首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
本文给出一种用积分方程法配合有限差分法计算位于导电介质中三维导体的电磁响应的新途径,在二层大地条件下给出了具体计算方法和结果。详细讨论了围岩介质的导电性对导体异常的影响。这对于开展低阻覆盖层地区的电磁法工作具有一定的指导意义。  相似文献   

2.
本文给出一种用积分方程法配合有限差分法计算位于导电介质中三维导体的电磁响应的新途径,在二层大地条件下给出了具体计算方法和结果。详细讨论了围岩介质的导电性对导体异常的影响。这对于开展低阻覆盖层地区的电磁法工作具有一定的指导意义。  相似文献   

3.
层状介质中三维大地电磁模拟   总被引:1,自引:0,他引:1       下载免费PDF全文
本文发展了积分方程法用于层状介质中三维不均匀体的大地电磁模拟算法(简称MT).分为二个步骤:第一步,异常体用等效的散射电流代替,通过层状介质中的格林函数,建立以散射电流为未知参数的积分方程;第二步,把求得的散射电流乘上相应的格林函数,即得地面上的二次电磁场,由此而计算出各种MT响应. 文中采用了数值滤波与插值、群变换以及格林矩阵带状化三个方面的数值处理方法,提高了计算效率.通过与已发表的三维MT计算结果对比及格林函数互易性检验,表明了该算法的正确性.在此基础上,进行了数值模拟,初步讨论了三维MT曲线的畸变特点.  相似文献   

4.
植被电磁散射的半空间模型研究   总被引:1,自引:0,他引:1       下载免费PDF全文
本文给出了地面植被电磁散射的半空间模型研究方法.在以往的相关文献中,均采用自由空间格林函数求解单个叶片散射体的散射场,本文利用半空间并矢格林函数求出了单个散射体的散射场,然后运用Monte Carlo方法模拟生成地面植被层,得到了在半空间下植被层的电磁散射特性,计算出了单、双站雷达散射截面,并与自由空间下的散射场做了相互对比.结果表明,在半空间格林函数下得到的散射场更为适用于描述地面植被的电磁散射特性.  相似文献   

5.
Summary The calculation of the elements of Green's tensor function is presented for solving the problem of the electromagnetic induction by means of a vector integral equation. A two-layered Earth is considered as the medium, the surface layer including a three-dimensional conductivity inhomogeneity. Use is made of the boundary condition requiring the vertical component of the electric current to be zero at the Earth's surface which partly simplifies the theoretical computation. Long-period asymptotics of the individual complicated functions, occurring in Green's tensor function as well as in the tensor function required to calculate the components of the anomalous magnetic field at the surface of the halfspace, were effected. With the aid of these asymptotics one can obtain estimates of the functions occurring in the theoretical analysis of the problem.  相似文献   

6.
长白山天池火山区介质非均匀性   总被引:4,自引:1,他引:3       下载免费PDF全文
高频S波随着传播距离的增大其均方根(RMS)包络逐渐变宽,我们把这种现象称为S波包络展宽现象.S波传播路径上随机分布的非均匀体对S波的多次前向散射和绕射作用是导致S波包络展宽现象的主要原因,因此可用S波包络展宽现象来研究介质非均匀性.本文采用S波包络峰值延时来对S波包络展宽现象进行量化.S波包络峰值延时定义为S波初至与其均方根包络峰值最大值之间的时间差.本文选用长白山天池火山区的小震记录,运用S波包络峰值延时对长白山天池火山口地区的介质非均匀性进行了评价.结果发现长白山天池火山区呈现强烈的介质非均匀性,在0~2 km深度范围内介质非均匀性表现出南部强北部弱的空间分布特征;在2~5 km深度范围内介质非均匀性的空间分布特征与频率具有相关性;天池火山区介质非均匀性具有明显的多尺度特性;强弱非均匀性接触带,往往是地震频发地带.根据地震与非均匀体在空间分布的相对位置,我们认为火山区介质非均匀性可能反映了火山早期喷发堆积物介质结构的差异.  相似文献   

7.
根据Naxwell方程,首先引入赫兹矢量,导出了层状介中电偶极子源激发电场的亥姆霍兹方程和边界条件,并对其进行求解,得到了地表电场表达式,对于分布有断层的层状介质根据Maxell方程,引入格林张量,导出了地表电场的积分表达式,从而为地电场变化的数值模拟研究提供了理论公式。  相似文献   

8.
The calculation of reflection and transmission coefficients of plane waves at a plane interface between two homogeneous anelastic media may become ambiguous because it is not always obvious how to determine the sign of the vertical component of the slowness vector of the scattered waves. For elastic media, the sign is determined by applying so-called radiation condition when the slowness vector is complex-valued, but it has long been known that this approach does not work satisfactorily for anelastic media. Other approaches have been suggested, e.g., by requiring that the reflection and transmission coefficients should vary continuously with increasing incident angles, or by relating the sign to the direction of the energy flux. In the present paper, it is shown that these approaches may give different results, and that the results can be inconsistent with the elastic case even for weak attenuation. Instead, it is demonstrated that the ambiguity in the reflection coefficient can be resolved by expressing the seismic response of a point source over an interface as a superposition of plane waves and their reflection coefficients, and solving the resulting integral by the saddle point approximation. Although the saddle point itself (point of stationary phase) does not provide new insight, the ambiguity is removed by considering the steepest descent path through the point. Ray synthetic seismograms computed by this method compare well with synthetics computed by the reflectivity method, which does not suffer from the above-mentioned ambiguity since the integration path is taken along the real axis. This paper concentrates on the isotropic case, but it is discussed how the result may be extended to layered transversely isotropic media. The suggested approach, derived for a point source and plane layers, does not directly apply to 2-D or 3-D laterally inhomogeneous media, or to media of general anisotropy. A generalization of the result found is that the sign of the vertical slowness components should be chosen according to the energy flux direction for subcritical incidence and according to the radiation condition for supercritical incidence, even if this creates a discontinuity in the coefficients at the critical incidence angle. Such a discontinuity is sometimes necessary to get results which are consistent with the elastic case. It is discussed how the generalized result can be obtained by applying certain continuity criteria for the sub-and supercritical angle intervals, but the validity of this approach for general models remains to be proved.  相似文献   

9.
To improve the understanding of the near-field soil and topographic amplification effects, an analytical solution by the authors for the scattering of plane SH waves by a radially inhomogeneous semi-cylindrical valley is extended to the case of a line source of cylindrical SH waves. Upon confirmation of its accuracy with past exact solutions for a homogeneous and an inhomogeneous semi-cylindrical valley under far-field plane SH waves, the extended solution is used to calculate the ground motion amplification factors for both the homogeneous and inhomogeneous valleys subjected to near-field waves. A comprehensive parametric study is conducted with respect to the location of the wave source, the dimensionless frequency of the incident waves, and the inhomogeneity degree of the covering soil layer. It is found that more amplifications and reductions of ground motions will occur within a certain range in and around the valley as the sources are located further. Consistent with the far-field case, it is confirmed that an increase of the degree of inhomogeneity of the covering soil layer generally amplifies the ground motions significantly.  相似文献   

10.
Geological media are invariably non-homogeneous, which complicates considerably the analysis of seismically induced wave propagation phenomena. Thus, closed-form solutions in the form of Green's functions are difficult to construct, but are quite valuable in their own right and often play the role of kernels in boundary integral equation formulations that are used for the solution of complex boundary-value problems of engineering importance. In this work, we examine in some detail the types of wave-like equations that result from vector decomposition of the equations of motion for the infinitely extending non-homogeneous continuum, which would be a first step for evaluating Green's functions. Specifically, an eigenvalue analysis is first performed, followed by computations using the finite difference method for a specific example involving a soil layer with quadratically varying material parameters. The aforementioned wave-like equations, defined in terms of dilatational and rotational strains, are originally coupled. Their uncoupling involves use of algebraic transformations, which are in turn valid for certain restricted categories of non-homogeneous materials. Numerical solution of these equations clearly shows attenuation patterns and phase changes that are manifested as the incoming wave disturbance is continuously scattered by non-constant material stiffness values encountered along the propagation path.  相似文献   

11.
Decoupled elastic prestack depth migration   总被引:1,自引:0,他引:1  
This paper presents a new decoupled form of the formula for common-shot or common-receiver amplitude-preserving elastic prestack depth migration (PreSDM), which can be used for estimating angle-dependent elastic reflection coefficients in laterally inhomogeneous anisotropic media. The multi-shot or multi-receiver extension of this formula is suitable for automated prestack amplitude-versus-angle (AVA) elastic inversion of ocean-bottom cable (OBC), walkaway VSP (WVSP) or standard towed-cable data at any subsurface location. The essence of the theory is a systematic application of the stationary-phase principle and high-frequency approximations to the basic elastic Green's theorem. This leads to nonheuristic explicit wave mode decoupling and scalarization of vector PreSDM. Used in combination, ray-trace and finite-difference (FD) eikonal solvers create a useful tool to calculate accurate Green's function travel time and amplitude maps. Examples of synthetic OBC data and applications to field WVSP data show that the new imaging technique can produce a clear multi-mode elastic image.  相似文献   

12.
The bipole-dipole resistivity technique, which uses a single current source (bipole) to map variations in (apparent) resistivity has been much criticized in the past. A series of 3D models are used to show that the use of two distinct current bipoles in the same location but with different orientations, combined with analysis in the form of a previously defined tensor apparent resistivity, can greatly improve many aspects of bipole-dipole mapping. The model study shows that, for measurement stations more than a few bipole lengths from the current source, the apparent resistivity tensor behaves, to a close approximation, as though the current bipoles are idealized dipoles, and hence is independent of the orientation of the individual current sources used. Any pair of current bipoles (in the same location but with different orientations) can therefore be used to determine the tensor resistivity properties. The invariants of the apparent resistivity tensor have considerable advantages over the normal scalar apparent resistivities. Modelling shows that although the electric field vector corresponding to a single current bipole can be highly perturbed by a local inhomogeneity for some considerable distance beyond the inhomogeneity itself, the tensor invariants are virtually unperturbed beyond the extent of the inhomogeneity. Hence false anomalies, which are a characteristic of apparent resistivity measured using only single current bipole models, are almost completely eliminated by the use of tensor invariants. Of the possible tensor invariants, the invariant given by the square root of the determinant gives the best representation of a buried 3D body. Resistivity anomalies are localized, and occur only over the causative body. Even with complex models involving several buried bodies, the tensor invariants clearly delineate the extent of each body. Outside the bounds of perturbing bodies, the tensor data can be analysed by conventional techniques, for example, to determine layered structure.  相似文献   

13.
电阻率随位置线性变化时的三维大地电磁模拟   总被引:5,自引:5,他引:5       下载免费PDF全文
采用积分方程法实现了对三维体电磁散射的数值模拟研究.在分析电张量格林函数的基础上,针对大地电磁情形,进行了数值模拟研究.分析了异常体的横向走向长度对电磁响应的影响,特别对电阻率作线性变化的异常体进行了数值分析,并得到了相应测深曲线.对三维电磁测深进行了分析,考察了地层参数的影响,得到了一些重要结果.  相似文献   

14.
We propose an inversion scheme for retrieval of characteristics of seismic point sources, which in contrast to common practice, takes into account anisotropy. If anisotropy is neglected during inversion, the moment tensors retrieved from seismic waves generated by sources situated in anisotropic media may be biased. Instead of the moment tensor, the geometry of the source is retrieved directly in our inversion; if necessary, the moment tensor can be then determined from the source geometry aposteriori. The source geometry is defined by the orientation of the slip vector and the fault normal as well as the strength of the event given by the size of the slip and the area of the fault. This approach allows direct interpretation of the source geometry in terms of shear and tensile faulting. It also makes possible to identify volumetric source changes that occur during rupturing. We apply the described algorithm to one event of the 2000 West Bohemia earthquake swarm episode. For inversion we use information of the direct P waves. The structure is approximated by three different models determined from travel-time observations. The models are inhomogeneous isotropic, inhomogeneous anisotropic, and homogeneous anisotropic. For these models we obtain seismic moments MT = 3.2 − 3.8 × 1014 Nm and left-lateral near-vertical oblique normal faulting on a N-S trending rupture surface. The orientation of the rupture surface is consistent with fault-plane solutions of earlier studies and with the spatial distribution of other events during this swarm. The studied event seems to be accompanied by a small amount of crack opening. The amount of crack opening is slightly reduced when the inhomogeneous anisotropic model is assumed, but it persists. These results and additional independent observations seem to indicate that tensile faulting occurs as a result of high fluid pressure.  相似文献   

15.
Anisotropic material properties are usually neglected during inversions for source parameters of earthquakes. In general anisotropic media, however, moment tensors for pure-shear sources can exhibit significant non-double-couple components. Such effects may be erroneously interpreted as an indication for volumetric changes at the source. Here we investigate effects of anisotropy on seismic moment tensors and radiation patterns for pure-shear and tensile-type sources. Anisotropy can significantly influence the interpretation of the source mechanisms. For example, the orientation of the slip within the fault plane may affect the total seismic moment. Also, moment tensors due to pure-shear and tensile faulting can have similar characteristics depending on the orientation of the elastic tensor. Furthermore, the tensile nature of an earthquake can be obscured by near-source anisotropic properties. As an application, we consider effects of inhomogeneous anisotropic properties on the seismic moment tensor and the radiation patterns of a selected type of micro-earthquakes observed in W-Bohemia. The combined effects of near-source and along-path anisotropy cause characteristic amplitude distortions of the P, S1 and S2 waves. However, the modeling suggests that neither homogeneous nor inhomogeneous anisotropic properties alone can explain the observed large non-double-couple components.The results also indicate that a correct analysis of the source mechanism, in principle, is achievable by application of anisotropic moment tensor inversion.  相似文献   

16.
Helmholtz's equation with a variable wavenumber is solved for a point force through use of a first-order differential equation system approach. Since the system matrix in this formulation is non-constant, an eigensolution is no longer valid and recourse has to be made to approximate techniques such as series expansions and Picard iterations. These techniques can accommodate in principle any variation of the wavenumber with position and are applicable to scalar wave propagation in one, two and three dimensions, with the latter two cases requiring radial symmetry. As shown in the examples, good solution accuracy can be achieved in the near field region, irrespective of frequency, for the particular case examined, namely a wavenumber which increases (or decreases) as the square root of the radial distance from source to receiver. Finally, the resulting Green's functions can be used as kernels within the context of boundary element type solutions to study scalar wave scattering in inhomogeneous media.  相似文献   

17.
王鹏  王宝善 《地球物理学报》2020,63(5):1970-1985
地震应力降是表征震源特性的一个重要参数,通常由震源谱计算得到.但如何从大量地震的观测谱中校正路径和台站效应,准确地分离出震源谱并计算应力降,仍是一个难题.本文采用广义叠加反演方法通过分阶段叠加从观测谱中迭代分离出震源项、台站项和路径项,并利用分震级的叠加震源项与理论谱的拟合得到经验格林函数,再利用由经验格林函数校正后的真实震源谱估算出应力降.该方法不需要知道仪器响应、场地响应和传播路径上的衰减系数,并且不用事先假设震源具有自相似的恒应力降特征,计算效率很高,适用于反演大量地震的震源参数.我们将广义叠加反演方法应用于长岛震群,利用S波谱估算了1431个ML≥1.0地震的应力降.结果表明,广义叠加反演方法获得的震源参数和用传统方法得到的结果一致;长岛震群地震的应力降较小(中值是0.3 MPa),变化范围很大(0.009~3.04MPa之间),属于低应力降事件集;同时应力降中值随地震矩增大而增大,偏离了自相似理论.应力降空间变化不均匀,高应力降事件主要集中在震群的端部(NW端),到最近断层距离的依赖性不强,在9、10km处的应力降中值略高于其他深度.根据应力降的变化特征和区域构造条件,我们推测地下流体在长岛震群的活动中起到一定的作用.  相似文献   

18.
平面SV波在饱和半空间中沉积谷地周围的散射   总被引:1,自引:0,他引:1  
采用一种特殊的间接边界积分方程法,求解了平面SV波在饱和半空间中任意形状沉积谷地周围的二维散射问题。结合饱和半空间中膨胀波源和剪切波源格林函数,由分布在沉积和半空间交界面附近两虚拟波源面上的波源分别构造沉积内外的散射波场,由交界面连续条件建立方程并求解确定虚拟波源密度,总波场反应即可由自由波场和散射波场叠加而得。然后通过边界条件验算、退化解答与现有结果的比较以及稳定性检验,验证了方法的计算精度。通过一组典型算例,研究了平面SV波在饱和半空间中沉积谷地周围散射的基本规律,详细给出了不同参数情况沉积谷地附近地表位移幅值和孔隙水压,着重分析了入射SV波频率和角度、边界渗透条件、沉积孔隙率等因素对场地反应的影响,得出了一些有益的结论。  相似文献   

19.
A general approach to the construction of differential boundary conditions for vector fields satisfying the Helmholtz equation is proposed on the basis of the field expansion in multipole series and the application of annihilating operators to them. The resulting differential constraints can be used as boundary conditions in solving external boundary value problems. Examples of their application to the solution of forward geoelectric problems in three-dimensionally inhomogeneous media are examined. Their use at a finite distance from the source of an anomaly is shown to yield more accurate results than those obtained under the assumption that the anomalous field at this distance vanishes. Another effect of their application is a substantial decrease in the dimensions of the modeling domain and therefore in the time required to solve the forward problem. The “safe” distance for using the Dirichlet-type boundary conditions is estimated.  相似文献   

20.
地球深部圈层及沉积盆地是一种分区非均匀介质系统,其中不规则地层边界(含起伏地表)对地震波的主要特征有显著影响,而地层的随机非均匀性则主要影响地震波的散射和衰减特征.为了精确刻画不规则地层边界对地震波的反射、透射效应以及非均质体散射引起的地震波衰减效应,全局广义R/T递推传播矩阵法(GGRTM)被提出并逐步发展成为继有限元和有限差分方法之后的另一种复杂介质高精度地震波传播半解析求解方法.在已有的此类方法中,不规则边界均匀地层GGRTM法的优势在于对不规则地层边界的反射和透射效应的准确模拟,而非均质地层薄板化GGRTM法则能准确描述非均质体散射对地震波衰减的影响.本文吸收这两种已有方法的优势,提出了一种考虑非均匀介质、不规则边界的全局广义R/T递推传播矩阵混合方法,并将其用于对边界不规则、层内非均质的复杂模型的二维SH波场模拟.随后在本文方法与边界元法对比研究的基础上讨论了方法的模拟精度.研究结果表明本文提出的混合法是一种解决复杂模型高精度地震模拟的有效方法.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号