首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
By using Birkhoff's regularizing transformation, we study the evolution of some of the infinite j-k type families of collision periodic orbits with respect to the mass ratio μ as well as their stability and dynamical structure, in the planar restricted three-body problem. The μ-C characteristic curves of these families extend to the left of the μ-C diagram, to smaller values of μ and most of them go downwards, although some of them end by spiralling around the constant point S* (μ=0.47549, C=3) of the Bozis diagram (1970). Thus we know now the continuation of the families which go through collision periodic orbits of the Sun-Jupiter and Earth-Moon systems. We found new μ-C and x-C characteristic curves. Along each μ-C characteristic curve changes of stability to instability and vice versa and successive very small stable and very large unstable segments appear. Thus we found different types of bifurcations of families of collision periodic orbits. We found cases of infinite period doubling Feigenbaum bifurcations as well as bifurcations of new families of symmetric and non-symmetric collision periodic orbits of the same period. In general, all the families of collision periodic orbits are strongly unstable. Also, we found new x-C characteristic curves of j-type classes of symmetric periodic orbits generated from collision periodic orbits, for some given values of μ. As C varies along the μ-C or the x-C spiral characteristics, which approach their focal-terminating-point, infinite loops, one inside the other, surrounding the triangular points L4 and L5 are formed in their orbits. So, each terminating point corresponds to a collision asymptotic symmetric periodic orbit for the case of the μ-C curve or a non-collision asymptotic symmetric periodic orbit for the case of the x-C curve, that spiral into the points L4 and L5, with infinite period. All these are changes in the topology of the phase space and so in the dynamical properties of the restricted three-body problem.  相似文献   

2.
The three families of three-dimensional periodic oscillations which include the infinitesimal periodic oscillations about the Lagrangian equilibrium pointsL 1,L 2 andL 3 are computed for the value =0.00095 (Sun-Jupiter case) of the mass parameter. From the first two vertically critical (|a v |=1) members of the familiesa, b andc, six families of periodic orbits in three dimensions are found to bifurcate. These families are presented here together with their stability characteristics. The orbits of the nine families computed are of all types of symmetryA, B andC. Finally, examples of bifurcations between families of three-dimensional periodic solutions of different type of symmetry are given.  相似文献   

3.
This paper studies the asymmetric solutions of the restricted planar problem of three bodies, two of which are finite, moving in circular orbits around their center of masses, while the third is infinitesimal. We explore, numerically, the families of asymmetric simple-periodic orbits which bifurcate from the basic families of symmetric periodic solutions f, g, h, i, l and m, as well as the asymmetric ones associated with the families c, a and b which emanate from the collinear equilibrium points L 1, L 2 and L 3 correspondingly. The evolution of these asymmetric families covering the entire range of the mass parameter of the problem is presented. We found that some symmetric families have only one bifurcating asymmetric family, others have infinity number of asymmetric families associated with them and others have not branching asymmetric families at all, as the mass parameter varies. The network of the symmetric families and the branching asymmetric families from them when the primaries are equal, when the left primary body is three times bigger than the right one and for the Earth–Moon case, is presented. Minimum and maximum values of the mass parameter of the series of critical symmetric periodic orbits are given. In order to avoid the singularity due to binary collisions between the third body and one of the primaries, we regularize the equations of motion of the problem using the Levi-Civita transformations.  相似文献   

4.
We study numerically the asymptotic homoclinic and heteroclinic orbits associated with the triangular equilibrium points L 4 and L 5, in the gravitational and the photogravitational restricted plane circular three-body problem. The invariant stable-unstable manifolds associated to these critical points, are also presented. Hundreds of asymptotic orbits for equal mass of the primaries and for various values of the radiation pressure are computed and the most interesting of them are illustrated. In the Copenhagen case, which the problem is symmetric with respect to the x- and y-axis, we found and present non-symmetric heteroclinic asymptotic orbits. So pairs of heteroclinic connections (from L 4 to L 5 and vice versa) form non-symmetric heteroclinic cycles. The termination orbits (a combination of two asymptotic orbits) of all the simple families of symmetric periodic orbits, in the Copenhagen case, are illustrated.  相似文献   

5.
We studied systematically cases of the families of non-symmetric periodic orbits in the planar restricted three-body problem. We took interesting information about the evolution, stability and termination of bifurcating families of various multiplicities. We found that the main families of simple non-symmetric periodic orbits present a similar dynamical structure and bifurcation pattern. As the Jacobi constant changes each branch of the characteristic of a main family spirals around a focal point-terminating point in x- at which the Jacobi constant is C  = 3 and their periodic orbits terminate at the corotation (at the Lagrangian point L4 or L5). As the family approaches asymptotically its termination point infinite changes of stability to instability and vice versa occur along its characteristic. Thus, infinite bifurcation points appear and each one of them produces infinite inverse Feigenbaum sequences. That is, every bifurcating family of a Feigenbaum sequence produces the same phenomenon and so on. Therefore, infinite spiral characteristics appear and each one of them generates infinite new inner spirals and so on. Each member of these infinite sets of the spirals reproduces a basic bifurcation pattern. Therefore, we have in general large unstable regions that generate large chaotic regions near the corotation points L4, L5, which are unstable. As C varies along the spiral characteristic of every bifurcating family, which approaches its focal point, infinite loops, one inside the other, surrounding the unstable triangular points L4 or L5 are formed on their orbits. So, each terminating point corresponds to an asymptotic non-symmetric periodic orbit that spirals into the corotation points L4, L5 with infinite period. This is a new mechanism that produces very large degree of stochasticity. These conclusions help us to comprehend better the motions around the points L4 and L5 of Lagrange.  相似文献   

6.
The existence of new equilibrium points is established in the restricted three-body problem with equal prolate primaries. These are located on the Z-axis above and below the inner Eulerian equilibrium point L 1 and give rise to a new type of straight-line periodic oscillations, different from the well known Sitnikov motions. Using the stability properties of these oscillations, bifurcation points are found at which new types of families of 3D periodic orbits branch out of the Z-axis consisting of orbits located entirely above or below the orbital plane of the primaries. Several of the bifurcating families are continued numerically and typical member orbits are illustrated.  相似文献   

7.
A systematic numerical exploration of the families of asymmetric periodic orbits of the restricted three-body problem when a) the primary bodies are equal and b) for the Earth-Moon mass ratio, is presented. Decades families of asymmetric periodic solutions were found and three of the simplest ones, in the first case, and ten of the second one are illustrated. All of these families consist of periodic orbits which are asymmetric with respect to x-axis while are simple symmetric periodic orbits with respect to y-axis (i.e. the orbit has only one perpendicular intersection at half period with y-axis). Many asymmetric periodic orbits, members of these families, are calculated and plotted. We studied the stability of all the asymmetric periodic orbits we found. These families consist, mainly, of unstable periodic solutions but there exist very small, with respect to x, intervals where these families have stable periodic orbits. We also found, using appropriate Poincaré surface of sections, that a relatively large region of phase space extended around all these stable asymmetric periodic orbits shows chaotic motion.  相似文献   

8.
In this paper we study the asymptotic solutions of the (N+1)-body ring planar problem, N of which are finite and ν=N−1 are moving in circular orbits around their center of masses, while the Nth+1 body is infinitesimal. ν of the primaries have equal masses m and the Nth most-massive primary, with m 0=β m, is located at the origin of the system. We found the invariant unstable and stable manifolds around hyperbolic Lyapunov periodic orbits, which emanate from the collinear equilibrium points L 1 and L 2. We construct numerically, from the intersection points of the appropriate Poincaré cuts, homoclinic symmetric asymptotic orbits around these Lyapunov periodic orbits. There are families of symmetric simple-periodic orbits which contain as terminal points asymptotic orbits which intersect the x-axis perpendicularly and tend asymptotically to equilibrium points of the problem spiraling into (and out of) these points. All these families, for a fixed value of the mass parameter β=2, are found and presented. The eighteen (more geometrically simple) families and the corresponding eighteen terminating homo- and heteroclinic symmetric asymptotic orbits are illustrated. The stability of these families is computed and also presented.  相似文献   

9.
We study the equilibrium points and the zero-velocity curves of Chermnykh’s problem when the angular velocity ω varies continuously and the value of the mass parameter is fixed. The planar symmetric simple-periodic orbits are determined numerically and they are presented for three values of the parameter ω. The stability of the periodic orbits of all the families is computed. Particularly, we explore the network of the families when the angular velocity has the critical value ω = 2√2 at which the triangular equilibria disappear by coalescing with the collinear equilibrium point L1. The analytic determination of the initial conditions of the family which emanate from the Lagrangian libration point L1 in this case, is given. Non-periodic orbits, as points on a surface of section, providing an outlook of the stability regions, chaotic and escape motions as well as multiple-periodic orbits, are also computed. Non-linear stability zones of the triangular Lagrangian points are computed numerically for the Earth–Moon and Sun–Jupiter mass distribution when the angular velocity varies.  相似文献   

10.
A global picture of the families of simple periodic orbits in terms of their characteristics is given in the part of the plane (γ, ξ1) of representation near the singularity corresponding to the small primary, for the case of the restricted problem with a small value of the mass parameter μ. The value used for μ is smaller than the critical value of Routh. The picture is found to be qualitatively different from the one corresponding to μ larger than the critical value. By means of the stability parameters four new families, consisting of asymmetric periodic orbits, are shown to exist as bifurcations of families of symmetric periodic orbits.  相似文献   

11.
The three-dimensional periodic solutions originating at the equilibrium points of Hill's limiting case of the Restricted Three Body Problem, are studied. Fourth-order parametric expansions by the Lindstedt-Poincaré method are constructed for them. The two equilibrium points of the problem give rise to two exactly symmetrical families of three-dimensional periodic solutions. The familyHL 2v e originating at L2 is continued numerically and is found to extend to infinity. The family originating at L1 behaves in exactly the same way and is not presented. All orbits of the two families are unstable.  相似文献   

12.
We study the existence, linear stability and bifurcations of what we call the Sitnikov family of straight line periodic orbits in the case of the restricted four-body problem, where the three equal mass primary bodies are rotating on a circle and the fourth (small body) is moving in the direction vertical to the center mass of the other three. In contrast to the restricted three-body Sitnikov problem, where the Sitnikov family has infinitely many stability intervals (hence infinitely many Sitnikov critical orbits), as the “family parameter” ż0 varies within a finite interval (while z 0 tends to infinity), in the four-body problem this family has only one stability interval and only twelve 3-dimensional (3D) families of symmetric periodic orbits exist which bifurcate from twelve corresponding critical Sitnikov periodic orbits. We also calculate the evolution of the characteristic curves of these 3D branch-families and determine their stability. More importantly, we study the phase space dynamics in the vicinity of these orbits in two ways: First, we use the SALI index to investigate the extent of bounded motion of the small particle off the z-axis along its interval of stable Sitnikov orbits, and secondly, through suitably chosen Poincaré maps, we chart the motion near one of the 3D families of plane-symmetric periodic orbits. Our study reveals in both cases a fascinating structure of ordered motion surrounded by “sticky” and chaotic orbits as well as orbits which rapidly escape to infinity.  相似文献   

13.
Asymptotic motion near the collinear equilibrium points of the photogravitational restricted three-body problem is considered. In particular, non-symmetric homoclinic solutions are numerically explored. These orbits are connected with periodic ones. We have computed numerically the families containing these orbits and have found that they terminate at both ends by asymptotically approaching simple periodic solutions belonging to the Lyapunov family emanating from L3.  相似文献   

14.
We study numerically the restricted five-body problem when some or all the primary bodies are sources of radiation. The allowed regions of motion as determined by the zero-velocity surface and corresponding equipotential curves, as well as the positions of the equilibrium points are given. We found that the number of the collinear equilibrium points of the problem depends on the mass parameter β and the radiation factors q i , i=0,…,3. The stability of the equilibrium points are also studied. Critical masses associated with the number of the equilibrium points and their stability are given. The network of the families of simple symmetric periodic orbits, vertical critical periodic solutions and the corresponding bifurcation three-dimensional families when the mass parameter β and the radiation factors q i vary are illustrated. Series, with respect to the mass (and to the radiation) parameter, of critical periodic orbits are calculated.  相似文献   

15.
We explore the periodic orbits and the regions of quasi-periodic motion around both the primaries in the Saturn-Titan system in the framework of planar circular restricted three-body problem. The location, nature and size of periodic and quasi-periodic orbits are studied using the numerical technique of Poincare surface of sections. The maximum amplitude of oscillations about the periodic orbits is determined and is used as a parameter to measure the degree of stability in the phase space for such orbits. It is found that the orbits around Saturn remain around it and their stability increases with the increase in the value of Jacobi constant C. The orbits around Titan move towards it with the increase in C. At C=3.1, the pericenter and apocenter are 358.2 and 358.5 km, respectively. No periodic or quasi-periodic orbits could be found by the present method around the collinear Lagrangian point L 1 (0.9569373834…).  相似文献   

16.
In a binary system with both bodies being luminous, the inner collinear equilibrium pointL 1 becomes stable for values of the mass ratio and radiation pressure parameters in a certain region. The kind of periodic motions aroundL 1 is examined in this case. Second-order parametric expansions are given and the families of periodic orbits generated fromL 1 are numerically determined for several sets of values of the parameters. Short- and long-period solutions are identified showing a similarity in the character of periodicity with that aroundL 4. It is also found that the finite periodic solutions in the vicinity ofL 1 are stable.  相似文献   

17.
In this paper several monoparametric families of periodic orbits of the 3-dimensional general 3-body problem are presented. These families are found by numerical continuation with respect to the small massm 3, of some periodic orbits which belong to a family of 3-dimensional periodic orbits of the restricted elliptic problem.  相似文献   

18.
We study the various families of periodic orbits in a dynamical system representing a plane rotating barred galaxy. One can have a general view of the main resonant types of orbits by considering the axisymmetric background. The introduction of a bar perturbation produces infinite gaps along the central familyx 1 (the family of circular orbits in the axisymmetric case). It produces also higher order bifurcations, unstable regions along the familyx 1, and long period orbits aroundL 4 andL 5. The evolution of the various types of orbits is described, as the Jacobi constanth, and the bar amplitude, increase. Of special importance are the infinities of period doubling pitchfork bifurcations. The genealogy of the long and short period orbits is described in detail. There are infinite gaps along the long period orbits producing an infinity of families. All of them bifurcate from the short period family. The rules followed by these families are described. Also an infinity of higher order bridges join the short and long period families. The analogies with the restricted three body problem are stressed.  相似文献   

19.
Four 3 : 1 resonant families of periodic orbits of the planar elliptic restricted three-body problem, in the Sun-Jupiter-asteroid system, have been computed. These families bifurcate from known families of the circular problem, which are also presented. Two of them, I c , II c bifurcate from the unstable region of the family of periodic orbits of the first kind (circular orbits of the asteroid) and are unstable and the other two, I e , II e , from the stable resonant 3 : 1 family of periodic orbits of the second kind (elliptic orbits of the asteroid). One of them is stable and the other is unstable. All the families of periodic orbits of the circular and the elliptic problem are compared with the corresponding fixed points of the averaged model used by several authors. The coincidence is good for the fixed points of the circular averaged model and the two families of the fixed points of the elliptic model corresponding to the families I c , II c , but is poor for the families I e , II e . A simple correction term to the averaged Hamiltonian of the elliptic model is proposed in this latter case, which makes the coincidence good. This, in fact, is equivalent to the construction of a new dynamical system, very close to the original one, which is simple and whose phase space has all the basic features of the elliptic restricted three-body problem.  相似文献   

20.
The planetary dynamics of 4/3, 3/2, 5/2, 3/1 and 4/1 mean motion resonances is studied by using the model of the general three body problem in a rotating frame and by determining families of periodic orbits for each resonance. Both planar and spatial cases are examined. In the spatial problem, families of periodic orbits are obtained after analytical continuation of vertical critical orbits. The linear stability of orbits is also examined. Concerning initial conditions nearby stable periodic orbits, we obtain long-term planetary stability, while unstable orbits are associated with chaotic evolution that destabilizes the planetary system. Stable periodic orbits are of particular importance in planetary dynamics, since they can host real planetary systems. We found stable orbits up to 60° of mutual planetary inclination, but in most families, the stability does not exceed 20°–30°, depending on the planetary mass ratio. Most of these orbits are very eccentric. Stable inclined circular orbits or orbits of low eccentricity were found in the 4/3 and 5/2 resonance, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号