首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
贵州牛角塘隔锌矿床是目前世界上最富镉的矿床:其含量是世界上其它铅锌矿床Cd含量的几到几百倍。在一个矿床中发现如此高含量和多种存在形式的硫镉矿在国内外尚未见报导。硫镉矿的存在状态如下:①呈包裹体产于硫化物中;②以不规则晶粒赋存于硫化物粒间:③硫镉矿一方铅矿或硫镉矿微脉基本都局限在闪锌矿内:④围绕黄铁矿中方铅矿包裹体四周分布:  相似文献   

2.
中国首次发现菱镉矿   总被引:1,自引:0,他引:1       下载免费PDF全文
国外菱镉矿早在1951年前就已被发现,近期在贵州牛角塘镉锌矿床中发现的菱镉矿为中国首次报道。菱镉矿的晶粒微小,一般只有几个微米,大者几十微米,常与菱锌矿、硫镉矿共生或伴生在一起,呈疏松集合体、皮壳或薄膜状产出。这一发现填补了中国矿物学上一个空白,菱镉矿在环境保护上具有重要意义。  相似文献   

3.
龙山铅锌矿区次生氧化富集带内的菱锌矿床,位于马蹄寨复向斜北西翼,主要赋存于中上寒武统娄山关群上部和下奥陶统南津关组底部的硅化体与灰岩接触界面附近,呈似层状、透镜状和原生铅锌矿床或硅化体产状基本一致。矿石成分主要为菱锌矿,次为异极矿、水锌矿。物相分析表明,菱锌矿主要以碳酸锌形式存在,次为碱式硅酸锌,属菱锌矿异极矿混合矿相。形成机理是:区内原生硫化物铅锌矿床(化)的下伏围岩属易溶性块状纯灰岩,处在潮湿气候下的长期氧化作用过程中,由于灰岩自身的溶解剂作用,和矿体(硅化体)底部灰岩层间及构造裂隙的控制,于碱性条件下形成。  相似文献   

4.
火烧云矿床是我国新发现具有超大型规模的非硫化物铅锌矿床,成因倍受关注.矿床主要由菱锌矿和白铅矿组成,形成块状及少量纹层状和角砾状矿石,构成了层状矿体.赋矿围岩为中侏罗统含沉积石膏的台地相碳酸盐岩,为密西西比河谷型矿床的典型赋矿围岩,而非喷流沉积型矿床的赋矿围岩.矿石中普遍出现被白铅矿交代的方铅矿残留,表明原生矿化为硫化物.方铅矿δ34SV-CDT值为-34‰^-18‰,显示还原硫的来源与细菌还原作用作用有关,这在MVT矿床中较为常见,而在与岩浆作用有关的铅锌矿床中少见.同时,矿床也不具有与岩浆有关的热液矿化和蚀变特征,故矿床的原生硫化物矿化应为MVT型.通过菱锌矿和白铅矿的O同位素组成,计算出形成这两种矿物的流体具有低温、低δ18O值的大气降水的特征,结合白铅矿交代方铅矿的这一现象,表明目前观察到的由菱锌矿和白铅矿构成铅锌矿体系是在表生作用下直接交代原生硫化物矿体形成.  相似文献   

5.
贵州都匀牛角塘富镉锌矿同位素地球化学研究   总被引:2,自引:0,他引:2  
通过对牛角塘富镉锌矿的硫和铅同位素研究发现,该矿床同位素组成与其他含镉铅锌矿床明显不同,其硫同位素组成以富重硫为特征,δ^34S值变化范围不大,集中在 22‰~ 30‰;硫化物单矿物、矿石和乌训组地层岩石具有极其相近的铅同位素组成和高μ值(9.66~9.884)。表明该矿床的硫主要来源于寒武系地层硫酸盐或油田卤水,成矿物质铅主要来自铀钍相对富集的上部地壳岩石即清虚洞组白云岩(含矿地层)下伏地层乌训组页岩夹薄层灰岩,因此,牛角塘富镉锌矿成矿物质主要来源于上地壳即乌训组地层岩石,成矿时代为加里东运动的中晚期。  相似文献   

6.
兰坪金顶铅锌矿的氧化带特征   总被引:2,自引:0,他引:2  
矿体被沟谷切割,剥蚀垂深达三百米以上,约有一半的矿石为氧化矿。大气降水为地下水的唯一补给来源。含矿带为透水、含水层,矿带顶、底板隔水性良好,渗透水、地下水具层间流动性质。大气降水在渗透过程中对硫化矿物进行氧化的同时,其自身也被改造为宙含金属离子的含矿水。随着硫化物被溶解,氢氧化物、碳酸盐、硫酸盐矿物沉淀的反应往复进行,水中自由氧被大量消耗,缓慢流动的地下水在还原条件下释放出所携带的金属离子,最后形成硫化物沉淀,至使铅、锌、铁的氢氧化物,及硅酸盐、碳酸盐、硫酸盐、次生硫化物在氧化带依次出现。按标型矿物组合,可划分为褐铁矿——氢氧化物亚带;白铅矿——异极矿亚带;白铅矿——(水)菱锌矿亚带;铁菱锌矿——次生硫化物亚带;松散硫化物亚带。由于上述表生作用,矿石中碳酸盐围岩被大量淋失,铁、铅、锌成倍富集,形成规模巨大的次生氧化富集和次生硫化富集,地表分布有壮观的锌帽。矿体形状、内部结构都大为简单化,厚度增大,产状变缓。金顶铅锌矿氧化带分带,可与其他硫化矿床的氧化带相对比,但又自具特征。特别是发育铁菱锌矿——次生硫化物亚带。  相似文献   

7.
赵发  赵喷 《云南地质》2010,29(1):49-52
矿床中镉元素异常明显,以硫镉矿、不规则粒状、脉状充填嵌布于闪锌矿中。提出矿石生成顺序,为进一步找矿提供新依据。  相似文献   

8.
鲁苏西矿床位于刚果(金)加丹加外侧褶皱推覆带,属层控型铜钴矿床。矿床产出于新元古代加丹加超群矿山组还原性地层中,按层序关系分为三层矿体,即坎莫托段底部、白云岩化页岩段底部和刚波夫段底部,矿床受卢非利安造山活动的推覆挤压作用而呈向斜形态。矿石类型分为硫化矿和氧化矿,其中硫化矿主要矿石矿物有黄铜矿、硫铜钴矿、辉铜矿、硫钴矿等,矿化类型主要为浸染状、平行层理细脉状和脉状矿化,前两种矿化为成岩期(821~762 Ma)盆地卤水中的铜钴离子经生物还原作用沉淀形成,后者是由于卢非利安造山期(600~530 Ma)的推覆挤压作用促使早期硫化物再活化、运移并经热化学还原作用形成;氧化矿主要矿石矿物为孔雀石、硅孔雀石、菱钴矿和水钴矿,是在表生期低温(<50°C)流体作用下,经过硫化物氧化、流体酸中和、次生铜钴氧化物沉淀三个过程形成,由于铜钴元素的迁移性差异,形成氧化带上钴下铜的分层矿化特征。  相似文献   

9.
通过塔西南缘铅锌矿带金属硫化物(方铅矿、黄铁矿、黄铜矿、闪锌矿)的硫同位素测试研究,结果显示δ34S值范围在-38.3‰~24.0‰,具双峰式分布,推测两种或两种以上流体相混合是导致矿床硫同位素组成变化的主要原因,一类硫化物的δ34S值集中在-6‰~6‰,组成的矿石呈细粒、草莓状结构及浸染状构造;另一类硫化物的δ34S值集中在-32‰~-24‰,组成的矿石呈粗粒、脉状或角砾状构造。两种流体受构造应力和压实作用的影响,沿着断裂或岩石的裂隙运移并相混合,发生热化学硫酸盐还原反应,产生的HS-与Zn2+、Pb2+结合形成闪锌矿、方铅矿,在有利部位沉淀成矿。硫主要来源于海水硫酸盐。  相似文献   

10.
我国的某鉄錳矿床产于震旦系鉄岭阶內。整个含矿系与白云貭岩石有比較密切的关系。鉄錳矿层在含矿系內共有三个层位,它們由层状矿体或透鏡状矿体組成。根据矿床的产状及矿石的物貭組成、結构构造等特点来看,矿床无疑是属于沉积成因的。但在矿区內后期的安山岩岩系及輝綠岩岩脉也有发育,因之当矿石与它們接触的地方就經受了变貭作用。而在次生氧化带中則产生了次生氧化矿矿石,所以本区內的矿石可以分为三个不同的成因类型:一、原生氧化矿矿石(以水錳矿矿石为主)及碳酸矿矿石(多为鉄菱锰矿  相似文献   

11.
Nickel mineralisation occurs in shears in Archaean serpentinised peridotite near Nullagine, Western Australia. The principal nickel minerals are millerite, polydymite and pecoraite, which occur chiefly as concentrations of nodular grains, mostly between 1 and 5 mm in diameter. The polydymite represents a replacement of millerite, and is in turn partly replaced by gaspéite. The pecoraite grains generally contain several percent chromium, and are frequently rimmed by millerite‐containing magnetite. A similar type of nodule consists of nullaginite (Ni2(OH)2CO3). Other major minerals in the shears include various types of serpentine and magnesite, coarse chlorite, and apatite. The assemblage is cut by late veinlets of gaspéite, pecoraite, otwayite (Ni2(OH)2CO3.H2O), and nullaginite. Trace amounts of barite, cinnabar, parkerite, shandite, breithauptite, and nickeloan greenockite are also present.

The bulk of the mineralisation is attributed to the effects of hydrothermal and/or metasomatic activity along shears in the serpentine. Concretionary magnesite in some of the shears is believed to be the result of Tertiary weathering. The late veinlets of nickel minerals and the replacement of millerite and polydymite are attributed to supergene effects.  相似文献   

12.
Except forming two Cs-rich minerals like pollucite and londonite, cesium generally occurs in trace amounts in potassium-bearing minerals owing to its very low Clarke value and large ionic radius. However, in the Koktokay#3 pegmatite (Altai, NW China), lepidolite is extremely enriched in cesium (typically 21–26 wt% Cs2O). Cs-enriched lepidolite is restricted to the inner of the pegmatite, where four types of occurrence are characterized by using in situ techniques (EMP: electron microprobe, micro-XRD: micro-area X-ray diffractometer and Raman probe: micro-area Raman spectrometer) as: (1) outer zones on Cs-poor lepidolite cores; (2) fine overgrowths on muscovite veinlets; (3) veinlets in Cs-poor lepidolite and (4) veinlets in elbaite. There is an inverse correlation between K and Cs and in terms of VIAl versus Cs/(K+Cs), the Cs-dominant micas are an analog of the Li-rich mica polylithionite. Micro-XRD patterns and micro-Raman spectra indicate that Cs-dominant polylithionite structurally corresponds to minerals of the lepidolite series. According to its distribution and compositional characteristics, the Cs-dominant polylithionite seems to have formed at the magmatic to hydrothermal transition stage of pegmatitic magma evolution as a result of marginal replacement of early-formed lepidolite by Cs-rich fluids. Alternatively, it may have formed through direct precipitation from Cs-rich fluids. The results of the present study have important implications for the storage of nuclear waste in that Li mica such as polylithionite is a good candidate for immobilizing high-level radioactive cesium waste.  相似文献   

13.
Polymetallic sulfide ores (Zn, Pb, Fe, Cu, Ag, and Cd) found in the Alanish locality of northern Iraq are hosted by dolostone in the Late Permian Chia Zairi Formation. The Alanish locality is one of several Zn–Pb deposits that are widespread in northern Iraq, situated along the northern passive margin of the Arabian plate. This paper describes the ore deposit classification, mineral chemistry, and paragenetic sequence of the area and proposes an ore formation model. We report the presence of acanthite and greenockite for the first time in Iraq. A brine solution derived from the sedimentary basin formed the primary sulfide ore minerals (sphalerite, galena, acanthite, pyrite, chalcopyrite, greenockite, and marcasite). The pre-tectonic mineralization is characterized by replacement textures including (1) high-Fe, low-Zn, dark-colored, coarse-grained sphalerite; (2) deformed anisotropic coarse-grained galena; and, (3) idiomorphic cubes of crushed pyrite. Conversely, the post-tectonic mineralization is characterized by open-space filling textures, including (1) low-Fe, high-Zn, light-colored, fine aggregated sphalerite; (2) fine-grained galena; and, (3) the existence of acanthite and marcasite. Although galena is an Ag carrier, both mineralization phases contained non-argentiferous galena. Non-sulfides (smithsonite, cerussite, and goethite) have replaced older sulfides in many areas due to supergene process. Gangue minerals present are dolomite, calcite, barite, and siderite. Open spaces and cavity filling of small paleo-karsts, replacement, veins, and veinlets are common features of the ore body. Metals were sourced from brines generated in the sedimentary basin, whereas sulfur was derived from nearby evaporates. Sediment compaction and tectonic activity, probably during Late Cretaceous, were the driving forces that squeezed and moved ore-bearing fluids derived from the sedimentary basin. Multiple stages of ore-bearing fluids were epigenetically intruded into the Late Paleozoic dolostone, forming an epigenetic strata-bound Mississippi Valley-type deposit precipitated under a temperature of 120 °C, as indicated by the cadmium fractionation in sphalerite and galena. Dolomitization and tectonic activity provided the necessary permeability for accumulating ores. The main ore body is directly connected to a fault plane and to adjacent dolostone that is frequently fractured and brecciated.  相似文献   

14.
1INTRODUCTION TITANIUMMETALISPRODUCEDMAINLYFROMNATURAL RUTILEANDSYNTHETICRUTILEOBTAINEDBYENRICHEDILMEN ITE,ANDISWIDELYUSEDASHIGHTECHALLOYS,ESPECIALLY INTHEAIRANDSPACECRAFTINDUSTRYBECAUSEOFITSHIGH STRENGTHATHIGHTEMPERATUREANDRESISTANCETOCORRO SION.THEREISA…  相似文献   

15.
We report the presence of greenockite from the chromite–PGE–base metal sulfide association in the Bangur Gabbro, Baula-Nuasahi mafic–ultramafic complex. The CdS phase occurs, sans any precursor Cd-bearing phase, as minute grains within siderite micro-veins in close proximity to chlorite in the chalcopyrite + pyrrhotite + pentlandite + violarite assemblage. Using various calibrations, chlorite compositions yielded temperature ranges of 245 to 325 °C. The associated siderite might have formed at or little below the above temperature. Electron probe micro-analyses (EPMA) of greenockite reveal small amounts of Fe (1.01–1.61 wt.%), Zn (1.89–4.54 wt.%), and substitution of Zn for Cd. Laser-ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) analysis of chalcopyrite nearer to and away from siderite micro-veins that host greenockite confirms maximum Cd concentrations of 78 and 144 ppm, respectively, entailing possible derivation of Cd from chalcopyrite. We propose the transport of Cd as bisulfide complex in a low temperature alkaline and reducing fluid and the simultaneous precipitation of greenockite and siderite by reaction with Fe-rich minerals, aided by decrease in pH and/or increase in fO2.  相似文献   

16.
The Bugdaya Au-bearing W-Mo porphyry deposit, Eastern Transbaikal Region, Russia, is located in the central part of volcanic dome and hosted in the large Variscan granitic pluton. In its characteristics, this is a Climax-type deposit, or an Mo porphyry deposit of rhyolitic subclass. The enrichment in gold is related to the relatively widespread vein and veinlet gold-base-metal mineralization. More than 70 minerals (native metals, sulfides, sulfosalts, tellurides, oxides, molybdates, wolframates, carbonates, and sulfates) have been identified in stockwork and vein ores, including dzhalindite, greenockite, Mo-bearing stolzite, Ag and Au amalgams, stromeyerite, cervelleite, and berryite identified here for the first time. Four stages of mineral formation are recognized. The earliest preore stage in form of potassic alteration and intense silicification developed after emplacement of subvolcanic rhyolite (granite) porphyry stock. The stockwork and vein W-Mo mineralization of the quartz-molybdenite stage was the next. Sericite alteration, pyritization, and the subsequent quartz-sulfide veins and veinlets with native gold, base-metal sulfides, and various Ag-Cu-Pb-Bi-Sb sulfosalts of the gold-base-metal stage were formed after the rearrangement of regional pattern of tectonic deformation. The hydrothermal process was completed by argillic (kaolinite-smectite) assemblage of the postore stage. The fluid inclusion study (microthermometry and Raman spectroscopy) allowed us to establish that the stockwork W-Mo mineralization was formed at 550–380°C from both the highly concentrated Mg-Na chloride solution (brine) and the low-density gas with significant N2 and H2S contents. The Pb-Zn vein ore of the gold-base-metal stage enriched in Au, Ag, Bi, and other rare metals was deposited at 360–140°C from a homogeneous Na-K chloride (hydrocarbonate, sulfate) hydrothermal solution of medium salinity.  相似文献   

17.
The body of hydroxylellestadite metasomatic rock penetrated by a borehole drilled at the Gumeshevsk deposit at depths of 530–534 m includes a thin interval of younger lower temperature tobermorite-plombierite metasomatic rock with subordinate amounts of Ca-Si gel, tacherenite, cubic lime, and thaumasite. Hydroxylellestadite has never before been found in calc skarns. The hydroxylellestadite metasomatic rock is cut by gypsum and fukalite veinlets, and the tobermorite-plombierite metasomatic rock is intersected by thaumasite veinlets. The pristine rock of the metasomatics was marble, and the metasomatic rock replaced andradite-bearing wollastonite skarn (with wollastonite replaced by foshagite). The ore minerals (chalcopyrite, valleriite, sphalerite, and others) were formed after the hydroxylellestadite metasomatite but most probably before the tobermorite-plombierite metasomatic rock and the veinlets of calcic minerals. The metasomatic rock was produced at significant variations in the oxygen, sulfur, and carbon dioxide fugacities. The composition of the hydroxylellestadite is, according to its microprobe analysis, as follows (wt %): SiO2 17.10, TiO2 0.01, Al2O3 0.02, FeO 0.20, MnO 0.00, MgO 0.04, CaO 55.40, Na2O 0.14, K2O 0.09, P2O5 0.12, CO2 1.90 (chemical analysis), SO3 21.60, F 0.16, Cl 0.14, total 96.92. The plombierite (SiO2 43.8–44.1 wt %, CaO 30.5–31.1 wt %) in the metasomatic rock notably differs from rare plombierite (SiO2 48.18 wt %, CaO 39.19 wt %) contained in the veinlets of thaumasite (SiO2 12.70 wt %, CaO 30.69 wt %, SO3 17.78 wt %).  相似文献   

18.
Summary A new occurrence of greenockite is described from the Madjarovo ore district, Bulgaria. The mineral is closely associated with sphalerite and galena. Spectral reflectance and VHN data are, for the first time, given for chemically analyzed greenockite. Textural and geochemical evidence indicate a hypogene formation of greenockite, which crystallized during the late stages of the lead-zinc mineralization.
Greenockit aus den Pb-Zn Lagerstätten des Madjarovo-Distrikts, Ost-Rhodopien, Bulgarien
Zusammenfassung Es wird ein neues Vorkommen von Greenockit aus dem Madjarovo-Erzdistrikt, Bulgarien, beschrieben. Das Mineral tritt in enger Verwachsung mit Zinkblende und Bleiglanz auf. Spektrale Reflexionsdaten und Mikrohärtewerte, gemessen an chemisch analysiertem Greenockit, werden erstmals mitgeteilt. Texturelle Beziehungen und geochemische Hinweise deuten auf eine hypogene Bildung des Greenockits, der sich in der Spätphase der Blei-Zink Mineralisation bildete.
  相似文献   

19.
A new Cu-Au alloy occurrence is located at the southeastern flank of the Malye Kopty massif of ultramafic rocks in the Vendian-Early Cambrian Kaa-Khem ophiolitic belt. Lithic clasts with Cu-Au alloy segregations (up to 15 mm in size) intergrown with other minerals were found in alluvium of the Kara-Oss Creek valley, which extends along the fault zone crosscutting ultramafic rocks. Cu-Au alloy occupies the main volume of clasts and fills the network of veinlets in grained aggregates consisting of andradite (2–18% grossular component) and diopside (X Fe = 0.01–0.05). Cu-Au alloy contains small ingrowths of andradite (up to 43% grossular component), diopside (X Fe = 0.14–0.19), chlorite (penninite), chalcocite that contains up to 1.5 wt % Au, Cu-bearing greenockite (6.07–13.67 wt % Cu, 0.48–1.56 wt % Zn, and 0.76–1.06 wt % Au), and magnetite. The chemical composition of Cu-Au alloy is nonuniform. The central parts of large Cu-Au alloy segregations consist of Ag-bearing tetraauricupride (AuCu) blocks (3.2–6.4 wt % Ag). They contain veinlet-shaped AuCu zones with 13.3–14.5 wt % Ag. The AuCu blocks are cemented by late Cu-Au alloy, whose composition is close to auricupride (AuCu3). Taking into account the limits of component miscibility in the Au-Ag-Cu system, the temperature of the Cu-Au alloy formation was estimated at 350–600°C. This temperature corresponds to the formation conditions of garnet-pyroxene rodingite mineral assemblage (Plyusnina et al., 1993). The studied Cu-Au alloy samples from the Malye Kopty massif are very similar to Cu-Au alloy minerals hosted in the Alpine-type ultramafic rocks of the Karabash massif in the southern Urals. This similarity is confirmed by identical chemical compositions of pyroxene, garnet, and chlorite, and similar PT conditions of their formation. The data show that primary ore mineralization of gold-rodingite type occurs in the Kaa-Khem ophiolitic belt.  相似文献   

20.
The Shibangou gold deposit in western Henan is associated with irregular quartz veinlets occurring in altered shear zones dissecting a dioritic intrusion. The altered shear zones are characterized by silicification, pyriti-zation, sericitization, chloritization and K-feldspar alteration. Zoning of altered rocks adjacent to the Au-bearing quartz veins is obviously exhibited. Fine-grained sulphides and quartz veinlets of different ages and small-scale fissures are widely distributed in the central part of the altered zones. Major mineralization types in this gold deposit are Au-bearing quartz vehlets and altered rocks in the shear zones. Samples were collected from drilling cores according to the alteration zoning and mineralization type and all samples were analyzed for major and trace elements. Mass balance, volume change (fv=97.3-71.9%) and major element variation sequences are studied in terms of major elements. The changes of mobile components (SiO2, K.2O, Fe2O3 and CaO) and immobile component (Al2O3  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号