首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Continuous measurements of ozone and its precursors including NO, NO2, and CO at an urban site (32°03′N, 118°44′E) in Nanjing, China during the period from January 2000 to February 2003 are presented. The effects of local meteorological conditions and distant transports associated with seasonal changed Asian monsoons on the temporal variations of O3 and its precursors are studied by statistical, backward trajectory, and episode analyses. The diurnal variation in O3 shows high concentrations during daytime and low concentrations during late night and early morning, while the precursors show high concentrations during night and early morning and low concentrations during daytime. The diurnal variations in air pollutants are closely related to those in local meteorological conditions. Both temperature and wind speed have significant positive correlations with O3 and significant negative correlations with the precursors. Relative humidity has a significant negative correlation with O3 and significant positive correlations with the precursors. The seasonal variation in O3 shows low concentrations in late autumn and winter and high concentrations in late spring and early summer, while the precursors show high concentrations in late autumn and winter and low concentrations in summer. Local mobile and stationary sources make a great contribution to the precursors, but distant transports also play a very important role in the seasonal variations of the air pollutants. The distant transport associated with the southeastern maritime monsoon contributes substantially to the O3 because the originally clean maritime air mass is polluted when passing over the highly industrialized and urbanized areas in the Yangtze River Delta. The high frequency of this type of air mass in summer causes the fact that a common seasonal characteristic of surface O3 in East Asia, summer minimum, is not observed at this site. The distant transports associated with the northern continental monsoons that dominate in autumn and winter are related to the high concentrations of the precursors in these two seasons. This study can contribute to a better understanding of the O3 pollution in vast inland of China affected by meteorological conditions and the rapid urbanization and industrialization.  相似文献   

2.
In this study, we used satellite data (GOME and MOPITT) together with a global chemical-transport-model of atmosphere (MOZART-2) to characterize the chemical/aerosol composition over eastern China. We then estimated the effects of local emissions in China on the chemical budgets in other regions of the world. Likewise, we also investigated the effects of air pollution from other regions on the chemical budget over eastern China. The study shows that the column CO and NO x concentrations are also high in eastern China. The high CO and NO x concentrations produce modest levels of O3 concentrations during summer (about 40 to 50 ppbv) and very low O3 during winter (about 10 to 20 ppbv) in eastern China. The calculated NO2 column is fairly consistent from the GOME measurement. The calculated CO column is underestimated from the MOPITT measurement. One of the reasons of the underestimation of the predicted CO is due to a fact that the CO emissions were taken without considering the rapid increase of emissions from 1990 to 2000. The calculated surface O3 is consistent with the measured values, with strong seasonal variations. However, the measurement is very limited, and more measurements in eastern China will be needed. The column NO2 has a very strong seasonal variation in eastern China, with the highest concentrations during winter and the lowest concentrations during summer. The cause of this seasonal variability is mainly due to the seasonal changes in the chemical loss of NO x , which is very high in summer and very low during winter. The effects of the local emissions in China and long-range transport from other regions on the chemical distributions in eastern China are studied. The results show that NO x concentrations in eastern China are mostly caused by the local emissions in China, especially during the winter. The CO concentration over eastern China is from both the local emissions (30% to 40%) and the transport from other regions. Likewise, the CO emissions in China have an important effect on the other regions of the world, but the effect is limited in the northern hemisphere. The local emissions in China also have an important effect on surface O3 concentrations. During winter, the local emissions reduce the surface O3 concentrations by 30 to 50%. During summer, the local emissions produce about 50 to 70% of the O3 concentration in eastern China.  相似文献   

3.
京津冀采暖期大气污染天气特征   总被引:4,自引:0,他引:4  
选取2004—2006年京津冀地区采暖期155个区域大气污染日,对当日08:00(或前一日20:00)海平面气压场,结合高空环流特征进行了分析。对影响京津冀区域污染的天气形势划分为5种类型,即高压型、冷锋型、低压型、华北干槽型和均压场型,其中高压型最多,占40.0%。区域污染过程通常对应一次高空环流调整过程,连续性区域污染过程往往由多种天气型影响。地面辐合加上低层逆温和下沉运动阻碍污染物在水平和垂直方向的扩散,在污染源一定的条件下,稳定的大气层结和区域内特殊地形的影响是导致区域污染形成的重要原因。  相似文献   

4.
利用2010—2012年对流层臭氧(O3)及其多种前体物的卫星遥感资料和全球水汽再分析资料,研究东亚区域O3及其前体物的时空分布,以及在中国东部(分为南、北两部分)相关性的季节变化。结果表明:东亚区域NO2与CO的对流层柱含量均表现为冬季高、夏季低的时空变化形式。O3对流层柱含量夏季达到峰值,冬季为谷值。中国东部的北部与南部地区O3与NO2均在夏秋季呈正相关,冬春季呈负相关。夏季大部分地区NOx的光化学循环反应对O3生成有积极的促进作用,冬季大部分地区O3的光化学循环生成受到抑制。O3与CO在北部地区夏秋季和南部地区夏季正相关性最大,无论是在北部还是南部地区,O3与CO的相关性在轻污染情况下最大,而在重污染和背景情况下较小,表明重污染气团向下风方的输送更有利于O3的光化学生成。O3与水汽在北部和南部地区的多数时间均呈较显著的正相关性,而在南部地区夏季和北部地区冬季具有较大的负相关性,反映出不同的环流形式、气团来源及伴随的天气条件变化对O3分布的影响。  相似文献   

5.
Automobile exhaust emissions are becoming increasingly serious with the drastic increase of the number of vehicles in Beijing. In order to investigate the air pollution level and characteristics in the areas near the main traffic lines in Beijing and to identify the contributions from traffic and other sources, gaseous pollutants including NOx, CO, O3, SO2, and meteorological parameters have been monitored at a monitoring site and a contrasting site in winter and summer in 2006. The volumes of vehicles on Beiyuan Road were recorded. The average concentrations of NO, NO2, NOx, CO, O3, and SO2 at the monitoring site were 0.148 mg/m3, 0.107 mg/m3, 0.333 mg/m3, 5.110 mg/m3, 0.006 mg/m3, and 0.157 mg/m3, respectively during the sampling period in winter and 0.021 mg/m3, 0.068 mg/m3, 0.101 mg/m3, 4.170 mg/m3, 0.083 mg/m3, and 0.056 mg/m3, respectively in summer. The high concentrations of CO and O3 reflect the influence of vehicles emission near the traffic lines evidently. The higher concentrations of CO, NO and O3 in summer may indicate that the characteristics of traffic pollution were more pronounced in summer. Results of regression analysis showed that in winter the concentrations of SO2 and CO were significantly positively correlated with the emission of heating boilers at night and negatively correlated with wind speed in daytime. The concentrations of NO and NOx were negatively correlated with wind speed, positively correlated with emission of heating boilers in daytime and positively correlated with traffic density at nighttime. The concentrations of NO2 were positively correlated with the emission of heating boilers in daytime and traffic density at nighttime. In summer, the air quality at the monitoring site and the contrasting site was mainly influenced by the traffic emissions.  相似文献   

6.
Large-scale and local weather conditions during severe wintertime air pollution episodes in the Moscow megalopolis are analyzed. Concentrations of CO, NO, and NO2 obtained from the automated network of the atmosphere pollution control are used as tracers for atmospheric processes in the urban atmospheric boundary layer. It is shown that a high surface air pollution level in the city is formed at a weak wind in the lower atmosphere and only in the presence of a surface or low elevated temperature inversion. Temperature contrasts in the urban heat island generate the circulation that promotes air pollution in megapolis regions remote from large emission sources. It is supposed that in case of severe frosts the amount of anthropogenic heat in the megapolis sharply increases, promoting active turbulent mixing, thus preventing pollution accumulation in the surface air.  相似文献   

7.
利用2010年南沙气象探测基地灰霾观测资料,采用灰霾数值预报系统对不同天气型灰霾过程进行数值模拟,研究珠三角地区空气污染的主要控制因子和主要污染成分及不同天气系统影响下各种排放源对珠三角地区的污染贡献。结果表明:灰霾数值预报模式模拟值与实测值趋势基本一致,除个别极值外,模拟结果能较好和定性的反应珠三角地区各污染物浓度变化,是适合珠三角地区的灰霾数值预报系统。在易出现灰霾月的变性高压入海型和不易出现灰霾月的热带气旋外围下沉气流控制时,各污染物浓度均较高,特别是PM10、PM2.5、元素碳EC(Elemental Carbon)、有机碳OC(Organic Carbon)和CO浓度尤其明显。在易出现灰霾月冷空气南下时和不易出现灰霾月无明显天气系统影响时,元素碳EC、有机碳OC和CO浓度较低,其他污染物浓度接近零。无论是否出现灰霾,相对于空气中的其他污染物,元素碳EC、有机碳OC和CO浓度均较高,说明在珠三角地区碳污染较重。  相似文献   

8.
We studied the daily patterns in the rates of terpene emissions by the montane holm oak, Quercus ilex, in three typical days of winter and three typical days of summer in Montseny, a natural park near Barcelona, and related them to the air concentrations of terpenes, ozone and NO2. Terpene emission rates were about 10 times higher in summer than in winter. Emissions virtually stopped in the dark. In both seasons, rates of terpene emissions were well correlated with light, air temperature and relative humidity. Rates of emissions were also correlated with stomatal conductance and the rates of transpiration and photosynthesis. Almost all the individual terpenes identified followed the same pattern as total terpenes. The most abundant terpene was ??-pinene, followed by sabinene + ??-pinene, limonene, myrcene, camphene and ??-phellandrene. Atmospheric terpene concentrations were also about 10 times higher in summer than in winter. A significant diurnal pattern with maxima at midday was observed, especially in summer. The increase by one order of magnitude in the concentrations of these volatile isoprenoids highlights the importance of local biogenic summer emissions in these Mediterranean forested areas which also receive polluted air masses from nearby or distant anthropic sources. Atmospheric concentrations of O3 and NO2 were also significantly higher in summer and at midday hours. In both seasons, concentrations of O3 were significantly correlated with concentrations of terpenes and NO2 in the air and with rates of terpene emission.  相似文献   

9.
Surface ozone, NO, NO2, and NO x were measured at a coastal site (Shihua) and a nearby inland site (Zhujing) in suburban Shanghai for the whole year of 2009. More days with ozone pollution in a longer time range were observed at the coastal site than the inland site. The diurnal variations of NO x concentrations were obviously higher at Zhujing station, while those of ozone concentrations were higher at Shihua station, indicating their different air pollution conditions. Coastal wind has significant influence on the levels and characteristics of the air pollutants. The ozone concentrations during maritime winds (MW) were much higher than those during continental winds (CW) at each of the site, while the NO and NO2 concentrations were both opposite. The ozone concentrations at Shihua station were much higher than those at Zhujing station, while the NO and NO2 concentrations were both opposite. The ozone concentrations at both of the two sites showed a distinct “weekend effects” and “weekdays effects” patterns during CW and MW, respectively. Correlation analysis of the pollutants showed that, the compounds during MW were more age than those during CW, and the compounds at Shihua were more age than those at Zhujing. The air pollutions at both of the two sites are mainly associated with the pollutants emitted in this region instead of long range transport.  相似文献   

10.
京津冀地区一次强沙尘天气过程的成因及特征   总被引:1,自引:0,他引:1       下载免费PDF全文
利用常规污染物监测资料、卫星资料和再分析资料等,对京津冀地区在2017年春季遭遇的一次强沙尘天气过程进行分析。结果表明,此次过程是由地面冷锋过境,高空槽后冷空气持续补充引起,沙源地主要位于巴丹吉林、腾格里沙漠,随后以西北路径输送至京津冀地区。前期沙源地感热通量迅速增大,与中低层冷平流叠加,导致不稳定层结增强,助于起沙;高空强风速带加强并向下延伸,中低层次级环流发展,不但使沙尘传输并下降至地面,而且使高层高动量和高位涡冷空气下传,促进低空急流形成、低层系统发展,使大风及沙尘天气维持;沙尘过境时,地面至4 km高度存在沙尘型气溶胶,PM_(2.5)和PM_(10)浓度变化趋势较一致并达到重度污染水平,且气溶胶光学厚度(Aerosol Optical Depth,AOD)与空气质量指数(Air Quality Index,AQI)具有较好的时空匹配关系,重污染时段AOD值大于1,污染减弱时AOD值降至0.6以下。  相似文献   

11.
The present study was carried out between October 2003 and September 2004 at an urban background station near the Mediterranean coast in southeastern Spain. The sulfate and nitrate content was determined in 332 PM10 and PM2.5 daily samples. The results show that the seasonal variation of nitrate measured in PM10 does not correspond with what has been observed at other locations in the Iberian Peninsula, where the minima are reached during the summer months due to decomposition of ammonium nitrate at high temperatures. The recorded levels of PM10 nitrate were slightly higher in summer due to an increase in the concentrations of coarse mode nitrate. On the contrary, both the concentrations and the percentages of nitrate in PM2.5 were lowest from June to September. The sulfate levels in both PM10 and PM2.5 were maxima in summer because the oxidation rate of SO2 increases with solar radiation. An elevated correlation (0.72 < r < 0.92) between the monthly average concentrations and percentages of sulfate and solar radiation has been found. We have also investigated the influence that Saharan dust intrusions and high pollution episodes have upon the sulfate and nitrate concentrations. Both types of events increased NO3 and SO42− levels, particularly the high pollution episodes.  相似文献   

12.
Both surface environmental monitoring and satellite remote sensing show that North China is one of the regions that are heavily polluted by NO2. Using the NO2 monitoring data from 18 major cities in the region, the tropospheric NO2 column density data from the Ozone Monitoring Instrument (OMI) on the Aura satellite, and the observations from the China Meteorological Administration network, this paper analyzes a regional NO2 pollution event in February 2007 over North China, examines the convergence of the pollutant, and identies its correlation with the atmospheric background conditions. The results show that daily mean NO2 concentrations derived from surface observations are consistent with the mean values of the OMI measurements, with their correlation coeficient reaching 0.81. The correlations of NO2 concentration with general weather patterns and sequential changes of temperature structure from 925 hPa down to the surface indicate that the weather fronts, high pressure and low pressure systems in the atmosphere play a role in changing the temporal and spatial evolutions of NO2 through removing, accumulating or converging of the pollutant, respectively. It is also found that the eastern Taihang Mountains is most heavily polluted by NO2 in North China. Based on a model that correlates NO2 column density with surface wind vector, the relation of the NO2 concentrations in six major cities in North China to the surrounding wind field is analyzed. The results show that the maximum wind field is associated with the highest frequency of pollution events, and under certain large-scale atmospheric conditions together with the topographic effect, small- and meso-scale wind fields often act to transport and converge pollutants, and become a major factor in forming the heaviest NO2 pollution event in North China. Analysis of the causes for the severe NO2 pollution event in this study may shed light on understanding, forecasting, and mitigating occurrences of heavy NO2 pollution.  相似文献   

13.
辽宁空气中度污染和重污染天气类型分析   总被引:2,自引:1,他引:2       下载免费PDF全文
统计分析了2005-2009年辽宁省14个城市5种污染物逐日的污染指数API数据,基于东北低压型、南大风型、干冷锋北大风型和夏秋大雾型四种易形成辽宁地区沙尘污染的天气类型,对污染天气类型进行归类统计分析。结果表明:重污染和中度污染天气中PM10污染所占比例最高,污染天气类型主要是干冷锋北大风型。  相似文献   

14.
Summary Graz, a historical grown city in the south-east of Austria, sometimes faces problems with air pollution, mainly during wintertime. The old part of the city is the largest residentially used historical downtown in Central Europe. Due to its geographical position at the southeastern edge of the Alps, Graz often has weather situations with calm winds and strong inversions between October and March. The local wind system is marked by wind shears: near the surface, cold air flows in from the south, while in higher altitudes warm air from the north flows over the basin of Graz. During these winterperiods with mighty inversions air quality values exceed the threshold limits. The reason is that the old structure of the downtown area with narrow streets and a lot of old domestic heating systems in many of the old buildings causes relatively high pollution levels. In the winter of 1988/89, the NO2 threshold values for smog-alarm (0.8 mg/m3, 3-h mean value) were exceeded several times at three air quality monitoring stations in the city of Graz. Therefore, a research project was initiated with the aim to find out the reasons for the bad air quality. The project comprised the setting up of an emission inventory as well as meteorological measurement campaigns and numerical simulations concerning the pollution dispersion in the area of Graz. The following report will try to show the interaction of the emission inventory on one hand and the determinations of flow conditions and pollutant dispersion on the other hand in order to analyze the air quality in the city. The emission inventory contains the emissions of air pollutants in a high temporal and spatial resolution. Before determining the surface flow fields, the meteorological conditions leading to the high pollution values were analyzed. After that, the boundary conditions were defined with the help of tethered balloon measurements. With these boundary conditions, quasi-steady-state flow fields were simulated. The dispersion of pollutants was calculated in a transient form using the stored flow fields. Conversion of pollutants was determined with the help of a parameterized version of the Eschenroeder-Martinez reaction mechanism. The period of winter 1990/91 with the highest pollution concentration was simulated to validate this model. The results show that the simulated and measured values of CO, NO and NO2 correspond well with each other in the centre of the city, while the correspondence is not as good in the outskirts of the city were lower pollution levels are observed. It turned out that the suggested methodology is well suited for analyzing winter situations with high pollution levels.With 10 Figures  相似文献   

15.
Particulate air pollution is associated with adverse health effects to the population exposed. The aim of this paper is the identification of local and regional sources, affecting PM10 and PM2.5 levels in four large cities of southern Europe, namely: Lisbon, Madrid, Marseille, and Rome. Air pollution data from seven sampling sites of the European Union network were used. These stations were selected due to their ability of monitoring PM2.5 concentrations and providing reliable series of data. Each station’s background was also taken into account. Pearson correlation coefficients and primal component analysis components were extracted separately for cold and warm periods in order to define the relationships among particle matters (PMs) and gaseous pollutants (CO, NO2, SO2, and O3) and evaluate the contributions of local sources. Possible seasonal variations of PM2.5/PM10 ratio daily values were also used as markers of PM sources, influencing particulate size distribution. Particle emissions were primarily attributed to traffic and secondarily to natural sources. Minimum daily values of PM2.5/PM10 ratio were observed during warm periods, particularly at suburban stations with rural background, due to dust resuspension and also due to the increase of biogenic coarse PM (pollen, dust, etc.). Hybrid Single-Particle Lagrangian Integrated Trajectory Model trajectory model was used in order to compute the 4-day backward trajectories of the air masses that affected the four cities which are under study during days with recorded PM10 exceedances, within a 5-year period (2003–2007), at 300, 750, and 1,500 m above ground level (AGL). The trajectories were then divided to clusters with a K-means analysis. In all four cities, the influence of slow-moving air masses was associated with a large fraction of PM10 exceedances and with high average and maximum daily mean PM10 concentrations, principally at the 300 m AGL analysis. As far the issue of the increased PM10 concentrations, the results were weaker in Marseille and particularly in Rome, probably due to their greater distance from Northwest Africa, in comparison to Madrid and Lisbon. Dust intrusions from the Sahara desert and transportation of Mediterranean/Atlantic sea spray, were characterized as primary regional sources of exogenous PM10 in all four cities. Continental trajectories from the industrialized northern Italy affected PM10 levels particularly in Marseille and Rome, due to their more eastern geographical position.  相似文献   

16.
Summary Air pollution measurements from January 1999 to December 2003 were studied in 14 sites covering most of Egypt, with the aim of understanding the governing processes pollutants phase interaction. The nature of the contributing sources has been investigated, and some attempts have been made to indicate the role played by neighboring regions in determining the air quality at these sites. The seasonal variability of particulate matter (PM10) and some gaseous pollutants (e.g., SO2, NO2, CO and O3) were analyzed. Their relationships with meteorology were also examined. The results reveal that levels of major air pollutants were not significantly different at the rural and background sites during any season. On contrary the high atmospheric loading for PM10, CO and SO2 was frequently observed in winter at the urban sites. As expected, the prevailing winds were found to have an influence not only on air pollutants but also on the correlation between them.  相似文献   

17.
In situ aircraft measurements of O3, CO,HNO3, and aerosol particles are presented,performed over the North Sea region in the summerlower stratosphere during the STREAM II campaign(Stratosphere Troposphere Experiments by AircraftMeasurements) in July 1994. Occasionally, high COconcentrations of 200-300 pbbv were measured in thelowermost stratosphere, together with relatively highHNO3 concentrations up to 1.6 ppbv. The particlenumber concentration (at standard pressure andtemperature) between 0.018-1 m decreased acrossthe tropopause, from >1000 cm-3 in the uppertroposphere to <500 cm-3 in the lowermoststratosphere. Since the CO sources are found in thetroposphere, the elevated CO mixing ratios areattributed to mixing of polluted tropospheric air intothe lowermost extratropical stratosphere. Further wehave used a chemical model to illustrate that nitrogenoxide reservoir species (mainly HNO3) determinethe availability of NOx (=NO + NO2) andtherefore largely control the total net O3production in the lower kilometers of thestratosphere. Model simulations, applying additionalNOx perturbations from aircraft, show that theO3 production efficiency of NOx is smallerthan previously assumed, under conditions withrelatively high HNO3 mixing ratios, as observedduring STREAM II. The model simulations furthersuggest a relatively high O3 productionefficiency from CO oxidation, as a result of therelatively high ambient HNO3 and NOxconcentrations, implying that upward transport of COrich air enhances O3 production in the lowermoststratosphere. Analysis of the measurements and themodel calculations suggest that the lowermoststratosphere is a transition region in which thechemistry deviates from both the upper troposphere andlower stratosphere.  相似文献   

18.
太原地区灰霾天气特征及影响因子分析   总被引:3,自引:1,他引:2  
利用2008~2012年太原常规地面气象观测资料、高空探测资料和大气污染物观测资料,对主要天气形势、典型气象要素以及空气污染状况下灰霾天气特征及形成机制进行了综合分析。结果表明:1)太原地区灰霾出现频率存在明显的季节变化,冬半年灰霾出现天数占全年的65.7%;一天中08:00(北京时间,下同)至13:00发生灰霾的频率较高。2)霾日静风频率较高,主导风向为偏东南风;重度灰霾天气出现时相对湿度较高。3)霾日的大气稳定度主要表现为稳定类;霾日平均混合层高度比非霾日低约100 m;08:00逆温出现次数高于20:00,霾时平均逆温强度和厚度高于非霾时。4)高压类型天气形势对灰霾的产生有重要影响,低压天气形势下较少出现灰霾天气。5)可吸入颗粒物、SO2和NO2浓度在非霾日比霾日分别下降32.6%、48.6%、21.7%;随着灰霾等级的增加,SO2和可吸入颗粒物的浓度有显著的增加。6)灰霾天气下到达地面的太阳辐射强度明显减弱,日照时数明显减少。  相似文献   

19.
根据2000-2008年冬季逐日08时高空500 hPa、地面天气图和官方网站发布的乌鲁木齐市逐日大气污染指数API值,分析了全市大气污染概况及季节分布、月际变化特征,研究了环流形势对全市空气质量的影响。结果表明:影响乌鲁木齐市的环流形势分为高空7型和地面5型,分析各型环流形势与冬季严重污染日相关性;最易引发冬季严重污染的环流形势是高空脊中型、地面低压型,其次为脊前型或空档型、地面高压后型。  相似文献   

20.
Study of a high SO2 event observed over an urban site in western India   总被引:1,自引:0,他引:1  
Continuous measurements of SO2, NOx and O3 along with sampling based measurements of CO, CH4, NMHCs and CO2 were carried out during May, 2010 at Ahmedabad. The diurnal variations of SO2 in ambient air exhibited elevated values during the night and lower levels during the sunlit hours. The mean concentration of SO2 during the study period was 0.95 ± 0.88 ppbv. However, the ambient SO2 exceeded 17 ppbv in the night of 20 May, 2010. On the same day, tropospheric columnar SO2 from OMI showed almost 350% increase corroborating the surface observations over an extended height regime. This was also the highest columnar value of SO2 during the summer of 2010. Columnar loadings were also found to be high for formaldehyde, precipitable water vapor and aerosol optical depth on 20 May. Elevated concentrations were also recorded for other trace gases like NO2 and O3. Analysis of related data of trace gases indicated characteristics of fresh emissions with dominant contributions from mobile sources during the study period. However, SO2/NO2 ratio of 0.36 during the event period on 20th May connotes non-local influences. Analyses of meteorological parameters suggest combined impacts of transport and inversion causing higher levels of SO2 and other pollutants during 20?C21 May. Episodes of such enhancements may perturb chemical and radiative balance of the atmosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号