首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 162 毫秒
1.
洪泛湿地是位于水生系统和陆生系统之间的过渡带,在河流和陆地之间的水文生态方面起着纽带作用,受气候变化和人类活动的叠加影响,其水文过程改变很大程度上影响了湿地生态系统循环、结构和功能的稳定。本文以鄱阳湖洪泛区湿地为研究区,应用湖泊水动力和洪泛区地下水数值模型,评估鄱阳湖拟建水利枢纽工程对洪泛区地下水系统的影响。模拟结果表明,拟建水利枢纽工程将会遵循调度方案使得湖泊水位明显提高,但同时导致洪泛区地下水位的整体抬升,且东部主湖区附近的地下水位受到的影响(约1~3 m)要明显强于洪泛区其它区域(约小于1 m)。地下水位的变化同时导致不同典型时期洪泛区地下水流速的减小及地下水流向的改变,表现为枢纽建设后地下水流向的逆转和流速基本小于0.1 m/d。鄱阳湖涨水-丰水期总体为湖水补给洪泛区地下水模式,枯水-退水期主要为地下水补给湖水模式,但水利枢纽可能导致洪泛区地下水系统水均衡状态发生转变,影响了地下水系统的补给和排泄状态,最终形成了长期稳定的湖泊补给地下水的作用模式。从地下水-生态系统响应变化的角度分析,拟建水利枢纽建设引起的地下水位上升,可能会给湿地生物地球化学元素的迁移转化、植被群落的演变与退...  相似文献   

2.
受地表河湖系统水情变化干扰,高度动态和异质性的洪泛区地下水文对河湖水资源、水污染以及生态环境功能等方面具有重要影响和贡献。鄱阳湖洪泛区湿地在长江中下游具有重要区位优势和研究特色,但变化环境下其水动力特征和水量交换情况等仍存在许多不确定性。本文以鄱阳湖典型洪泛区为研究区,采用地下水流二维数值模型,开展了洪泛区地表地下水转化作用与水量变化的模拟研究。结果表明,鄱阳湖季节性水位变化很大程度上决定了主湖区与周边地下水之间的动态补排模式,即洪泛区地下水补给湖泊主要发生在枯水和退水时期,而湖泊补给地下水主要发生在涨水和高洪水位时期。一般情况下,整个洪泛区地下水位与湖水位的年内变化态势基本一致,主湖区附近的地下水位年内变幅较大,而大部分洪泛区的地下水位变幅相对较小。北部地下水流速明显大于南部,主湖区附近地下水流速明显大于洪泛区,地下水流速基本小于1~2 m/d。水均衡分析发现,洪泛区地下水系统以接受降雨输入(52%)和主湖区补给(39%)为主,以地下水蒸发输出(72%)和向湖排泄(24%)为主,但补给主要发生在春、夏季,而排泄则发生在秋、冬季。地形地貌对洪泛区地下水位分布以及流速场演化具有主控作用,...  相似文献   

3.
水是人类生存之源,而湖荡被称为地球之“肾”,是河湖水系连接的关键缓冲节点,与人类生存和发展息息相关。长三角平原水系众多,河流纵横,天然湖泊与人工沟渠遍布,平原湖荡湖水与周边地下水的水力联系较为频繁,而地下水对湖泊水均衡贡献尚不明确,对平原湖荡地下水赋存和运移规律的认识不足。本研究以苏州吴江区元荡湖为研究对象,选取氡同位素作为湖水和地下水水力交换过程的示踪剂,建立氡箱模型,揭示元荡湖不同区段与地下水的水力联系过程和补给关系,并通过水位动态验证分析湖水—地下水交互关系。枯水期元荡湖水位和氡浓度空间分布特征指示研究区内地下水向湖水排泄,其中以湖泊西侧较为明显,地下水入流补给的氡为7.137×106 Bq/d,输入量源项占比为90%,地下水流入量为4540.801 m3/d,地下水每日流入量对元荡湖水量的贡献率为2.551%。参数敏感性分析结果表明,风速与地下水222Rn活度为特别敏感参数,取值差异较大时会导致计算误差急剧增大,改善测点布置和提高模型参数精度能有效提高模型计算结果的准确性和可靠程度。借助氡同位素示踪方法,建立湖泊氡箱模型,是研究平原湖荡内地下水补、径、排特征的有效方法。本研究在一定程度上加深了对平原湖荡区域水量均衡的认识,有助于了解平原湖荡水均衡和水循环机制,为平原湖荡水资源开发利用与环境保护提供数据支撑。  相似文献   

4.
流域范围内地表水和地下水转化对盐湖成盐元素的运移和富集具有十分重要的意义.本文通过尕斯库勒盐湖盆地内流域水体的水化学和B同位素特征识别了地表水和地下水之间的定量转化关系,在此基础上估算了流域中铀的补给通量.结果表明,流域水体中离子的分异除了蒸发浓缩作用之外,还受重力分异及掺杂作用的影响;上游库拉木勒克萨伊河和阿特阿特坎河水体在出山口附近转入地下并在中游补给地表水和地下水,其补给率分别占48.8%和51.2%,年均补给量分别为1.08×108和1.13×108m3/a;在中游至尾闾盐湖段,阿拉尔河和侧向补给对盐湖卤水的补给率占55.2%,深部水体的补给占44.8%;至少从5.7 ka以来,上游水体对盐湖卤水中铀的补给通量为4.11×103t,在湖积平原黏土沉积带以及祁漫塔格山前局部还原带可能具有较大规模的铀矿.研究结果有助于建立盐湖盆地水循环模式、揭示卤水资源形成机制;同时为尕斯库勒盐湖盆地水资源的高效利用和寻找铀矿提供理论依据和技术支持.  相似文献   

5.
为深入认识鄱阳湖湿地区域水循环过程,于2019年1—12月在鄱阳湖国家级自然保护区对降水、河流水、主要碟形湖水进行系统采集,综合分析碟形湖-河流水稳定同位素的动态变化特征及其指示意义。结果表明,鄱阳湖湿地修河和赣江的同位素组成具有明显的季节性变化规律,4月河水同位素最为富集,5—7月逐渐贫化,之后呈现出不断富集的变化趋势,整体上与降水同位素的时间变化特性相似。在空间分布上,各段河水的同位素组成均具有相对稳定的沿程分布特征,赣江在修河汇入点上、下游的同位素特性在大多数月份没有呈现出明显变化。碟形湖水同位素的年内变化范围比河水大,并且相对富集。主要碟形湖水的δ2H-δ18O关系接近当地大气降水线,具有更小的蒸发线斜率以及系统性偏离的特征,反映碟形湖主要受到当地降水补给,经历了一定程度的蒸发作用。基于指数模型方法估算修河和赣江水体的平均滞留时间(mean residence time,MRT)分别为1.54和0.81年,赣江较短的MRT表明鄱阳湖流域具有不同水体组分相互快速转化的水力条件,修河上游柘林水库的调蓄作用导致其MRT明显大于赣江。通过假定...  相似文献   

6.
基于水平衡模型的呼伦湖湖泊水量变化   总被引:2,自引:2,他引:0  
针对北方寒旱区呼伦湖水位下降、水面萎缩的现象,根据气候特征,利用月水量平衡模型探究湖泊水文过程并揭示其变化规律.在此基础上,利用不同气候条件下各水平衡项对于湖泊水位的影响程度确定水位升降的直接原因.基于1963-1980年间水位的实测数据,根据水量平衡原理及其他辅助计算判断出湖泊与周边区域存在着地下水的交换,且具有一定的规律性,即历年11月至次年3月期间的累积降雪融化渗入土壤中形成浅层径流补给湖泊,而7、8月份湖泊补给周边草原.基于以上规律,根据周边坡面汇流、地下水与湖泊交换量的年内变化特征,利用水平衡方程式推算湖泊1981-2008年逐月水位变化,并与其他研究成果比较,吻合度较高.不同气候条件下,径流量对于湖泊水位的影响程度最为突出,是水位变化的主控因子.  相似文献   

7.
“引江济淮”工程调度运行后,水位抬升将影响越冬候鸟适宜生境(泥滩地和草本沼泽)的出露,并进而影响湿地植物和底栖生物出露程度,对越冬候鸟的栖息环境和食物可及性产生不利影响,尤其是影响到挖掘啄取集团和浅水取食集团的越冬水鸟.基于安徽菜子湖不同水位对应的遥感影像解译结果,分析了水位变化对菜子湖泥滩地和草本沼泽出露的影响,并构建了菜子湖主要湿地类型的面积对水位响应的函数关系.结果表明:候鸟越冬期菜子湖泥滩地和草本沼泽面积与水位均呈极显著负相关.当水位到达8.1和8.6 m时,菜子湖将分别减少约16.8%和10.0%以及30.4%和22.2%的泥滩地和草本沼泽.1956-2015年候鸟越冬期各月水位的变化趋势及水位大于8.1 m的机率分析表明,工程调度运行会对菜子湖生态水文过程产生一定影响.结果可为模拟不同水位对菜子湖主要湿地类型及面积的影响提供依据,并从工程的角度为菜子湖水位优化调度提供科学依据.但由于数据缺乏,未全面阐述湿地类型面积和生境的关系,研究存在一定的局限性.建议加强菜子湖候鸟越冬期生境适应性调度研究及生态环境监测,进一步掌握菜子湖越冬候鸟适宜生境及重要越冬水鸟种群数量和分布格局对水位变化的响应,用科学实验和生态环境监测数据来加强菜子湖水位优化调度.  相似文献   

8.
刘学文  李红清  杨寅群  仲夏  吴师  江波 《湖泊科学》2019,31(6):1662-1669
湖泊生态水位过程对维持湖泊生态系统结构、过程和功能的完整性具有重要意义,也是当今湖泊科学领域面临的重要科学问题.基于菜子湖湖区水位站(车富岭水位站) 1956-2018年日水位资料,采用pettitt突变检验法分析水位的突变性特征.结合年保证率法得到菜子湖车富岭水位站低水位值,并在此基础上分析了低水位发生时间及历时、候鸟越冬期水位变化速率及其生态水位的区间阈值.主要结论有:菜子湖车富岭水位站1956-2018年年均水位无显著突变.菜子湖车富岭水位站低水位发生时间均值为年内的344 d,年际标准差为27 d,低水位的年均历时为69 d,标准差为49 d,有6年(1978、1997、2015-2018年)未发生低水位事件.菜子湖候鸟越冬期水位变化速率的均值为-0.009 m/d,年均值为-0.034~0.009 m/d,日均值为-0.051~0.016 m/d.菜子湖低水位发生时间的区间阈值为332~351 d,历时的区间阈值为33~98 d,变化速率的区间阈值为-0.070~0.020 m/d.加强菜子湖候鸟越冬期湿地生境保护适应性调度试验研究及生态环境监测,为菜子湖输水水位优化控制和菜子湖湿地生态保护提供科学依据.  相似文献   

9.
姜星宇  姚晓龙  徐会显  张路 《湖泊科学》2016,28(6):1283-1292
反硝化(Denitrification,DNF)和硝酸盐异化还原为氨(Dissimilatory Nitrate Reduction to Ammonium,DNRA)是硝酸盐异养还原的2个主要途径.反硝化被认为是彻底去除水体氮负荷的主要过程;而硝酸盐异化还原为氨则将水体中的硝态氮转化为氨氮.2个过程均以硝酸盐为电子受体,并存在相互竞争关系.这2个过程的研究对理解湿地氮转化以及指导湿地氮污染修复具有重要意义.运用无扰动沉积物柱样流动培养、15NO-3-N同位素示踪实验,并采用氨氧化-膜接口质谱仪联用(OX/MIMS)测定氨氮同位素产物的方法,对鄱阳湖碟形湖湿地、巢湖重污染河流湿地、巢湖重污染湖泊湿地3种类型湿地沉积物-水界面的硝酸盐异养还原过程进行研究,结果表明存在显著差异.3种类型湿地DNF速率的范围为(6.36±2.57)~(99.98±14.05)μmol/(m2·h),DNRA速率的范围为(0.51±0.45)~(79.82±6.08)μmol/(m2·h).在3种类型湿地中,随着氮污染程度加重,DNF和DNRA速率均显著增加,且DNRA过程在总的硝态氮异养还原中所占的比重不断增大,说明较高的硝酸盐负荷、较高的沉积物有机质含量更有利于DNRA过程的竞争.而对反硝化方式的进一步研究发现,巢湖重污染河流、湖泊湿地主要以非耦合反硝化为主导过程,而鄱阳湖碟形湖湿地则更倾向于以硝化过程耦合控制的反硝化为主.  相似文献   

10.
研究鄱阳湖入、出湖污染物通量是加强鄱阳湖及长江水功能区限制纳污红线管理的前提,是建立鄱阳湖水质预测模型的基础.基于2008-2012年鄱阳湖8条主要入湖河流、出湖口的逐月水量、水质同步监测资料,根据污染源特征优选算法,计算总磷(TP)、氨氮(NH3-N)、高锰酸盐指数(CODMn)的入、出湖污染物通量,并分析时空变化特征及影响因素.结果表明:(1)出湖口和乐安河入湖口断面的NH3-N、TP及昌江入湖口断面的TP,以点源污染为主,采用每月瞬时通量作为月平均通量的算法更准确;其余以非点源污染为主,采用瞬时污染物浓度与月平均流量之积来计算月平均通量更准确.(2)2008-2012年CODMn、NH3-N和TP年平均人湖通量分别为304398、53063和9175 t,年平均出湖通量分别为367436、45814和8452t.8条入湖河流每年的入湖水量、CODMn通量和个别年份的NH3-N、TP通量小于出湖,这主要是因为未计算区间产流及相应排污和采砂引起的内源污染.(3)入、出湖污染物通量在年际间主要受水量影响而呈现W型波动变化趋势,CODMn、NH3-N、TP入湖通量及CODMn出湖通量均集中在汛期,NH3-N、TP出湖通量则是冬季较多(低水位下湿地植被净化作用受限).入湖TP、NH3-N、CODMn通量主要来自赣江、信江、乐安河,而NH3-N、TP浓度最高的是乐安河、信江.  相似文献   

11.
12.
Joshua C. Koch 《水文研究》2016,30(21):3918-3931
Arctic thaw lakes are an important source of water for aquatic ecosystems, wildlife, and humans. Many recent studies have observed changes in Arctic surface waters related to climate warming and permafrost thaw; however, explaining the trends and predicting future responses to warming is difficult without a stronger fundamental understanding of Arctic lake water budgets. By measuring and simulating surface and subsurface hydrologic fluxes, this work quantified the water budgets of three lakes with varying levels of seasonal drainage, and tested the hypothesis that lateral and subsurface flows are a major component of the post‐snowmelt water budgets. A water budget focused only on post‐snowmelt surface water fluxes (stream discharge, precipitation, and evaporation) could not close the budget for two of three lakes, even when uncertainty in input parameters was rigorously considered using a Monte Carlo approach. The water budgets indicated large, positive residuals, consistent with up to 70% of mid‐summer inflows entering lakes from lateral fluxes. Lateral inflows and outflows were simulated based on three processes; supra‐permafrost subsurface inflows from basin‐edge polygonal ground, and exchange between seasonally drained lakes and their drained margins through runoff and evapotranspiration. Measurements and simulations indicate that rapid subsurface flow through highly conductive flowpaths in the polygonal ground can explain the majority of the inflow. Drained lakes were hydrologically connected to marshy areas on the lake margins, receiving water from runoff following precipitation and losing up to 38% of lake efflux to drained margin evapotranspiration. Lateral fluxes can be a major part of Arctic thaw lake water budgets and a major control on summertime lake water levels. Incorporating these dynamics into models will improve our ability to predict lake volume changes, solute fluxes, and habitat availability in the changing Arctic. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

13.
The ecological functioning of floodplain lakes is largely influenced by the interaction with the river mainstem. In this study, seasonal variation in water chemistry and the relationship with the river conditions were compared between floodplain lakes that differ in the level of connection to the Usumacinta River, the largest river of Mesoamerica. Samples for suspended solids, nutrients, and chlorophyll a were collected through the year in lakes permanently connected to the river and in lakes that only received water from the Usumacinta for a short period during peak flow. Floodplain lakes showed higher total suspended solids than the river during the dry season while during the rainy season greater differences were observed between the river and the lakes, probably explained by higher concentrations in the river and greater sedimentation in the lakes. Greater organic matter content in the suspended solids was observed in the floodplain lakes, particularly in the more isolated lakes, likely related to high algal biomass. Nitrate concentrations were always higher in the river than in the lakes and lower nitrate concentrations occurred at the isolated lakes, suggesting that processes that remove nitrate occur through the year and are a common feature of floodplain lakes. Phosphorus in the connected lakes was higher than in the river only during the dry season, while in the isolated lakes concentrations were always greater than in the river. Chlorophyll a concentrations were higher in the connected lakes than in the river only during the dry season, while the more isolated lakes exhibited higher values through the year, showing signs of eutrophication. Suspended organic matter, nitrate, and chlorophyll showed larger differences between lake and river sites in the more isolated lakes, probably related to greater water residence time and its influence on primary production. Less connected lakes are more vulnerable to flow alteration because the brief period of connection to the river can be compromised and the effects of eutrophication exacerbated.  相似文献   

14.
The paper presents a new approach to calculating the erosion and deposition values of floodplain lake basins, the erosion–deposition index (EDI). The EDI is a sum of the basin geometry indices (BGIs), which can be calculated for a separate cross section of the lake. The distribution of processes within the basin was investigated in two selected floodplain lakes with the use of BGIs. Field research was carried out in the Bug River valley from 1 November 2006 to 31 October 2011. The highest erosion was observed in the lakes located close to the parent river. Deposition processes were observed in lakes with high inflow of groundwater. The results showed that EDI values of 48 out of the 71 floodplain lakes ranged from ?0.2 to 0.2. Spatial distribution of erosion and deposition processes within the lake basins resulted from a velocity of water inflowing or flowing through the basin. This was observed especially in contrafluent–confluent lake. Inflow of rivers water via upstream crevasse occurred later than via downstream one, but energy of flowing water was higher, which favoured erosion of this part of the lake basin. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
Rivers and aquifers are, in many cases, a connected resource and as such the interactions between them need to be understood and quantified for the resource to be managed appropriately. The objective of this paper is to advance the understanding of river–aquifer interactions processes in semi‐arid environments stressed by groundwater abstraction. This is performed using data from a specific catchment where records of precipitation, evapotranspiration, river flow, groundwater levels and groundwater abstraction are analysed using basic statistics, hydrograph analysis and a simple mathematical model to determine the processes causing the spatial and temporal changes in river–aquifer interactions. This combined approach provides a novel but simple methodology to analyse river–aquifer interactions, which can be applied to catchments worldwide. The analysis revealed that the groundwater levels have declined (~ 3 m) since the onset of groundwater abstraction. The decline is predominantly due to the abstraction rather than climatic changes (r = 0.84 for the relationship between groundwater abstraction and groundwater levels; r = 0.92 for the relationship between decline in groundwater levels and magnitude of seasonal drawdown). It is then demonstrated that, since the onset of abstraction, the river has changed from being gaining to losing during low‐flow periods, defined as periods with flow less than 0.5, 1.0 or 1.5 GL/day (1 GL/day = 1 × 106 m3/day). If defined as < 1.0 GL/day, low‐flow periods constitute approximately 65% of the river flows; the periods where the river is losing at low‐flow conditions are thus significant. Importantly, there was a significant delay (> 10 years) between the onset of groundwater abstraction and the changeover from gaining to losing conditions. Finally, a relationship between the groundwater gradient towards the river and the river flow at low‐flow is demonstrated. The results have important implications for water management as well as water ecology and quality. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
Restoring hydrologic connectivity between channels and floodplains is common practice in stream and river restoration. Floodplain hydrology and hydrogeology impact stream hydraulics, ecology, biogeochemical processing, and pollutant removal, yet rigorous field evaluations of surface water–groundwater exchange within floodplains during overbank floods are rare. We conducted five sets of experimental floods to mimic floodplain reconnection by pumping stream water onto an existing floodplain swale. Floods were conducted throughout the year to capture seasonal variation and each involved two replicate floods on successive days to test the effect of varying antecedent moisture. Water levels and specific conductance were measured in surface water, soil, and groundwater within the floodplain, along with surface flow into and out of the floodplain. Vegetation density varied seasonally and controlled the volume of surface water storage on the floodplain. By contrast, antecedent moisture conditions controlled storage of water in floodplain soils, with drier antecedent moisture conditions leading to increased subsurface storage and slower flood wave propagation across the floodplain surface. The site experienced spatial heterogeneity in vertical connectivity between surface water and groundwater across the floodplain surface, where propagation of hydrostatic pressure, preferential flow, and bulk Darcy flow were all mechanisms that may have occurred during the five floods. Vertical connectivity also increased with time, suggesting higher frequency of floodplain inundation may increase surface water–groundwater exchange across the floodplain surface. Understanding the variability of floodplain impacts on water quality noted in the literature likely requires better accounting for seasonal variations in floodplain vegetation and antecedent moisture as well as heterogeneous exchange flow mechanisms. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
Flow regulation and water diversion for irrigation have considerably impacted the exchange of surface water between the Murray River and its floodplains. However, the way in which river regulation has impacted groundwater–surface water interactions is not completely understood, especially in regards to the salinization and accompanying vegetation dieback currently occurring in many of the floodplains. Groundwater–surface water interactions were studied over a 2 year period in the riparian area of a large floodplain (Hattah–Kulkyne, Victoria) using a combination of piezometric surface monitoring and environmental tracers (Cl, δ2H, and δ18O). Despite being located in a local and regional groundwater discharge zone, the Murray River is a losing stream under low flow conditions at Hattah–Kulkyne. The discharge zone for local groundwater, regional groundwater and bank recharge is in the floodplain within ∼1 km of the river and is probably driven by high rates of transpiration by the riparian Eucalyptus camaldulensis woodland. Environmental tracers data suggest that the origin of groundwater is principally bank recharge in the riparian zone and a combination of diffuse rainfall recharge and localized floodwater recharge elsewhere in the floodplain. Although the Murray River was losing under low flows, bank discharge occurred during some flood recession periods. The way in which the water table responded to changes in river level was a function of the type of stream bank present, with point bars providing a better connection to the alluvial aquifer than the more common clay‐lined banks. Understanding the spatial variability in the hydraulic connection with the river channel and in vertical recharge following inundations will be critical to design effective salinity remediation strategies for large semi‐arid floodplains. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

18.
The accuracy with which MODFLOW simulates surface water-groundwater interaction is examined for connected and disconnected losing streams. We compare the effect of different vertical and horizontal discretization within MODFLOW and also compare MODFLOW simulations with those produced by HydroGeoSphere. HydroGeoSphere is able to simulate both saturated and unsaturated flow, as well as surface water, groundwater and the full coupling between them in a physical way, and so is used as a reference code to quantify the influence of some of the simplifying assumptions of MODFLOW. In particular, we show that (1) the inability to simulate negative pressures beneath disconnected streams in MODFLOW results in an underestimation of the infiltration flux; (2) a river in MODFLOW is either fully connected or fully disconnected, while in reality transitional stages between the two flow regimes exist; (3) limitations in the horizontal discretization of the river can cause a mismatch between river width and cell width, resulting in an error in the water table position under the river; and (4) because coarse vertical discretization of the aquifer is often used to avoid the drying out of cells, this may result in an error in simulating the height of the groundwater mound. Conditions under which these errors are significant are investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号