首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 36 毫秒
1.
This investigation deals with the measured seismic response of a six‐storey asymmetric structural model with frictional dampers. Its main objective is to experimentally prove the concept of weak torsional balance for mass‐ and stiffness‐eccentric model configurations. The goal is to control the torsional response of these asymmetric structures and to achieve, if possible, a weak form of torsional balance by placing the so‐called empirical centre of balance (ECB) of the structure at equal distance from the edges of the building plan. The control of the dynamic response of asymmetric structures is investigated herein by using steel–teflon frictional dampers. As expected from theory, experimental results show that the mean‐square and peak displacement demand at the flexible and stiff edges of the plan may be similar in magnitude if the dampers are optimally placed. Frictional dampers have proven equally effective in controlling lateral‐torsional coupling of torsionally flexible as well as stiff structures. On the other hand, it is shown that impulsive ground motions require larger frictional capacities to achieve weak torsional balance. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

2.
Lateral–torsional coupling in asymmetric‐plan buildings leads to correlated translations and rotations of the building plan, which generate uneven distributions of deformation demand among resisting planes. The deformation demand of a resisting plane depends on the relative magnitude of the plan translation and rotation and on the correlation between the two signals. Thus, small rotations highly correlated with building translation may lead to significantly different deformations of the resisting planes at the building edges. Consequently, the use of supplemental dampers is intended not only to reduce the magnitude of the plan translation and rotation, but also the correlation between these motions. For the sake of simplicity, linear viscous dampers are used in this investigation, which properly located in plan lead to a minimum response of the geometric center, thus achieving the same mean‐square value of the displacements at the building edges. Mathematically, this condition may be understood as creating zero correlation between the translations and rotation at the geometric center of the plan, which represents an uncoupling in the mean‐square sense. Results show that the optimal damper location depends on the static eccentricity and frequency ratio of the bare structure, the total amount of supplemental damping considered, and the frequency content of the excitation. Through a final 6‐story model example, the torsional balance concept is demonstrated to work on multistory buildings subjected to bidirectional ground motions. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
Plan asymmetric buildings are very susceptible to earthquake induced damage due to lateral torsional coupling, and the corners of these systems suffer heavy damage during earthquakes. Therefore, it is important to investigate the seismic behavior of an asymmetric plan building with MR dampers. In this study, the effectiveness of MR damper-based control systems has been investigated for seismic hazard mitigation of a plan asymmetric building. Furthermore, the infl uence of the building parameters and damper command voltage on the control performance is examined through parametric study. The building parameters chosen are eccentricity ratio and frequency ratio. The results show that the MR damper-based control systems are effective for plan asymmetric systems.  相似文献   

4.
The seismic design of multi‐story buildings asymmetric in plan yet regular in elevation and stiffened with ductile RC structural walls is addressed. A realistic modeling of the non‐linear ductile behavior of the RC walls is considered in combination with the characteristics of the dynamic torsional response of asymmetric buildings. Design criteria such as the determination of the system ductility, taking into account the location and ductility demand of the RC walls, the story‐drift demand at the softer (most displaced) edge of the building under the design earthquake, the allowable ductility (ultimate limit state) and the allowable story‐drift (performance goals) are discussed. The definition of an eccentricity of the earthquake‐equivalent lateral force is proposed and used to determine the effective displacement profile of the building yet not the strength distribution under the design earthquake. Furthermore, an appropriate procedure is proposed to calculate the fundamental frequency and the earthquake‐equivalent lateral force. A new deformation‐based seismic design method taking into account the characteristics of the dynamic torsional response, the ductility of the RC walls, the system ductility and the story‐drift at the softer (most displaced) edge of the building is presented and illustrated with an example of seismic design of a multi‐story asymmetric RC wall building. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

5.
The elastic torsional stiffness of a structure has important influence on the seismic response of an asymmetric structure, both in the elastic and inelastic range. For elastic structures it is immaterial whether the stiffness is provided solely by structural elements in planes parallel to the direction of earthquake or by a combination of such elements in parallel and orthogonal planes. The issue of how the relative contribution of structural elements in orthogonal planes affects the torsional response of inelastic structures has been the subject of continuing study. Several researchers have noted that structural elements in orthogonal planes reduce the ductility demands in both the flexible and stiff edge elements parallel to the earthquake. Some have noted that the beneficial effect of structural elements in orthogonal planes is more pronounced when such elements remain elastic. These issues are further examined in this paper through analytical studies on the torsional response of single-storey building models. It is shown that, contrary to the findings of some previous studies, the torsional response of inelastic structures is affected primarily by the total torsional stiffness in the elastic range, and not so much by whether such stiffness is contributed solely by structural elements in parallel planes or by such elements in both parallel and orthogonal planes. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

6.
This study aims to determine the influence of torsional coupling on the inelastic response of a series of models representing typical structural configurations in real buildings. The lake bed (SCT) east-west component of the 1985 Mexico City earthquake was employed in the analysis, and is representative of a severe ground motion known to have induced large inelastic structural deformations in a high proportion of those buildings having asymmetrical distributions of stiffness and/or strength. Material non-linearity in lateral load-resisting elements has been defined using a hysteretic Ramberg-Osgood model. Structural eccentricities have been introduced into the building models by (i) asymmetrical distributions of stiffness and/or strength, (ii) asymmetrical configuration of lateral load-resisting elements, or (iii) varying post-elastic material behaviour in the resisting elements. The dynamic inelastic response of these models has been obtained by a numerical integration of the relevant equations of motion, expressed in a non-dimensional incremental form.

In the elastic range, the results correlate well with those of previous studies. In the inelastic range, it is concluded that the peak ductility demand of the worst-affected element increases with the ground excitation level across the range of building periods considered, and that the influence of torsional coupling on the key response parameters is model dependent. Most significantly, the strength eccentricity relative to the centre of mass has been shown to influence the peak edge displacement response more than conventionally employed stiffness eccentricity.  相似文献   


7.
In this paper, torsional response of nonductile structures with soft‐first‐storey subjected to bidirectional ground motions is studied using a simplified two‐storey model with two‐way eccentricities. The stiffness ratio of second storey to first storey is varied to create different levels of soft‐first‐storey effect, while the stiffness eccentricity is varied to create torsional effects. Different overstrength ratios are used in the simplified models to study the response of structure with different structural capacity. Hysteretic model with strength deterioration and stiffness degradation properties is used to capture the deterioration of element stiffness and strength. Ductility capacity of 2.0 is used as the models are for nonductile structures. In general, displacement amplification of irregular model with respect to regular model increases as stiffness ratio increases, while no consistent trend of changes in displacement amplification is found with increase in stiffness eccentricity. It is found that the displacement amplification due to only soft‐first‐storey effect can be conservatively taken as 1.5. Coupling of torsional and soft‐first‐storey effects is more significant in affecting the displacement amplification of elements at flexible side. The trend of changes in displacement amplification of elastic system is similar to that of inelastic system. The displacement amplification of elements at the flexible side is larger than that at the stiff side. The elements at the flexible side in the direction of shorter uncoupled lateral period have larger displacement response than those in the orthogonal direction. Ductility demand–capacity curves subsequently constructed can be used to approximately assess the seismic performance of existing structures and as guidelines for designing structures in Singapore to withstand the maximum credible earthquake considering the coupling of torsional and soft‐first‐storey effects. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
Dynamic response behaviour of a simple torsionally coupled system with Multiple-Tuned Mass dampers (MTMDs) is investigated. The system is subjected to lateral excitation that is modelled as a broad-band stationary random process. MTMDs with uniformly distributed frequencies are considered for this purpose and they are arranged in a row covering the width of the system. A parametric study is conducted to investigate the effectiveness of MTMDs on reducing the response of torsionally coupled system. The parameters include the eccentricity of the main system, its uncoupled torsional to lateral frequency ratio and the damping of MTMDs. It is shown that the effectiveness of MTMDs in controlling the lateral response of the torsionally coupled system decreases with the increase in the degree of asymmetry. Further, the effectiveness of MTMDs, designed for an asymmetric system by ignoring the effect of the torsional coupling, is overestimated. © 1997 by John Wiley & Sons, Ltd.  相似文献   

9.
Recent studies have shown that for many lateral force‐resisting elements (LFRE) stiffness is dependent on strength, and as a result strength assignment to these elements would affect both the strength and stiffness distributions in a structure. Consequently, stiffness distribution cannot be considered known prior to strength assignment. This paper presents a yield displacement distribution‐based strength assignment strategy that does not require the knowledge of stiffness distribution prior to strength assignment. It is shown that structural systems with their center of rigidity (CR) and center of strength (CV) located on the opposite sides of the center of mass (CM) will have small torsional responses under seismic excitation. Copyright © 2003 John Wiley Sons, Ltd.  相似文献   

10.
This paper proposes a semiactive control system to reduce the coupled lateral and torsional motions in asymmetric buildings subjected to horizontal seismic excitations. Magnetorheological (MR) dampers are applied as semiactive control devices and the control input determination is based on a clipped‐optimal control algorithm which uses absolute acceleration feedback. The performance of this method is studied experimentally using a 2‐story building model with an asymmetric stiffness distribution. An automated system identification methodology is implemented to develop a control‐oriented model which has the natural frequencies observed in the experimental system. The parameters for the MR damper model are identified using experimental data to develop an integrated model of the structure and MR dampers. To demonstrate the performance of this control system on the experimental structure, a shake table is used to reproduce an El Centro 1940 N–S earthquake as well as a random white noise excitation. The responses for the proposed control system are compared to those of passive control cases in which a constant voltage is applied to the MR damper. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

11.
A study is made of the effect of soil-structure interaction on the coupled lateral and torsional responses of asymmetric buildings subjected to a series of historical free-field earthquake base motions. It sh shown that for particular classes of actual buildings the equivalent rigid-base responses are significantly increased for structures founded on medium-stiff soils, and hence the assumption of the major building codes that a conservative estimate of response is obtained by considering the structure to be fixed rigidly at its base is shown to be inconsistent with the presented dynamic results. It is shown that foundation interaction produces greatest amplification of torsional coupling effects for structures subjected to a particular class of European strong-motion earthquake records, identified by similarities in their spectral shape, for which the vibrational energy of the ground motion is distributed approximately uniformly over the range of frequencies which are of interest for real structures. It is recommended that provision be made in the torsional design procedures of building codes for the increase in the coupled torsional response due to soil-structure interaction as indicated in this study. Such provision should be based on the results of comprehensive parametric studies employing a wide selection of earthquake records and accounting for expected variations in localized soil conditions.  相似文献   

12.
研究了非对称结构扭转振动多重调谐质量阻尼器(MTMD)控制的最优位置。本文采用的MTMD具有相同的刚度、阻尼,但质量不同。基于导出的设置MTMD时非对称结构扭转角位移传递函数,建立了扭转角位移动力放大系数解析式。MTMD最优参数的评价准则定义为:非对称结构最大扭转角位移动力放大系数的最小值的最小化。MTMD的有效性评价准则定义为:非对称结构最大扭转角位移动力放大系数的最小值的最小化与未设置MTMD时非对称结构最大扭转角位移动力放大系数的比值。基于定义的评价准则,研究了非对称结构的标准化偏心系数(NER)和扭转对侧向频率比(TTFR)对不同位置MTMD最优参数和有效性的影响。  相似文献   

13.
This discussion examines the conclusion reached in the paper that in a single‐story asymmetric‐plan building the maximum displacement demand in the different resisting elements is reached for the same deformation configuration of the system and that the resultant of the seismic forces producing such demand is located at the center of resistance. It is shown that this conclusion is valid only for the particular model studied and cannot be generalized. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
Asymmetric structures experience uneven deformation demand among different resisting planes and stories when subjected to earthquake excitation. Damage is focused in some elements jeopardizing structural integrity. These structures are common in professional practice because of architectural and functionality constraints. In this scenario the use of energy dissipation devices (EDD) has arisen as an advisable solution to balance and minimize structural damage. Procedures for the design of linear structures equipped with EDD have been widely proposed in the literature, few of them deal with the optimum spatial distribution of nonlinear systems. This paper evaluates and compares the optimized spatial damper distribution of linear and nonlinear systems. An optimization technique is presented based on control indexes called min–max algorithm. Then, this technique is compared with two simple methodologies: (i) the fully stressed design, which is an analysis‐redesign procedure, and (ii) the simplified sequential search algorithm (SSSA), which is a sequential method. It is pointed out that the SSSA is a fixed step coordinate descent type method. The examples considered show that the SSSA is a discrete approximation of the min–max algorithm, not only for linear but also for nonlinear structures equipped with linear and nonlinear EDD. Furthermore, it is found that the distribution of EDD obtained from a linear analysis is a good approximation of the nonlinear optimal solution. The SSSA is a reliable method that can be applied to achieve drift and torsional balance for design purposes; moreover, it can be implemented with conventional tools available in professional practice. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
The increasing popularity of simplified nonlinear methods in seismic design has recently led to many proposals for procedures aimed at extending pushover analysis to plan asymmetric structures. In terms of practical applications, one particularly promising approach is based on combining pushover analysis of a 3D structural model with the results of linear (modal) dynamic analysis. The effectiveness of such procedure, however, is contingent on one fundamental requirement: the elastic prediction of the envelope of lateral displacements must be conservative with respect to the actual inelastic one. This paper aims at verifying the above assumption through an extensive parametric analysis conducted with simplified single‐storey models. The main structural parameters influencing torsional response in the elastic and inelastic range of behaviour are varied, while devoting special attention to the system stiffness eccentricity and radius. The analysis clarifies the main features of inelastic torsional response of different types of building structures; in this manner, it is found that the above‐mentioned method is generally suitable for structures characterized by moderate to large torsional stiffness, whereas it cannot be recommended for extremely torsionally stiff structures, as their inelastic torsional response almost always exceeds the elastic one. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
The critical parameters that influence the nonlinear seismic response of asymmetric‐plan buildings are identified by evaluating the effects of different asymmetries that may characterize the structure of a building as well as exploring the influence of the ground motion features. First, the main findings reported in the literature on both the linear and nonlinear dynamic response of asymmetric‐plan buildings are presented. The common findings and the conflicting conclusions reached in different investigations are pointed out. Then, the results of comprehensive nonlinear dynamic analyses performed for evaluating the seismic response of systems characterized by different strength and stiffness configurations, representative of a large class of asymmetric‐plan buildings, are reported. Findings from the study indicate that the building response changes when moving from the linear to the nonlinear range, so that the seismic behavior of asymmetric‐plan buildings, apart from the source of asymmetry, can be always classified as irregular. Additionally, it was observed that as the seismic demands cause amplification of system nonlinearity with increasing earthquake intensity, the maximum displacement demand in the different resisting elements tends to be reached with the same deformed configuration of the system. The resultant of the seismic forces producing such a maximum demand is located at the center of resistance and corresponds to the collapse mechanism of the system that provides the maximum lateral strength in the exciting direction of the seismic action. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
In order to mitigate the effect of torsion during earthquakes, most seismic codes of the world provide design guidelines for strength distribution based on the traditional perception that element stiffness and strength are independent parameters. Recent studies have pointed out that for an important class of widely used structural elements such as reinforced concrete flexural walls, stiffness is a strength‐dependent parameter. This implies that the lateral stiffness distribution in a wall‐type system cannot be defined prior to the assignment of elements' strength. Consequently, stiffness eccentricity cannot be computed readily and the current codified torsional provisions cannot be implemented in a straightforward manner. In this study, an alternate guideline for strength distribution among lateral force resisting elements is presented. To develop such a guideline, certain issues related to the dynamic behaviour of asymmetric wall‐type systems during a damaging earthquake were examined. It is shown that both stiffness and strength eccentricity are important parameters affecting the seismic response of asymmetric wall‐type systems. In particular, results indicate that torsional effects can be minimized by using a strength distribution that results in the location of the centre of strength CV and the centre of rigidity CR on the opposite sides of the centre of mass CM. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

18.
Tuned mass dampers for response control of torsional buildings   总被引:1,自引:0,他引:1  
This paper presents an approach for optimum design of tuned mass dampers for response control of torsional building systems subjected to bi‐directional seismic inputs. Four dampers with fourteen distinct design parameters, installed in pairs along two orthogonal directions, are optimally designed. A genetic algorithm is used to search for the optimum parameter values for the four dampers. This approach is quite versatile as it can be used with different design criteria and definitions of seismic inputs. It usually provides a globally optimum solution. Several optimal design criteria, expressed in terms of performance functions that depend on the structural response, are used. Several sets of numerical results for a torsional system excited by random and response spectrum models of seismic inputs are presented to show the effectiveness of the optimum designs in reducing the system response. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

19.
A new floor connecting system developed for low‐damage seismic‐resistant building structures is described herein. The system, termed Inertial Force‐Limiting Floor Anchorage System (IFAS), is intended to limit the lateral forces in buildings during an earthquake. This objective is accomplished by providing limited‐strength deformable connections between the floor system and the primary elements of the lateral force‐resisting system. The connections transform the seismic demands from inertial forces into relative displacements between the floors and lateral force‐resisting system. This paper presents the IFAS performance in a shake‐table testing program that provides a direct comparison with an equivalent conventional rigidly anchored‐floor structure. The test structure is a half‐scale, 4‐story reinforced concrete flat‐plate shear wall structure. Precast hybrid rocking walls and special precast columns were used for test repeatability in a 22‐input strong ground‐motion sequence. The structure was purposely designed with an eccentric wall layout to examine the performance of the system in coupled translational‐torsional response. The test results indicated a seismic demand reduction in the lateral force‐resisting system of the IFAS structure relative to the conventional structure, including reduced shear wall base rotation, shear wall and column inter‐story drift, and, in some cases, floor accelerations. These results indicate the potential for the IFAS to minimize damage to the primary structural and non‐structural components during earthquakes.  相似文献   

20.
Presented in this paper is a detailed parametric study of the coupled lateral and torsional response of single-storey building models subjected to earthquake base loadings. The aim is to assess the influence of torsional coupling on the elastic responses of buildings subjected to transient ground motion records, and to make comparisons with current code provisions which make allowance for coupling effects by means of empirical design procedures. The study of building responses to selected earthquake excitations shows that the qualitative effects of the controlling parameters on the maximum translational and torsional responses of the coupled system are similar to those observed in analyses using idealized response spectra to represent the input ground motion. It is also demonstrated that for particular ranges of the key parameters defining the structural system, typical of the properties of many actual buildings, torsional coupling induces significant amplification of earthquake forces. This amplification is shown to be inadequately accounted for in the current design provisions of major building codes. Recommendations for improving existing design practice for asymmetric structures are outlined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号