首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
提出了一种基于GPS的多站实时时间传递算法,该算法将卫星钟差作为未知参数进行实时估计,利用测站间的共视卫星建立起各测站误差方程之间的联系,同时解算站间时间传递结果和卫星钟差。摆脱了对外部事后精密卫星钟差产品的依赖,不受卫星精密钟差产品精度和实时性的限制,只要站间有足够的共视卫星,即可实现时间传递。实验结果表明:该算法时间传递精度可以达到亚纳秒量级,能够应用于高精度实时时间传递。  相似文献   

2.
根据卫星双向共视法时间比对的基本原理,详细推导该时间同步方法在地心惯性系中精确到卫星和地面站速度的二次幂以及加速度的一次幂的计算模型,并以GEO卫星和GPS卫星为例,分析该计算模型中的距离改正项时延对地面站问相对钟差的影响量级.结果表明:对于GEO卫星、GPS卫星与地面站之间的比对,当要求1 ns的计算精度时,距离改正项时延只需要考虑到卫星速度项、地面站速度项的影响;当要求1 ps的计算精度时,还需要考虑到卫星速度二次幂项、卫星加速度项、地面站与卫星相对钟差对卫星速度项、地面站间相对钟差对地面站速度项的影响.  相似文献   

3.
卫星导航定位系统时间同步技术   总被引:8,自引:0,他引:8  
卫星导航定位系统测距的基础是测时,而定轨和定位的前提是各观测量的时间同步,因此,时间同步是卫星导航定位系统建设的关键。卫星导航定位系统中时间同步技术包括卫星与地面(星-地)和地面站间(地-地)的时间同步,主要时间同步方法有用于星-地时间同步的双向时间频率传递法(TWSTFT)、倒定位法等,以及用于地-地时间同步的TWSTFT、卫星共视法、搬运钟法等。本文重点介绍TWSTFT和卫星共视法进行时间同步的基本原理、精度分析和卫星导航定位系统的钟差预报。  相似文献   

4.
国家授时中心保持的协调世界时UTC(NTSC)(Coordinated Universal Time,National Time Service Center)与UTC的偏差保持在±10 ns以内。为了使远程用户获得高精度的UTC(NTSC)时间频率信号,利用国家授时中心保持的UTC(NTSC)时频信号和卫星共视时间比对方法,搭建了一套UTC(NTSC)远程复现系统,用于实现远程用户时间频率校准并能在远程恢复出UTC(NTSC)的时间频率信号。研究了基于UTC(NTSC)的时间频率远程复现方法,该方法基于改进的卫星共视法,可实现对用户本地参考时间与可视卫星钟的钟差进行连续实时监测,去除了传统共视时间传递方法中每个观测周期内的观测死时间;设计并实现了UTC(NTSC)远程复现系统,系统包括基准终端、配送终端和数据分析处理中心,基准终端测量UTC(NTSC)与可视卫星钟的钟差;配送终端测量本地原子钟与可视卫星钟的钟差,并在本地驾驭生成与UTC(NTSC)同步的时频信号;数据处理中心处理来自基准终端和配送终端的数据;评估了系统测量的不确定度,得出零基线条件下,系统授时精度达到0.8 ns;另外,通过对各远程用户不同类型钟的驾驭情况,得出铯钟的频率测量天稳达到2.84×10-14,铷钟的频率测量天稳达到8.24×10-14。  相似文献   

5.
卫星钟差质量直接影响到高精度用户的定位结果,因此需对钟差实时监测,即为卫星钟差完备性监测。它是导航系统完备性理论体系中重要的组成部分。本文基于BDS伪距观测值,利用多个BDS/GPS基准站计算卫星钟差并分析各卫星与不同基准站的观测值的残差,若某一卫星的观测值残差与其他卫星残差差异超过限值,应给出示警信息,实现BDS卫星钟差的完备性监测。基于上述理论,基于BDS网观测数据进行BDS卫星钟差完备性监测,并分析BDS卫星钟差的监测结果。该方法初步实现了BDS卫星钟差完备性监测,为后续BDS完备性监理论研究提供了一定的技术支持。  相似文献   

6.
时间同步技术是卫星导航定位系统设计的关键技术之一。根据卫星双向共视法时间比对的基本原理,详细推导了该时间同步方法在地心惯性系中精确到卫星和地面站速度的二次幂以及加速度的一次幂的计算模型,并以GEO卫星和GPS卫星为例,分析了该计算模型中的距离改正项时延对地面站间相对钟差的影响量级。结果表明:对于GEO卫星、GPS卫星与地面站之间的比对,当要求 的计算精度时,距离改正项时延只需要考虑到卫星速度项、地面站速度项的影响;当要求 的计算精度时,还需要考虑到卫星速度二次幂项、卫星加速度项、地面站与卫星相对钟差对卫星速度项、地面站间相对钟差对地面站速度项的影响。  相似文献   

7.
本文详细讨论了共视法的基本原理和模型,推导了共视法误差模型,分析了影响站间时间同步精度的因素,估算了在设定的误差预算条件下时间同步精度;最后处理了实际GPS观测值,实现了基于GPS共视法站间时间同步。用拟合法和闭合差法分析时间同步精度,结果表明共视法实现的站间时间同步精度为8ns。  相似文献   

8.
利用SLR和伪距资料确定导航卫星钟差   总被引:6,自引:0,他引:6  
提出了综合利用SLR和GPS伪距资料测定导航卫星钟差的方法,采用2002年10月的SLR和伪距实测数据计算了GPS 35卫星的钟差,并对GPS 35卫星的钟差进行了预报,为了验证计算结果的精度,将本文计算的卫星钟差与IGS精密钟差进行了比较.通过比较分析发现:综合利用SLR和伪距资料测定的导航卫星钟差精度优于3 ns,测定的导航卫星钟差与实际卫星钟差不存在系统差;导航卫星钟差的预报精度与计算卫星钟速的时间跨度有关;可以分离卫星坐标和卫星钟差之间的相互影响,便于对卫星钟差的研究.  相似文献   

9.
为了消除利用星间距离或速度观测值进行自主定轨时可能存在的卫星星座整体旋转和卫星钟差整体漂移的误差,提出利用单点定位的方法来研究并消除上述两项误差。当导航卫星整体旋转△Ω角时,单点定位所求得的测站经度也会偏移△Ω角,据此就能用具有精确地面坐标的控制点来测定△Ω角。当各卫星钟中均舍有系统误差△t时,利用单点定位所求得的接收机钟差中也会出现同样的误差,通过与标准时间比对就能测定△t值。算倒结果表明,该方法是有效的,可行的。  相似文献   

10.
我国北斗卫星导航系统由GEO/IGSO/MEO混合星座构成,基本每7~10 d就会有一颗GEO卫星或IGSO卫星进行轨控操作。从卫星轨控开始,卫星存在5~6 h的不健康时期。造成机动卫星长期不健康的关键因素之一在于卫星和测站钟差数据的积累周期较长。本文提出了一种基于预报钟差的轨道快速恢复算法,通过结合星钟和站钟预报压缩机动卫星定轨观测数据积累的时间,从而缩短卫星恢复所需时间。6组机动试验结果表明:采用预报钟差策略在快速恢复初期的前几个小时对轨道预报的贡献尤为显著,对第1组定轨URE预报贡献最大可达84.82%。从3~8 h期间6组定轨平均情况来看,采用优化策略的预报URE,C01平均降低了26.06%,C04平均降低了31.58%,C03降低了9.95%。经测试该方法至少能将卫星不可用时间压缩1 h,对北斗系统建设具有重要工程应用价值。  相似文献   

11.
基于区域CORS的实时精密卫星钟差估计研究   总被引:1,自引:0,他引:1  
区域连续运行参考站网(CORS)的广泛建立,为实时精密单点定位(PPP)提供了良好的平台保证。根据区域参考站网络的特点,本文提出了基于星间单差与历元间差分相结合的卫星钟差估计组合模型,确定了基于组合模型的实时卫星钟差估计策略,结合卡尔曼滤波参数估计方法,实现了区域1s采样间隔的精密卫星钟差数据的生成。通过重庆CORS的数据验证,表明该模型实时绝对卫星钟差和相对卫星钟差的精度均优于0.2ns,与国际IGS各分析中心估计的卫星钟差精度相当,满足了卫星钟差实时性的要求。该计算方法不仅可以用于CORS网本区域而且还可以用于距离CORS区域达数百公里以外的地区进行实时定位,这对于实时精密单点定位技术的实现具有重要意义。  相似文献   

12.
卫星钟差是影响卫星定位精度的重要误差源之一,而实时精密单点定位又要求卫星钟差实时更新。卫星钟差的解算可通过非差模型或历元差分模型实现,但非差模型涵盖较多的载波相位模糊度参数,相比消掉模糊度参数的历元差分模型,计算效率要慢许多。历元差分模型仅利用载波相位观测量就可获得高精度卫星钟差历元间差,恢复后的卫星钟差仍可达到一定精度水平。利用历元差分模型可实现北斗卫星钟差的实时解算,试验结果表明:通过滤波得到的卫星钟差历元间差精度优于0.02 ns,恢复后的卫星钟差精度优于0.25 ns.   相似文献   

13.
针对北斗频间卫星钟差偏差现有估计方法的不足,提出一种估计方法。该方法不仅顾及频间卫星钟差偏差的变化部分也顾及了其常数部分。采用10个观测站数据,验证了本文提出的算法,分析了北斗频间卫星钟差偏差的特性。在短期内,北斗频间卫星钟差偏差常数部分具有稳定性。对采用新算法计算得到的北斗频间卫星钟差偏差进行了模型化,结果表明,每颗卫星对应的频间钟差偏差可以利用10个参数予以高精度表示,对应精度可以达到厘米级。当采用第1天的模型参数进行第2天频间卫星钟差偏差值计算时,可实现厘米级结果。基于北斗频间卫星钟差偏差的稳定性与可模型化性,提出了高精度北斗卫星钟差服务策略,为我国高精度北斗卫星钟差服务提供参考。  相似文献   

14.
GPS/GLONASS卫星钟差联合估计过程中,由于GLONASS系统采用频分多址技术区分卫星信号,因而会产生频率间偏差(IFB)[1]。本文在GPS/GLONASS卫星定轨过程中的IFB参数特性分析的基础上,引入IFB参数,实现顾及频率间偏差的GPS/GLONASS卫星钟差实时估计。同时,为解决实时估计中待估参数过多导致的实时性较弱等问题,基于非差伪距观测值和历元间差分相位观测值改进实时估计数学模型,实现多系统卫星钟差的联合快速估计。结果表明:GPS/GLONASS联合估计时需引入IFB参数并优化其估计策略,采用MGEX和iGMAS跟踪站的实测数据进行实时钟差解算,快速估计方法可实现1.6 s逐历元快速、高精度估计,与GBM提供的最终精密卫星钟差相比,GPS卫星钟差实时精度约为0.210 ns,GLONASS卫星约为0.298 ns。  相似文献   

15.
卫星钟差质量直接影响到高精度用户的定位结果,因此需对钟差实时监测,即为卫星钟差完备性监测,它是导航系统完备性理论体系中重要的组成部分。本文基于完备性监测的理念,利用CORS网的GPS观测值,利用多个基准站计算卫星钟差,分析同一卫星多个站上观测值的残差,确定各卫星钟差的可用性,若某一卫星的观测值残差与其他卫星残差有显著差异,且超过限值,则认为该卫星钟差质量较差,应给出示警信息,实现卫星钟差的完备性监测。最后针对河北省CORS网的观测数据,实现了卫星钟差完备性监测。  相似文献   

16.
时间频率传递的结果会受到非模型化误差和观测噪声的影响,其噪声常为高频信号,构建低通滤波器可在一定程度上消除观测值序列中的高频噪声信号.本文对Vondrak滤波函数的本质进行剖析,通过IGG3算法对钟差序列进行定权并采用频率响应法选择适合的滤波因子;对不同的链路分别进行卫星双向时间频率传递(two-way satellite time and frequency transfer, TWSTFT)、基于软件接收机的卫星双向时间传递(two-way satellite time and frequency transfer based on software defined receiver, SDR-TWSTFT)和短基线共视时间频率传递实验,并对钟差结果采用抗差Vondrak滤波进行平滑去噪.结果表明:滤波后的钟差序列能够很好地反映原始钟差序列的趋势;平滑后的TWSTFT钟差结果,日波动效应得到了有效的抑制,精度有明显提升;对于共视钟差结果,精度有明显提升,与精密单点定位(precise point positioning,PPP)时间传递结果的差值保持在-1.0~1.0 ns范围内.  相似文献   

17.
GPS卫星星历的精度分析   总被引:4,自引:5,他引:4  
利用全球GPS永久性跟踪站WUHN(武汉)站在SA取消前后五天的广播星历文件计算得到在视卫星的位置和钟差,与事后IGS精密星历提供的卫星位置和钟差进行比较分析,说明SA取消对广播星历的影响。  相似文献   

18.
BeiDou-3试验卫星在北斗全球组网阶段起着重要的测试验证作用,精密轨道和钟差精度是衡量新卫星服务性能的重要标志。本文介绍了BeiDou-3试验卫星(C31、C32、C33和C34)可用的两种卫星天线相位中心改正参数;对比分析了不同天线相位中心改正策略对于精密定轨和卫星钟差确定的影响;定量分析了i GMAS跟踪站对试验卫星跟踪弧段的覆盖率差异。实验结果表明:卫星厂商提供的卫星天线相位中心参数精度更高,建议在精密数据处理中采用。采用卫星厂商天线相位中心改正参数的BeiDou-3试验卫星精密定轨1D RMS精度分别为38、30、49和70 cm,精密钟差精度除C34结果较差外其余均优于0.6 ns;4颗试验卫星跟踪弧段覆盖率分别为32%、42%、79%和80%。综合来看,C32卫星相对其余3颗卫星结果呈现出更好的性能。  相似文献   

19.
系统分析、比较了几种精密卫星钟差加密方法,研究了利用全球分布的IGS永久跟踪站的GPS观测数据估计高采样率卫星钟差参数的原理与方法,并将各种卫星钟差加密方法得到的结果与IGS数据分析中心估计的卫星钟差结果相比较。最后将不同加密方法得出的精密卫星钟差结果用于基于星载GPS双频非差观测值的CHAMP低轨卫星的定轨,并将不同方法得到的定轨精度进行比较。结果表明,利用地面跟踪站的GPS观测数据,可高精度、高密度地估计GPS卫星钟差,估计精度可达0.1~0.5ns。经地面GPS跟踪站数据估计的GPS卫星钟差,应用于基于PPP方法的低轨卫星定轨,其定轨精度在10cm以内。  相似文献   

20.
解算所有GPS卫星钟差时要求选用地面跟踪站能够观测到每颗卫星,而组成该网的跟踪站数量对卫星钟差的解算效率有较大影响。跟踪站数量越多,卫星钟差的解算效率就越低,不利于实时应用。本文利用不规则三角网对全球跟踪站进行建模,提出一种新的全球均匀选站方法,并应用于卫星钟差实时解算。试验结果表明:当跟踪站个数达到25个时,卫星钟差解算精度优于0.3 ns,且随着跟踪站的增加,精度无明显提升。此跟踪站分布可作为卫星钟差实时解算的一种选站分布参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号