首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using the sounding data of wind, temperature, and humidity in the boundary layer and micrometeorological data on the earth's surface observed in the same period in Dunhuang arid region of Northwest China,this paper researches characteristics of potential temperature, wind, and humidity profiles, confirms the structure and depth of thermodynamic boundary layer in Dunhuang region, and analyzses the relationship of depth of thermodynamic boundary layer with surface radiation, buoyancy flux as well as wind speed and wind direction shear in the boundary layer. The results show that the maximum depth of diurnal convective boundary layer is basically above 2000 m during the observational period, many times even in excess of 3000 m and sometimes up to 4000 m; the depth of nocturnal stable boundary layer basically maintains within a range of 1000-1500 m. As a whole, the depth of atmospheric boundary layer is obviously bigger than those results observed in other regions before. By analyzing, a preliminary judgement is that the depth of atmospheric thermodynamic boundary layer in Dunhuang region may relate to local especial radiation characteristics, surface properties (soil moisture content and heat capacity) as well as wind velocity shear of boundary layer, and these properties have formed strong buoyancy flux and dynamic forcing in a local region which are fundamental causes for producing a super deep atmospheric boundary layer.  相似文献   

2.
本文基于多年连续观测所得的九龙站加密探空资料,通过对比分析,认识到该站的边界层大气在夏季呈现以下特征:大气温度/湿度随高度增长而降低,不同时次温度/湿度的差异主要集中在中低层大气中,越靠近地面大气温度/湿度差异越突出。从不同时次的表现来看,08时的温度最低,14时温度值最高。08时和14时大气的比湿较小,02时和20时的大气比湿较大。位温则是随高度增长,最大差异出现在3320m以下大气层中,14时和20时位温廓线存在明显的绝热及超绝热现象,该2个时次大气边界层表现为明显的混合边界层特征,低层大气层结为静力不稳定。而08时和02时的大气廓线则呈现稳定边界层特征。四个时次风速廓线都是次地转的,边界层内某一高度皆有一个风速极大值出现,20时边界层内风速极大值最大。地表物理量逐日演变情况为:08时温度最低,其次是02时,然后是20时,最高温度出现在14时,这个时次的变动幅度也最为显著。14时、08时比湿均值最小,20时、02时平均比湿较大,20时变幅最大。最低气压出现在20时,其次是14时,然后是08时,最高气压出现在02时,20时变幅最大。02时地面风速最小,其次是08时,再次为20时,14时风速最大,变动幅度最大。   相似文献   

3.
The aerosol optical depth of the atmospheric boundary layer was determined both from direct solar irradiance measurements and from vertical extrapolation of ground-based nephelometry, during a period with cloudless skies and high aerosol mass loadings in the Netherlands. The vertical profile of the aerosol was obtained from lidar measurements. From humidity controlled nephelometry at the ground and humidity profiles from soundings, the scattering aerosol extinction as a function of height was assessed. Integration of the extinction over the aerosol layer gave the aerosol optical depth of the atmospheric boundary layer. This optical depth at the narrow band of the nephelometer was translated to a spectrally integrated value, assuming an Angstrom wavelength exponent of 1.5, a typical value for The Netherlands.It was found that scattering by the boundary layer aerosol contributed on average 80% to the total atmospheric aerosol optical depth. The uncertainty in this value is estimated to be of the order of 13%. Ammonium nitrate dominated the light scattering. This is an anthropogenic aerosol component.The radiative forcing caused by the light scattering of the anthropogenic aerosol was calculated assuming an upward scattered fraction of 0.3. An average value of − 12 W m −2 was found (with an estimated uncertainty of 20%). This corresponds to an absolute increase in the planetary albedo of 0.03, which is equivalent to a 15% increase in the local planetary albedo of 0.2.  相似文献   

4.
Detailed wind velocity profiles were obtained by means of a rocket-sonde technique to a height of about 700 m at a site in the Canadian Northwest Territories. Less detailed temperature observations were also made using a balloon sonde. The site was some 100 km east of the easternmost range of the Rocky Mountains. The observations took place in mid-February when the overall atmospheric static stability was considerable. The results showed the presence of an arctic, atmospheric ‘thermocline’ some 500 m above ground, which sloped up or down considerably, with the generators of isothermal surfaces usually parallel to the nearby mountains, in the manner of upwelled or downwelled thermoclines in the ocean near shore. There was often strong baroclinic flow parallel to the mountain range. Noticeable frictional effects were confined to a near-ground layer always less than 100 m and mostly no more than 10 m in height. An Ekman-type boundary layer could only be identified in about one-third of the velocity profiles. The non-dimensionalized depth coefficient of such layers was close to 0.1, the geostrophic drag coefficient about 2.5×10?4.  相似文献   

5.
根据2017、2019年7月塔克拉玛干沙漠腹地GPS探空和地面观测数据,利用位温廓线法等方法,对比分析了沙漠腹地夏季晴天和沙尘暴天气大气边界层结构变化特征。结果表明:晴天和沙尘暴天气大气边界层结构特征显著不同。晴天大气边界层各气象要素垂直分布较为均一,白天对流边界层深厚,高度接近5 km,夜间稳定边界层一般在500 m左右。沙尘暴天气边界层内位温和比湿垂直变化较小,风速较大,可达24.0 m/s,其白天对流边界层在1.5 km左右,夜间稳定边界层在1 km左右。晴天辐射强烈,地表升温迅速,湍流旺盛,是形成晴天深厚对流边界层的主要因素。大尺度天气系统冷平流的动力条件,以及云和沙尘减弱了到达地表的辐射强度是形成沙尘暴天气独特的大气边界层结构的主要因素。  相似文献   

6.
利用中国第3次青藏高原大气科学试验2014年7-8月改则探空试验期间获取的每天3次观测的探空数据,对该地区对流层大气垂直结构进行了研究。结果表明:改则地区海拔高度17-19 km存在逆温现象;第一对流层顶平均高度16082 m,第二对流层顶平均高度16466 m,前者出现概率远高于后者,两类对流层顶的高度均与其对流层顶的温度、气压成反比。08、14和20时(北京时)的最大风速分别出现在11.8、12.6和12.1 km高度,风速分别为16.2、16.3和15.9 m/s,风向随高度顺时针变化,对应为暖平流,由下层西南风转为上层的东南风,17 km以上高度稳定成东北风,下层主导风为西南风。在约8 km的高度上存在一个最大相对湿度聚集区,从地面开始相对湿度随高度升高而增大(逆湿现象),达到该聚集区后,随高度升高而减小。青藏高原西部雨季对流层顶折叠现象出现概率较低,可能与该季节高空急流或高空锋天气较少有关。  相似文献   

7.
分别基于微波辐射计温湿度廓线资料的气块法、位温法和比湿法,地面气象资料的罗氏法及气溶胶激光雷达数据的梯度法,计算得出广州地区大气边界层高度,对比分析5种边界层高度结果及其与气象条件、空气质量之间的关系,结合典型大气污染过程分析边界层高度对PM2.5、O3浓度的影响。结果显示:(1)利用位温法、气块法、罗氏法、比湿法和梯度法计算得出广州地区平均边界层高度分别为2 207 m、1 239 m、901 m、717 m和660 m,位温法显著高估了广州地区的边界层高度;(2)利用气块法得出的混合层高度日变化能够较好地表征白天大气边界层演变特征,利用气块法和比湿法得出的白天混合层高度与近地面O3浓度有显著的正相关关系,相关系数在0.5以上,在O3污染防治中,应同时考虑边界层内垂直输送的影响;(3)利用梯度法得出的边界层高度在污染天气时与PM2.5浓度的相关性较好,能较好地表现出大气污染情况,在PM2.5污染天气过程分析中具有较好的应用价值。   相似文献   

8.
Summary The boundary-layer structure of the Elqui Valley is investigated, which is situated in the arid north of Chile and extends from the Pacific Ocean in the west to the Andes in the east. The climate is dominated by the south-eastern Pacific subtropical anticyclone and the cold Humboldt Current. This combination leads to considerable temperature and moisture gradients between the coast and the valley and results in the evolution of sea and valley wind systems. The contribution of these mesoscale wind systems to the heat and moisture budget of the valley atmosphere is estimated, based on radiosoundings performed near the coast and in the valley. Near the coast, a well-mixed cloud-topped boundary layer exists. Both, the temperature and the specific humidity do not change considerably during the day. In the stratus layer the potential temperature increases, while the specific humidity decreases slightly with height. The top of the thin stratus layer, about 300 m in depth, is marked by an inversion. Moderate sea breeze winds of 3–4 m s−1 prevail in the sub-cloud and cloud layer during daytime, but no land breeze develops during the night. The nocturnal valley atmosphere is characterized by a strong and 900 m deep stably stratified boundary layer. During the day, no pronounced well-mixed layer with a capping inversion develops in the valley. Above a super-adiabatic surface layer of about 150 m depth, a stably stratified layer prevails throughout the day. However, heating can be observed within a layer above the surface 800 m deep. Heat and moisture budget estimations show that sensible heat flux convergence exceeds cold air advection in the morning, while both processes compensate each other around noon, such that the temperature evolution stagnates. In the afternoon, cold air advection predominates and leads to net cooling of the boundary layer. Furthermore, the advection of moist air results in the accumulation of moisture during the noon and afternoon period, while latent heat flux convergence is of minor relevance to the moisture budget of the boundary layer. Correspondence: Norbert Kalthoff, Institut für Meteorologie und Klimaforschung, Universit?t Karlsruhe/Forschungszentrum Karlsruhe, Postfach 3640, 76021 Karlsruhe, Germany  相似文献   

9.
绿洲周边荒漠戈壁夏末土壤-大气水分传输特征   总被引:10,自引:0,他引:10  
利用“我国西北干旱区陆-气相互作用试验”2000年8-9月在甘肃敦煌地区戈壁滩上取得的野外观测资料,分析了临近绿洲的戈壁土壤湿度和温度特征以及相对应的大气湿度特征,发现土壤热量活动层约为5cm厚,比一般土壤要薄得多;临近绿洲的荒漠戈壁上,不仅近地层大气多为逆湿,而且浅层土壤有时也出现逆湿。土壤湿度日变化能清楚地被区分为湿维持、水分损失、干维持和水分补充等四个阶段。土壤湿度廓线表明:土壤水分活动层厚度约为10m;湿维持阶段的浅层土壤逆湿是土壤湿度廓线最主要的结构特征,这一土壤湿度结构预示着夜间土壤可能通过凝结吸收大气水分,它与白天的土壤水分蒸发共同构成土壤对大气水分的“呼吸”过程。土壤逆湿的形成与土壤温度状态、大气逆湿强度和大气稳定度都有关。  相似文献   

10.
北京秋季一次降雪前污染天气的激光雷达观测研究   总被引:1,自引:0,他引:1  
以2009年11月5~8日北京地区发生的一次特殊天气形势下的重污染天气过程为例,研究分析本次污染特点和大气边界层结构特征以及此天气过程的大气温度和相对湿度结构特点。激光雷达是探测大气边界层及气溶胶的一个高效工具,利用ALS300激光雷达系统测量信号,应用Fernald方法反演大气消光系数,根据反演的气溶胶消光系数的最大突变,即最大递减率的高度来确定大气边界层的高度。利用其观测的退偏比分析大气污染物特性。利用微波辐射计数据,确定大气温度和湿度时空特征。研究结果表明:在本次污染天气下,大气具有很强的逆温结构,逆温最大可达近1 K(100 m)-1,500 m以上的大气相对湿度很低,在这种天气特征下的大气边界层高度在400 m左右,非常稳定。污染结束降雪开始前,大气逆温结构消失,大气湿度大幅度增加,接近饱和。根据lidar(light detection and ranging)退偏比的分析,本次污染天气是一次典型的烟尘类颗粒物的污染,污染具有区域性特点。PM2.5(空气动力学当量直径小于等于2.5μm的颗粒物)与AOT(Aerosol Optical Thickness)之间有明显的线性关系,相关系数达到0.72。该lidar系统能够反演出秋季降雪前本次污染天气背景下北京城区上空的大气污染特性和大气边界层高度。  相似文献   

11.
复杂地形城市冬季边界层对气溶胶辐射效应的响应   总被引:9,自引:3,他引:6  
郑飞  张镭  朱江 《大气科学》2006,30(1):171-179
作者着眼于城市气溶胶辐射效应与大气边界层的相互作用问题,针对地形复杂的兰州市及周边地区,开发应用了WRF(Weather Research and Forecasting,天气研究和预报)模式,使之与包含了大气气溶胶辐射效应和气溶胶粒子扩散的综合大气边界层数值模式嵌套起来.通过个例分析,揭示了冬季气溶胶辐射效应对边界层结构的定量影响.主要特征为夜间气溶胶的长波辐射效应使地面附近的气温增高,增温幅度为0.1~0.3 K/h,使低空(25~300 m)大气层冷却,降温幅度为0.08~0.15 K/h,风速在150 m以下减小;白天气溶胶的短波辐射效应使地面层内明显增温,1 h内升温约0.5 K,增温最大值在混合层顶500~600 m高度.受增温影响,垂直风场和水平风场随之调整,风速在450 m以下增大约0.1 m/s左右,而在450 m以上风速减小0.1 m/s左右.  相似文献   

12.
利用2012年6—9月南海夏季风期间的近海海洋气象观测平台 (海上平台站) 和电白国家气候观象台 (电白站) 的地面气象站资料,气象塔资料以及GPS探空资料对海上平台站和电白站两站在季风活跃期和非活跃期的大气边界层结构特征进行研究分析。结果表明,活跃期与非活跃期两地的大气边界层结构特征有明显差异。(1) 在活跃期两站近地层风向全天由东南风主导,风速较大,且两站均出现连续降水,受云系和降水的影响,与非活跃期相比,电白站近地层日平均气温降低约为2 ℃;非活跃期两站风向全天无规则变化,且风速值小。(2) 在活跃期大气边界层内风向均为一致的东南风,风速较大,200 m以上的风速均大于8 m/s,而在非活跃期大气边界层内风速较小,风向变化较大,同一时刻不同高度的风向差可达180 °。(3) 在季风非活跃期混合层高度最高可达937 m,而在活跃期,受降水和云系的影响混合层高度明显降低,最大高度仅为700 m左右。(4) 活跃期受连续降水影响,大部分时刻的大气边界层内相对湿度大于80%。由此可见在季风活跃期与非活跃期不仅海陆气能量交换发生变化,大气边界层结构特征也有显著变化。   相似文献   

13.
敦煌夏末大气垂直结构和边界层高度特征   总被引:9,自引:3,他引:6  
韦志刚  陈文  黄荣辉 《大气科学》2010,34(5):905-913
本文利用西北干旱区陆-气相互作用野外观测试验 (NWC-ALIEX) 2008年8月11~18日的探空试验资料, 分析了中国西北干旱区敦煌地区的大气垂直结构和边界层高度特征。结果表明, 对流层顶大约在距地15000 m高度左右, 为第二 (副热带) 对流层顶; 水汽主要集中在距地6500 m以下对流层, 0℃层在距地3000~4000 m高度波动, 逆湿层高度在0℃层左右摆动; 在距地5000 m以上的对流层基本被西北风或偏西风统治, 在距地9000~13000 m左右的对流层高层, 存在一个风速为25~50 m/s的西北风或偏西风极大值; 敦煌夏末存在特厚边界层, 对流边界层高度可达4200 m, 稳定边界层高度可达1300 m。  相似文献   

14.
Concentrations of 222Rn at 0.1 m and 6.5 m height above ground level and 222Rn flux density were measured during nights characterized by strong cooling, light winds and clear sky conditions in the Carpathian Basin in Hungary. A very stable boundary layer (vSBL) formed on 14 nights between 15 August and 3 September 2009. On 12 nights, an estimated 72% (s.d. 20%) of 222Rn emitted from the surface since sunset was retained within the lowest 6.5 m above the ground until sunrise the following morning. On two nights an intermittent increase in wind speed at 9.4 m height was followed by a rise in temperature at 2.0 m height, indicating a larger atmospheric motion that resulted in 222Rn at 0.1 m around sunrise being the same as around the preceding sunset. It does not seem to be rare in a large continental basin for a vSBL to be nearly completely decoupled from the atmosphere above for the entire period from sunset to sunrise.  相似文献   

15.
夏季金塔边界层风、温度和湿度结构特征的初步分析   总被引:10,自引:3,他引:7  
利用2004年6~7月在河西走廊金塔陆-气相互作用试验的观测资料,分析了该地区夏季夜间和中午风、温、湿的垂直结构特征,结果表明:夏季夜间,当地面风较小时,金塔绿洲高空可能为偏西风气流,夜间稳定层高度大致在100~190m。夏季中午,当低空为偏东风时,风速随高度的变化比较复杂。总的来说,存在着东风急流,急流高度在1000-4000m之间,大气边界层顶盖(即逆温层底)约在3000-3600m高度,在500-800m高度以下存在绿洲内边界层;当低空为偏北风或西北风时,高空都为偏西风或西北风气流,低空风速随高度的变化比较平缓,风速有时存在极大值,大气边界层顶盖(即逆温层底)在3500m左右,在1200m以下可能存在绿洲内边界层,绿洲内边界层高度有时会很低。  相似文献   

16.
The vertical and horizontal temperature structure of the atmospheric boundary layer (ABL) were studied using aircraft observations made in the lowest 2.4 km above ground level during the summer monsoon.The vertical temperature structure of the ABL in the region may be classified into the following four categories.Category The ABL consisted of two layers of thickness 700–900 m separated by a thin transition layer. The lapse rates in the former two layers were dry adiabatic.Category The lowest layer of the ABL of thickness 400–600 m was adiabatically stratified and the overlying layer was stable with gradients of potential temperature 4–5°C km–1. The stable layer contained a thin adiabatic stratified layer of 200–300 m thickness at a height of 1.5 km.Category The lowest 200–400 m layer of the ABL was adiabatically stratified and the overlying layer was stable with potential temperature gradients of 5–6 °C km1.Category The ABL was mainly stable with potential temperature gradients of 6 °C km–1 or greater. Occasionally thin layers with adiabatic stratification were found embedded in the ABL.The temperature distribution of the horizontal temperature at 900 m was mainly normal. The high-frequency portion of the spectra lying between 0.05 and 0.16 Hz (corresponding to wave length 1 km to 300 m) oscillated around the –\2/3 power law line. The spectral curve showed a significant peak at 0.011 Hz having a wave-length of 5 km.Department of Geoscience, North Carolina State University, Raleigh, NC, 27650, U.S.A.  相似文献   

17.
We present a simple but effective small unmanned aerial vehicle design that is able to make high-resolution temperature and humidity measurements of the atmospheric boundary layer. The air model used is an adapted commercial design, and is able to carry all the instrumentation (barometer, temperature and humidity sensor, and datalogger) required for such measurements. It is fitted with an autopilot that controls the plane’s ascent and descent in a spiral to 1800 m above ground. We describe the results obtained on three different days when the plane, called Aerolemma-3, flew continuously throughout the day. Surface measurements of the sensible virtual heat flux made simultaneously allowed the calculation of all standard convective turbulence scales for the boundary layer, as well as a rigorous test of existing models for the entrainment flux at the top of the boundary layer, and for its growth. A novel approach to calculate the entrainment flux from the top-down, bottom-up model of Wynagaard and Brost is used. We also calculated temperature fluctuations by means of a spectral high-pass filter, and calculated their spectra. Although the time series are small, tapering proved ineffective in this case. The spectra from the untapered series displayed a consistent −5/3 behaviour, and from them it was possible to calculate a dimensionless dissipation function, which exhibited the expected similarity behaviour against boundary-layer bulk stability. The simplicity, ease of use and economy of such small aircraft make us optimistic about their usefulness in boundary-layer research.  相似文献   

18.
A one-dimensional numerical model of the planetary boundary layer was used to investigate thermal and kinetic energy budgets. The simulation experiments were based on two sets of data. The first set was based on a ‘typical’ June with climatological data extracted for the oceanic region slightly northeast of Barbados. The second set used data from the third phase of project BOMEX, for approximately the same area and time of year as the first set. Comparison with observations of three simulated elements (viz., sea surface temperature and wind and humidity at 6 m) which are important in determining the near-interface energy transports shows that:
  1. the model is capable of realistic simulations of both ‘typical’ conditions, and conditions for a specific four-day period;
  2. the model is capable of realistically simulating the differences between prevailing values of these parameters in the two cases (‘typical’ and specific four-day period).
The simulated interface fluxes are those of incoming and outgoing short- and long-wave radiation; transmitted radiation at -0.5 m in the ocean, sensible heat transfer into the ocean and air, and latent heat flux of evaporation. Comparison with observational analyses shows that the diurnal variations in net radiation and heat storage in the mixed layer are realistically simulated. The simulated values of evaporation are consistent with other estimates for both ‘typical’ conditions and specific conditions during this four-day period. The rate of heat storage varies between +51 and -37 percent of the diurnal maximum incoming radiation, and the evaporation varies between +16% and -13% of this term. The non-dimensional transfer coefficients (C D, CT, Cq) computed from the model show general agreement with the coefficients calculated from observations in the simulated region (Pondet al., 1971). The simulated vertical profiles of temperature are in general agreement with observed profiles, except in the uppermost portions of the atmospheric boundary layer where deviations of approximately 1.5C occur. Simulated vertical profiles of wind speed are generally consistent with observed profiles, with the largest deviations appearing to be of the order of 0.5 m s-1. Simulated vertical profiles of the eddy fluxes of sensible heat, water vapor, and momentum are generally consistent with Bunker's (1970) aircraft-based measurements of these quantities. The time averages of these simulated profiles show regular decreases with height, while simulated profiles for specific hours of the day show intermediate maxima and minima, which are also seen in the measured profiles. The vertically integrated kinetic energy budgets of the modelled atmospheric layer are presented through the four terms of the kinetic energy budget, viz., the upper and the lower boundary drags, dissipation, and potential-to-kinetic conversion. The dominant terms in the atmospheric energy budgets are the production and dissipation terms, with kinetic energy being exported both to the overlying atmospheric layer and to the underlying oceanic layer at rates of about 2 to 6% of the production, respectively. Comparisons between the climatological and BOMEX simulations are presented. The vertically integrated humidity budgets are presented for the two simulation experiments. Under ‘typical’ conditions, the humidity budget reveals an upper boundary flux of about +29% of the lower boundary flux with the vertically integrated advective flux being -59% of the lower flux. For the specific four-day simulation, the upper boundary flux and advection are about +28 and -70%, respectively, of the lower boundary flux.  相似文献   

19.
The characteristics of boundary layer structure during a persistent regional haze event over the central Liaoning city cluster of Northeast China from 16 to 21 December 2016 were investigated based on the measurements of particulate matter (PM) concentration and the meteorological data within the atmospheric boundary layer (ABL). During the observational period, the maximum hourly mean PM2.5 and PM10 concentrations in Shenyang, Anshan, Fushun, and Benxi ranged from 276 to 355 μg m–3 and from 378 to 442 μg m–3, respectively, and the lowest hourly mean atmospheric visibility (VIS) in different cities ranged from 0.14 to 0.64 km. The central Liaoning city cluster was located in the front of a slowly moving high pressure and was mainly controlled by southerly winds. Wind speed (WS) within the ABL (< 2 km) decreased significantly and WS at 10-m height mostly remained below 2 m s–1 during the hazy episodes, which was favorable for the accumulation of air pollutants. A potential temperature inversion layer existed throughout the entire ABL during the earlier hazy episode [from 0500 Local Time (LT) 18 December to 1100 LT 19 December], and then a potential temperature inversion layer developed with the bottom gradually decreased from 900 m to 300 m. Such a stable atmospheric stratification further weakened pollutant dispersion. The atmospheric boundary layer height (ABLH) estimated based on potential temperature profiles was mostly lower than 400 m and varied oppositely with PM2.5 in Shenyang. In summary, weak winds due to calm synoptic conditions, strong thermal inversion layer, and shallow atmospheric boundary layer contributed to the formation and development of this haze event. The backward trajectory analysis revealed the sources of air masses and explained the different characteristics of the haze episodes in the four cities.  相似文献   

20.
The local climate and atmospheric circulation pattern exert a clear influence on the atmospheric boundary layer (ABL) formation and development in Northwest China. In this paper, we use field observational data to analyze the distribution and characteristics of the ABL in the extremely arid desert in Dunhuang, Northwest China. These data show that the daytime convective boundary layer and night time stable boundary layer in this area extend to higher altitudes than in other areas. In the night time, the stable boundary layer exceeds 900 m in altitude and can sometimes peak at 1750 m, above which the residual layer may reach up to about 4000 m. The daytime convective boundary layer develops rapidly after entering the residual layer, and exceeds 4000 m in thickness. The results show that the deep convective boundary layer in the daytime is a pre-requisite for maintaining the deep residual mixed layer in the night time. Meanwhile, the deep residual mixed layer in the night time provides favorable thermal conditions for the development of the convective boundary layer in the daytime. The prolonged periods of clear weather that often occurs in this area allow the cumulative effect of the atmospheric residual layer to develop fully, which creates thermal conditions beneficial for the growth of the daytime convective boundary layer. At the same time, the land surface process and atmospheric motion within the surface layer in this area also provide helpful support for forming the particular structure of the thermal ABL. High surface temperature is clearly the powerful external thermal forcing for the deep convective boundary layer. Strong sensible heat flux in the surface layer provides the required energy. Highly convective atmosphere and strong turbulence provide the necessary dynamic conditions, and the accumulative effect of the residual layer provides a favorable thermal environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号