a two-dimensional extension of the traditional two-point correlation function and the latter is related to the ellipticity correlation function used for cosmic shear measurements. Both are based on the cross correlation between a sample of galaxies with orientations and a reference sample which represents the large-scale structure. We apply the new statistics to the SDSS galaxy cat-alog. The alignment correlation function reveals an overabundance of reference galaxies along the major axes of red, luminous (L L*) galaxies out to projected separations of 60 h-1Mpc. The signal increases with central galaxy luminosity. No alignment signal is detected for blue galaxies. The cos(2θ)-statistic yields very similar results. Starting from a MS semi-analytic galaxy catalog, we assign an orientation to each red, luminous and central galaxy, based on that of the central region of the host halo (with size similar to that of the stellar galaxy). As an alternative, we use the orientation of the host halo itself. We find a mean projected misalignment between a halo and its central region of ~ 25°. The misalignment decreases slightly with increasing luminosity of the central galaxy. Using the orientations and luminosities of the semi-analytic galaxies, we repeat our alignment analysis on mock surveys of the MS. Agreement with the SDSS results is good if the central orientations are used. Predictions using the halo orientations as proxies for cen-tral galaxy orientations overestimate the observed alignment by more than a factor of 2. Finally, the large volume of the MS allows us to generate a two-dimensional map of the alignment correlation function, which shows the reference galaxy distribution to be flat-tened parallel to the orientations of red luminous galaxies with axis ratios of ~ 0.5 and ~ 0.75 for halo and central orientations, respectively. These ratios are almost independent of scale out to 60h-1Mpc.  相似文献   

9.
We quantify the angular distribution of radio sources in the NRAO VLA Sky Survey (NVSS) by measuring the two-point angular correlation function w ( θ ). By careful consideration of the resolution of radio galaxies into multiple components, we are able to determine both the galaxy angular clustering and the size distribution of giant radio galaxies. The slope of the correlation function for radio galaxies agrees with that for other classes of galaxy,     , with a 3D correlation length     (under certain assumptions). Calibration problems in the survey prevent clustering analysis below     . About 7 per cent of radio galaxies are resolved by NVSS into multiple components, with a power-law size distribution. Our work calls into question previous analyses and interpretations of w ( θ ) from radio surveys.  相似文献   

10.
We use K '-band (2.1-μm) imaging to investigate the angular size and morphology of 10 6C radio galaxies, at redshifts 1≤ z ≤1.4. Two radio galaxies appear to be undergoing mergers, another contains, within a single envelope, two intensity peaks aligned with the radio jets, while the other seven appear consistent with being normal ellipticals in the K band.
Intrinsic half-light radii are estimated from the areas of each radio galaxy image above a series of thresholds. The 6C galaxy radii are found to be significantly smaller than those of the more radio-luminous 3CR galaxies at similar redshifts. This would indicate that the higher mean K -band luminosity of the 3CR galaxies reflects a difference in the size of the host galaxies, and not solely a difference in the power of the active nuclei.
The size–luminosity relation of the z ∼1.1 6C galaxies indicates a 1.0–1.6 mag enhancement of their rest frame R -band surface brightness relative to either local ellipticals of the same size or FRII radio galaxies at z <0.2. The 3CR galaxies at z ∼1.1 show a comparable enhancement in surface brightness. The mean radius of the 6C galaxies suggests that they evolve into ellipticals of L ∼ L * luminosity, and is consistent with their low-redshift counterparts being relatively small FRII galaxies ∼25 times lower in radio luminosity, or small FRI galaxies ∼1000 times lower in radio luminosity. Hence the 6C radio galaxies appear to undergo as much optical and radio evolution as the 3CR galaxies.  相似文献   

11.
We present the results of an analysis of a well-selected sample of galaxies with active and inactive galactic nuclei from the Sloan Digital Sky Survey, in the range  0.01 < z < 0.16  . The SDSS galaxy catalogue was split into two classes of active galaxies, Type 2 active galactic nuclei (AGN) and composites, and one set of inactive, star-forming/passive galaxies. For each active galaxy, two inactive control galaxies were selected by matching redshift, absolute magnitude, inclination, and radius. The sample of inactive galaxies naturally divides into a red and a blue sequence, while the vast majority of AGN hosts occur along the red sequence. In terms of Hα equivalent width (EW), the population of composite galaxies peaks in the valley between the two modes, suggesting a transition population. However, this effect is not observed in other properties such as the colour–magnitude space or colour–concentration plane. Active galaxies are seen to be generally bulge-dominated systems, but with enhanced Hα emission compared to inactive red-sequence galaxies. AGN and composites also occur in less dense environments than inactive red-sequence galaxies, implying that the fuelling of AGN is more restricted in high-density environments. These results are therefore inconsistent with theories in which AGN host galaxies are a 'transition' population. We also introduce a systematic 3D spectroscopic imaging survey, to quantify and compare the gaseous and stellar kinematics of a well-selected, distance-limited sample of up to 20 nearby Seyfert galaxies, and 20 inactive control galaxies with well-matched optical properties. The survey aims to search for dynamical triggers of nuclear activity and address outstanding controversies in optical/infrared imaging surveys.  相似文献   

12.
We have cross-matched the 1.4-GHz NRAO VLA Sky Survey (NVSS) with the first 210 fields observed in the 2dF Galaxy Redshift Survey (2dFGRS), covering an effective area of 325 deg2 (about 20 per cent of the final 2dFGRS area). This yields a set of optical spectra of 912 candidate NVSS counterparts, of which we identify 757 as genuine radio identifications – the largest and most homogeneous set of radio source spectra ever obtained. The 2dFGRS radio sources span the redshift range     to 0.438, and are a mixture of active galaxies (60 per cent) and star-forming galaxies (40 per cent). About 25 per cent of the 2dFGRS radio sources are spatially resolved by NVSS, and the sample includes three giant radio galaxies with projected linear size greater than 1 Mpc. The high quality of the 2dF spectra means we can usually distinguish unambiguously between AGN and star-forming galaxies. We make a new determination of the local radio luminosity function at 1.4 GHz for both active and star-forming galaxies, and derive a local star formation density of         .  相似文献   

13.
We present Fabry–Perot observations obtained in the frame of the GHASP survey (Gassendi HAlpha survey of SPirals). We have derived the Hα map, the velocity field and the rotation curve for a new set of 44 galaxies. The data presented in this paper are combined with the data published in the three previous papers providing a total number of 85 of the 96 galaxies observed up to now. This sample of kinematical data has been divided into two groups: isolated (ISO) and softly interacting (SOFT) galaxies. In this paper, the extension of the Hα discs, the shape of the rotation curves, the kinematical asymmetry and the Tully–Fisher relation have been investigated for both ISO and SOFT galaxies. The Hα extension is roughly proportional to R25 for ISO as well as for SOFT galaxies. The smallest extensions of the ionized disc are found for ISO galaxies. The inner slope of the rotation curves is found to be correlated with the central concentration of light more clearly than with the type or the kinematical asymmetry, for ISO as well as for SOFT galaxies. The outer slope of the rotation curves increases with the type and with the kinematical asymmetry for ISO galaxies but shows no special trend for SOFT galaxies. No decreasing rotation curve is found for SOFT galaxies. The asymmetry of the rotation curves is correlated with the morphological type, the luminosity, the  ( B − V )  colour and the maximal rotational velocity of galaxies. Our results show that the brightest, the most massive and the reddest galaxies, which are fast rotators, are the least asymmetric, meaning that they are the most efficient with which to average the mass distribution on the whole disc. Asymmetry in the rotation curves seems to be linked with local star formation, betraying disturbances of the gravitational potential. The Tully–Fisher relation has a smaller slope for ISO than for SOFT galaxies.  相似文献   

14.
The characteristics of the starburst galaxies from the Pico dos Dias survey (PDS) are compared with those of the nearby ultraviolet (UV) bright Markarian starburst galaxies, having the same limit in redshift ( v h < 7500 km s−1) and absolute B magnitude ( MB < −18). An important difference is found: the Markarian galaxies are generally undetected at 12 and 25 μm in IRAS . This is consistent with the UV excess shown by these galaxies and suggests that the youngest star-forming regions dominating these galaxies are relatively free of dust.
The far-infrared selection criteria for the PDS are shown to introduce a strong bias towards massive (luminous) and large size late-type spiral galaxies. This is contrary to the Markarian galaxies, which are found to be remarkably rich in smaller size early-type galaxies. These results suggest that only late-type spirals with a large and massive disc are strong emitters at 12 and 25 μm in IRAS in the nearby Universe.
The Markarian and PDS starburst galaxies are shown to share the same environment. This rules out an explanation of the differences observed in terms of external parameters. These differences may be explained by assuming two different levels of evolution, the Markarian being less evolved than the PDS galaxies. This interpretation is fully consistent with the disc formation hypothesis proposed by Coziol et al. to explain the special properties of the Markarian SBNG.  相似文献   

15.
We detail an innovative new technique for measuring the two-dimensional (2D) velocity moments (rotation velocity, velocity dispersion and Gauss–Hermite coefficients h 3 and h 4) of the stellar populations of galaxy haloes using spectra from Keck DEIMOS (Deep Imaging Multi-Object Spectrograph) multi-object spectroscopic observations. The data are used to reconstruct 2D rotation velocity maps.
Here we present data for five nearby early-type galaxies to ∼three effective radii. We provide significant insights into the global kinematic structure of these galaxies, and challenge the accepted morphological classification in several cases. We show that between one and three effective radii the velocity dispersion declines very slowly, if at all, in all five galaxies. For the two galaxies with velocity dispersion profiles available from planetary nebulae data we find very good agreement with our stellar profiles. We find a variety of rotation profiles beyond one effective radius, i.e. rotation speed remaining constant, decreasing and increasing with radius. These results are of particular importance to studies which attempt to classify galaxies by their kinematic structure within one effective radius, such as the recent definition of fast- and slow-rotator classes by the Spectrographic Areal Unit for Research on Optical Nebulae project. Our data suggest that the rotator class may change when larger galactocentric radii are probed. This has important implications for dynamical modelling of early-type galaxies. The data from this study are available on-line.  相似文献   

16.
The evolution of number density, size and intrinsic colour is determined for a volume-limited sample of visually classified early-type galaxies selected from the Hubble Space Telescope /Advanced Camera for Surveys images of the Great Observatories Origins Deep Survey (GOODS) North and South fields (version 2). The sample comprises 457 galaxies over 320 arcmin2 with stellar masses above  3 × 1010 M  in the redshift range  0.4 < z < 1.2  . Our data allow a simultaneous study of number density, intrinsic colour distribution and size. We find that the most massive systems  (≳3 × 1011 M)  do not show any appreciable change in comoving number density or size in our data. Furthermore, when including the results from 2dF galaxy redshift survey, we find that the number density of massive early-type galaxies is consistent with no evolution between   z = 1.2  and 0, i.e. over an epoch spanning more than half of the current age of the Universe. We find large discrepancies between the predictions of semi-analytic models. Massive galaxies show very homogeneous intrinsic colour distributions, with nearly flat radial colour gradients, but with a significant negative correlation between stellar mass and colour gradient, such that red cores appear predominantly in massive galaxies. The distribution of half-light radii – when compared to   z ∼ 0  and   z > 1  samples – is compatible with the predictions of semi-analytic models relating size evolution to the amount of dissipation during major mergers.  相似文献   

17.
CCD photometry is presented for 20 dIrr galaxies situated in the nearby complexes CenA/M83, and CVnI as well as in the general field of the Local Volume. We present integrated magnitudes of the galaxies in   B , V , I   bands and also surface brightness profiles to a median isophote  μ B ∼ 28  mag arcsec−2. The popular Sersic parametrization of surface brightness profiles generally does a poor job of simultaneously fitting the inner cores and outer exponential surface brightness fall-offs observed in many of our targets. The observed sample is a part of a general project to image about 500 nearby  ( D < 10 Mpc)  dwarf galaxies in multiple bands.  相似文献   

18.
Powerful radio galaxies often display enhanced optical/ultraviolet emission regions, elongated and aligned with the radio jet axis. The aim of this series of papers is to investigate separately the effects of radio power and redshift on the alignment effect, together with other radio galaxy properties. In this second paper, we present a deeper analysis of the morphological properties of these systems, including both the host galaxies and their surrounding aligned emission.
The host galaxies of our 6C subsample are well described as de Vaucouleurs ellipticals, with typical scale sizes of  ∼10 kpc  . This is comparable to the host galaxies of low- z radio sources of similar powers, and also the more powerful 3CR sources at the same redshift. The contribution of nuclear point source emission is also comparable, regardless of radio power.
The 6C alignment effect is remarkably similar to that seen around more powerful 3CR sources at the same redshift in terms of extent and degree of alignment with the radio source axis, although it is generally less luminous. The bright, knotty features observed in the case of the z ∼ 1 3CR sources are far less frequent in our 6C subsample; neither do we observe such strong evidence for evolution in the strength of the alignment effect with radio source size/age. However, we do find a very strong link between the most extreme alignment effects and emission-line region properties indicative of shocks, regardless of source size/age or power. In general, the 6C alignment effect is still considerably stronger than that seen around lower redshift galaxies of similar radio powers. Cosmic epoch is clearly just as important a factor as radio power: although aligned emission is observed on smaller scales at lower redshifts, the processes which produce the most extreme features simply no longer occur, suggesting considerable evolution in the properties of the extended haloes surrounding the radio source.  相似文献   

19.
We use an 850-μm SCUBA map of the Hubble Deep Field (HDF) to study the dust properties of optically-selected starburst galaxies at high redshift. The optical/infrared (IR) data in the HDF allow a photometric redshift to be estimated for each galaxy, together with an estimate of the visible star-formation rate. The 850-μm flux density of each source provides the complementary information: the amount of hidden, dust-enshrouded star formation activity. Although the 850-μm map does not allow detection of the majority of individual sources, we show that the galaxies with the highest UV star-formation rates are detected statistically, with a flux density of about S 850=0.2 mJy for an apparent UV star-formation rate of 1  h −2 M yr−1. This level of submillimetre output indicates that the total star-forming activity is on average a factor of approximately 6 times larger than the rate inferred from the UV output of these galaxies. The general population of optical starbursts is then predicted to contribute at least 25 per cent of the 850-μm background. We carry out a power-spectrum analysis of the map, which yields some evidence for angular clustering of the background source population, but at a level lower than that seen in Lyman-break galaxies. Together with other lines of argument, particularly from the NICMOS HDF data, this suggests that the 850-μm background originates over an extremely wide range of redshifts – perhaps 1≲ z ≲6.  相似文献   

20.
We present BVI photometry of 190 galaxies in the central 4 ×3 deg2 region of the Fornax cluster observed with the Michigan Curtis Schmidt Telescope. Results from the Fornax Cluster Spectroscopic Survey (FCSS) and the Flair-II Fornax Surveys have been used to confirm the membership status of galaxies in the Fornax Cluster Catalogue (FCC). In our catalogue of 213 member galaxies, 92 (43 per cent) have confirmed radial velocities.
In this paper, we investigate the surface brightness–magnitude relation for Fornax cluster galaxies. Particular attention is given to the sample of cluster dwarfs and the newly discovered ultracompact dwarf galaxies (UCDs) from the FCSS. We examine the reliability of the surface brightness–magnitude relation as a method for determining cluster membership and find that at surface brightnesses fainter than 22 mag arcsec−2, it fails in its ability to distinguish between cluster members and barely resolved background galaxies. Cluster members exhibit a strong surface brightness–magnitude relation. Both elliptical (E) galaxies and dwarf elliptical (dE) galaxies increase in surface brightness as luminosity decreases. The UCDs lie off the locus of the relation.
  B − V   and   V − I   colours are determined for a sample of 113 cluster galaxies and the colour–magnitude relation is explored for each morphological type. The UCDs lie off the locus of the colour–magnitude relation. Their mean   V − I   colours (∼1.09) are similar to those of globular clusters associated with NGC 1399. The location of the UCDs on both surface brightness and colour–magnitude plots supports the 'galaxy threshing' model for infalling nucleated dwarf elliptical (dE, N) galaxies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号