首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The late Miocene Chasicoan mammal-bearing deposits exposed along the lower reach of Arroyo Chasicó are composed of cross-bedded, very fine sandstones interpreted as a channel-bar deposit (lithofacies association 1) grading upward into sandy siltstones (lithofacies association 2), probably accumulated through relatively high-density flows in a marginal channel and/or floodplain environment. The uppermost levels are dominantly composed of mudstones and sandy siltstones (lithofacies association 3) deposited in generally low-energy conditions of sedimentation in a swampy environment. Several paleosols (lithofacies P) are present, indicating that the succession was the result of episodic fluvial sedimentation. The volcaniclastic composition (primary and reworked pyroclastics) suggests that the fluvial system drained the westward region by the Andean foothills. An impact event dated at 9.23 ± 0.09 Ma and recorded by impact glasses (escorias) during deposition of lithofacies Sp enables the fine tuning of the chronology of the deposits through high-resolution magnetostratigraphic profiles, which indicate that the approximately 9.4 m thick succession recorded by lithofacies association 1 and 2 accumulated between 9.43 and 9.07 Ma. The lithofacial arrangement of the succession does not support the current differentiation of the Arroyo Chasicó Formation into the Vivero and Las Barrancas members. Previous biostratigraphic interpretations contain significant inconsistencies in light of the revised stratigraphy proposed here.  相似文献   

2.
Clay mineral assemblages in alluvial mudrocks are important for paleoclimatic interpretation and for understanding burial diagenetic cementation in sandstones, but it is commonly difficult to unravel the relative importance of source weathering, pedogenesis and diagenesis in their origin. The clay mineral assemblages in fluvial overbank mudrocks from the Lower Cretaceous Chaswood Formation in central Nova Scotia, investigated by X-ray diffraction analysis of the < 2 µm fraction of 45 samples, include kaolinite, illite, vermiculite, and mixed layer kaolinite/expandable clay and mica/vermiculite. The assemblages vary with depositional facies. Wetland organic-rich mudrocks have large amounts of amorphous material and kaolinite is the dominant clay mineral. In the eastern part of the basin, where overbank mudrocks were episodically uplifted by syn-sedimentary strike-slip faulting, cumulate ultisol and alfisol paleosols are common. In the ultisols, hematite is enriched and kaolinite increases at the expense of illite in the B horizon. Alfisols contain more illite and vermiculite and the B horizon is enriched in goethite. In the western part of the basin, where thin sandstones with abundant diagenetic kaolinite cement are interbedded with the mudrocks, the distinctive clay mineral assemblage of mica/vermiculite mixed layer, vermiculite with 15.5 Å peak, and kaolinite/expandable mixed layer clay with a 17.7 Å peak is interpreted to result from bacterially-mediated oxidation of organic matter below the paleo-water table during early burial diagenesis. Deeper burial diagenesis may lead to slightly higher kaolinite crystallinity. Volcanic ash appears to alter to kaolinite/expandable mixed layer clay with a 7.9 Å peak. Comparison with the continuously subsiding and rapidly accumulated Wessex Formation of southern England, formed at a similar paleolatitude, shows the strong role of pedogenic processes and early diagenesis by meteoric water in development of clay mineral assemblages in the locally tectonically uplifted Chaswood Formation.  相似文献   

3.
《Tectonophysics》2001,330(1-2):25-43
A detailed gravimetric study has been integrated with the most recent stratigraphic data in the area comprised between the Arno river and the foothills of the Northern Apennines, in northern Tuscany (central Italy). A Plio–Pleistocene basin lies in this area; its sedimentary succession can be subdivided from the bottom, in five allostratigraphic units: (1) Lower–Middle Pliocene shallow marine deposits; (2) Late Pliocene (?)–Early Pleistocene fluvio-lacustrine deposits; (3) late–Early Pleistocene–Middle Pleistocene alluvial to fluvial red conglomerates (Montecarlo Formation); (4) Middle Pleistocene alluvial to fluvial red conglomerates (Cerbaie and Casa Poggio ai Lecci Formations); (5) alluvial to fluvial deposits of Late Pleistocene age. The Bouguer anomaly map displays a strong minimum in the northeastern sector of the basin, and a gentle gradient from west to east. The map of the horizontal gradients permits to recognise three major fault zones, two of which along the southwestern and northeastern margins of the basin, and one along the southeastern edge of the Pisani Mountains. A 2.5D gravimetric modelling along a SW–NE section across the basin displays a thick wedge of sediments of density 2.25 g/cm3 (about 1700 m in the depocenter) overlying a layer of density 2.55 g/cm3, 1000 m thick, which rests on a basement of 2.72 g/cm3. The most of the sediment wedge is here referred to Upper Pliocene (?)–Lower Pleistocene, because borehole data show Pliocene marine deposits thinning northward close to the southern margin of the area. The layer below is referred to Ligurids and upper Tuscan Nappe units; the densest layer is interpreted as composed of Triassic evaporites, quartzites and Palaeozoic basement. According to Carmignani low-angle extensional tectonics began between Serravallian and early Messinian, thinning the Apennine nappe stack. At the end of Middle Pliocene, syn-rift deposition ceased in the Viareggio Basin (west of the investigated area) as demonstrated by Argnani and co-workers, and high-angle extensional tectonics migrated eastward up to the Monte Albano Ridge. A syn-rift continental sedimentary wedge developed in Late Pliocene–Early Pleistocene, until its hanging wall block was dismembered, during late Early Pleistocene, by NE-dipping faults, causing the uplift of its western portion (the Pisani Mountains). This breakup caused exhumation and erosion of Triassic units whose clastics where shed into the surrounding palaeo-Arno Valley in alluvial–fluvial deposits unconformably overlying the Lower Pleistocene syn-rift deposits. In the late Pleistocene SW–NE-trending fault systems created the steep southeastern edge of the Pisani Mountains and the resulting throw is recorded in Middle Pleistocene deposits across the present Arno Valley. This tectonic phase probably continues at present, offshore Livorno, as evidenced by the epicentres of earthquakes.  相似文献   

4.
《Gondwana Research》2016,29(4):1294-1309
The Cuddapah Basin is one of a series of Proterozoic basins that overlie the cratons of India that, due to limited geochronological and provenance constraints, have remained subject to speculation as to their time of deposition, sediment source locations, and tectonic/geodynamic significance.Here we present 21 new, stratigraphically constrained, U–Pb detrital zircon samples from all the main depositional units within the Cuddapah Basin. These data are supported by Hf isotopic data from 12 of these samples, that also encompass the stratigraphic range, and detrital muscovite 40Ar/39Ar data from a sample of the Srisailam Formation. Taken together, the data demonstrate that the Papaghni and lower Chitravati Groups were sourced from the Dharwar Craton, in what is interpreted to be a rift basin that evolved into a passive margin. The Nallamalai Group is here constrained to be deposited between 1659 ± 22 Ma and ~ 1590 Ma. It was sourced from the coeval Krishna Orogen to the east, and was deposited in its foreland basin. Nallamalai Group detrital zircon U–Pb and Hf isotope values directly overlap with similar data from the Ongole Domain metasedimentary rocks. Depositional age constraints on the Srisailam Formation are permissive with it being coeval with the Nallamalai Group and it was possibly deposited within the same basin. The Kurnool Group saw a return to Dharwar Craton derived provenance and is constrained to being Neoproterozoic. It may represent deposition in a long-wavelength basin forelandward of the Tonian Eastern Ghats Orogeny. Detrital zircons from the Gandikota Formation, which is traditionally considered a part of the Chitravati Group, constrain it to being deposited after 1181 ± 29 Ma, more than 700 Ma after the lower Chitravati Group. It is possible that the Gandikota Formation is correlative with the Kurnool Group.The new data suggest that the Nallamalai Group correlates temporally and tectonically with the Somanpalli Group of the Pranhita–Godavari Valley Basin, which is tightly constrained to being deposited at ~ 1620 Ma. These syn-orogenic foreland basin deposits firmly link the SE India Proterozoic basins to their orogenic hinterland with their discovery filling a ‘missing-link’ in the tectonic development of the region.  相似文献   

5.
Intracontinental subduction of the South China Block below the North China Block in the Late Triassic resulted in formation of the transpressional Sichuan foreland basin on the South China Block. The Upper Triassic Xujiahe Formation was deposited in this basin and consists of an eastward-tapering wedge of predominantly continental siliciclastic sedimentary rocks that are up to 3.5 km thick in the western foredeep depocenter and thin onto the forebulge and into backbulge depocenters.Five facies associations (A–E) make up the Xujiahe Formation and these are interpreted, respectively, as alluvial fan, transverse and longitudinal braided river, meandering river, overbank or shallow lacustrine, and deltaic deposits. This study establishes a sequence stratigraphic framework for the Xujiahe Formation which is subdivided into four sequences (SQ1, 2, 3 and 4). Sequence boundaries are recognized on the basis of facies-tract dislocations and associated fluvial rejuvenation and incision, and systems tracts are identified based on their constituent facies associations and changes in architectural style and sediment body geometries. Typical sequences consist of early to late transgressive systems tract deposits related to a progressive increase in accommodation and represented by Facies Associations A, B and C that grade upwards into Facies Association D. Regionally extensive and vertically stacked coal seams define maximum accommodation and are overlain by early highstand systems tract deposits represented by Facies Associations D, E and C. Late highstand systems tract deposits are rare because of erosion below sequence boundaries. Sequence development in the Xujiahe Formation is attributed to active and quiescent phases of thrust-loading events and is closely related to the tectonic evolution of the basin. The Sichuan Basin experienced three periods of thrust loading and lithospheric flexure (SQ1, lower SQ2 and SQ3), two periods of stress relaxation and basin widening (upper SQ 2 and SQ3) and one phase of isostatic rebound (SQ4). Paleogeographic reconstruction of the Sichuan Basin in the Late Triassic indicates that the Longmen Mountains to the west, consisting of metamorphic, sedimentary and pre-Neoproterozoic basement granitoid rocks, was the major source of sediment to the foredeep depocenter. Subordinate sediment sources were the Xuefeng Mountains to the east to backbulge depocenters, and the Micang Mountains to the northwest during the late history of the basin. This study has demonstrated the viability of sequence stratigraphic analysis in continental successions in a foreland basin, and the influence of thrust loading on sequence development.  相似文献   

6.
The Erlian Basin is one of the non-marine Cretaceous basins of north-east China that developed during the late Mesozoic continental extension in eastern Asia. This basin experienced two major tectonic events: (i) a syn-rift stage that was dominated by a fluvial–lacustrine depositional environment and (ii) a post-rift stage that was dominated by a fluvial environment. A new sedimentological study performed on Erlian Formation drill cores has led to the determination of an architectural model and to the subsequent characterisation of the stratigraphic evolution of this sedimentary unit during the late Cretaceous. The palynological occurrences that were identified in samples provided a possible stratigraphical age for the Erlian Formation.Sediments of the Erlian Formation occur at the top of the Cretaceous stratigraphic column of the Erlian Basin and were deposited during the post-rift stage. Facies architecture and the ideal succession of facies that were identified for this formation exhibit two different members, both dominated by a fluvial depositional environment: (i) the lower member, which is dominated by channels of a braided river system and (ii) the upper member, which is dominated by overbank deposits. The lower member expresses a tectonically induced uplift as indicated by channels clustering under negative accommodation, whereas a period of stratigraphic base-level rise that is associated with an increase of accommodation is identified in the upper member. Therefore the Erlian Formation highlights an alternation of short uplifts that were dominated by braided fluvial channel deposits with periods of stratigraphic base-level rise that were dominated by overbank deposits. This sedimentological architecture has significant metallogenic implications for the origin of confined permeable sandstone layers, which represent adequate host-rocks for roll front-type uranium deposits.The palynological assemblage Exesipollenites, Ulmipollenites/Ulmoideipites, Buttinia and Momipites that were recognised in two samples of the Erlian Formation has revealed a post-late Campanian age therefore more likely indicating a late Cretaceous age of deposition for the sediments of the Erlian Formation.  相似文献   

7.
Detailed outcrop studies at the flanks of Al Kufrah Basin, Libya, reveal the nature of glacially-related sedimentation and post-depositional deformation styles produced in association with the Late Ordovician glaciation, during which ice sheets expanded northward over North Africa to deposit the Mamuniyat Formation. At the SE basin flank (Jabal Azbah), the Mamuniyat Formation is sand-dominated, and incises interfingering braidplain and shallow marine deposits of the Hawaz Formation. The glacially-related sediments include intercalations of mud-chip bearing tabular sandstones and intraformational conglomerates, which are interpreted as turbidite and debrite facies respectively. These record aggradation of an extensive sediment wedge in front of a stable former ice margin. An increase in mudstone content northward is accompanied by the occurrence of more evolved turbidites. A widespread surface, bearing streamlined NW–SE striking ridges and grooves, punctuates this succession. The structures on the surface are interpreted to have formed during a regional north-westward ice advance. Above, siltstones bearing Arthrophycus burrows, and Orthocone-bearing sandstones beneath tidal bars testify to glaciomarine conditions for deposition of the underflow deposits beneath. By contrast, the northern basin margin (Jabal az-Zalmah) is appreciably different in recording shallower water/paralic sedimentation styles and major glaciotectonic deformation features, although facies analysis also reveals northward deepening. Here, a siltstone wedging from 8 to 50 m toward the north was deposited (lower delta plain), succeeded by climbing ripple cross-laminated sandstones up to 60 m in thickness (distal through proximal delta mouth bar deposits) with occasional diamictite interbeds. These rocks are deformed by thrusts and > 50 m amplitude fault-propagation folds, the deformation locally sealed by a diamictite then overlain by conglomeratic lag during ultimate deglaciation. Integrating observations from both basin margins, a model of fluvial-dominated delta systems feeding a pulsed debrite and turbidite fan system in a shallow proglacial shelf is proposed.  相似文献   

8.
Changes in the sedimentologic and stratigraphic characteristics of the coal-bearing middle Oligocene–late Miocene siliciclastic Amagá Formation, northwestern Colombia, reflect major fluctuations in the stratigraphic base level within the Amagá Basin, which paralleled three major stages of evolution of the middle Cenozoic Andean Orogeny. These stages, which are also traceable by the changes in the compositional modes of sandstones, controlled the occurrence of important coal deposits. The initial stage of evolution of the Amagá Basin was related to the initial uplift of the Central Cordillera of Colombia around 25 Ma, which promoted moderate subsidence rates and high rates of sediment supply into the basin. This allowed the development of aggradational braided rivers and widespread channel amalgamation resulting in poor preservation of both, low energy facies and geomorphic elements. The presence of poorly preserved Alfisols within the scarce flood plains and the absence of swamp deposits suggest arid climate during this stage. The compositional modes of sandstones suggest sediment supply from uplifted basement-cored blocks. The second stage of evolution was related to the late Oligocene eastward migration of the Pre-Andean tholeitic magmatic arc from the Western Cordillera towards the Cauca depression. This generated extensional movements along the Amagá Basin, enhancing the subsidence and increasing the accommodation space along the basin. As a result of the enhanced subsidence rates, meandering rivers developed, allowing the formation of extensive swamps deposits (currently coal beds). The excellent preservation of Entisols and Alfisols within the flood plain deposits suggests rapid channels migration and a humid climate during deposition. Moderate to highly mature channel sandstones support this contention, and point out the Central Cordillera of Colombia as the main source of sediment. Enhanced subsidence during this stage also prevented channels amalgamation and promoted both, high preservation of geomorphic elements and high diversity of sedimentary facies. This resulted in the most symmetric stratigraphic cycles of the entire Amagá Formation. The final stage of evolution of the Amagá Basin was related to the early stage of development of the late Miocene northwestern Andes tholeitic volcanism (from ∼10 to ∼8 Ma). The extensive thrusting and folding associated to this volcanism reduced the subsidence rates along the basin and thus the accommodation space. This permitted the development of highly aggradational braided rivers and promoted channels amalgamation. Little preservation of low energy facies, poor preservation of the geomorphic elements and a complete obliteration of important swamp deposits (coal beds) within the basin are reflected by the most asymmetric stratigraphic cycles of the whole formation. The presence of greenish/reddish flood plain deposits and Alfisols suggests a dry climate during this depositional stage. The presence of channel sandstones with high contents of volcanic rock fragments supports a dry climate, and suggests an incipient phase of the Combia tholeiitic magmatism present during deposition of the Amagá Formation. The subsequent eastward migration of the NW Andes magmatic arc (after ∼8 Ma) may have produced basin inversion and suppressed deposition along the Amagá Basin.  相似文献   

9.
10.
根据钻井岩心、铸体薄片、扫描电镜、测录井资料及分析化验资料,对柴达木盆地北缘西段平台地区古近系路乐河组地层岩心的沉积构造、粒度特征、沉积序列等进行详细研究,分析平台地区古近系路乐河组的沉积相类型及演化过程。研究表明,平台地区路乐河组主要受近源沉积控制,沉积了一套以砾岩、含砾粗砂岩、泥质粉砂岩和泥岩为主的粗粒碎屑岩,发育槽状交错层理和板状交错层理,成分成熟度和结构成熟度较差。粒度概率累积曲线显示碎屑颗粒沉积物主要由悬浮组分和跳跃组分组成,表明水动力条件较强,以河流相沉积为主。沉积微相类型以河床亚相的河床滞留和心滩沉积为主,其次为河漫亚相的河漫滩沉积和泛滥平原沉积。沉积相的研究清楚展示出平台地区古近纪早期路乐河组的沉积特征和演化规律,为该地区下一步油气勘探工作提供可靠的地质依据。  相似文献   

11.
In South-East Asia, sedimentary basins displaying continental Permian and Triassic deposits have been poorly studied. Among these, the Luang Prabang Basin (North Laos) represents a potential key target to constrain the stratigraphic and structural evolutions of South-East Asia. A combined approach involving sedimentology, palaeontology, geochronology and structural analysis, was thus implemented to study the basin. It resulted in a new geological map, in defining new formations, and in proposing a complete revision of the Late Permian to Triassic stratigraphic succession as well as of the structural organization of the basin. Radiometric ages are used to discuss the synchronism of volcanic activity and sedimentation.The Luang Prabang Basin consists of an asymmetric NE-SW syncline with NE-SW thrusts, located at the contact between Late Permian and Late Triassic deposits. The potential stratigraphic gap at the Permian–Triassic boundary is therefore masked by deformation in the basin. The Late Triassic volcaniclastic continental deposits are representative of alluvial plain and fluvial environments. The basin was fed by several sources, varying from volcanic, carbonated to silicic (non-volcanic). U–Pb dating of euhedral zircon grains provided maximum sedimentation ages. The stratigraphic vertical succession of these ages, from ca. 225, ca. 220 to ca. 216 Ma, indicates that a long lasting volcanism was active during sedimentation and illustrates significant variations in sediment preservation rates in continental environments (from ∼100 m/Ma to ∼3 m/Ma). Anhedral inherited zircon grains gave older ages. A large number of them, at ca. 1870 Ma, imply the reworking of a Proterozoic basement and/or of sediments containing fragments of such a basement. In addition, the Late Triassic (Carnian to Norian) sediments yielded to a new dicynodont skull, attributed to the Kannemeyeriiform group family, from layers dated in between ∼225 and ∼221 Ma (Carnian).  相似文献   

12.
《Precambrian Research》2006,144(3-4):167-198
The Huqf Supergroup of Oman contains an excellently exposed succession from the presumed Marinoan-age Fiq glaciation (ca. 635 Ma) to the Precambrian–Cambrian boundary (542 Ma). Within this time interval, two major siliciclastic-to-carbonate cycles are present, starting with the transgression of basin margins following the deposition of the glacigenic, probably rift-related Fiq Member. The dominantly siliciclastic portion of the first cycle is termed the Masirah Bay Formation. In the Huqf region of east-central Oman, two quartz-arenitic sandstone bodies crop out, below the transition into the overlying Khufai Formation carbonates. In the Jabal Akhdar of northern Oman, only deep marine shales and siltstones are found.The Masirah Bay Formation in the Huqf area is divided into a number of members with constituent units containing distinctive facies assemblages. In Member 1, wave-rippled shoreface deposits are overlain by trough cross-stratified, coarse-grained sandstones deposited in proximal tidal sandsheets or estuarine tidal shoals. Member 2 represents essentially a repeat of this coarsening- and shallowing-up trend via a basin-wide flooding event. A second major flooding surface is overlain by the lower shoreface to offshore sedimentary rocks of Member 3, which pass gradationally upwards into the distal carbonate ramp of the Khufai Formation. The two major progradational cycles can be identified in nearby subsurface well penetrations such as Masirah-1 (SMP-1).The tidal sandstones of the Masirah Bay Formation were deposited as regressive-transgressive pulses in a longer term transgressive stratigraphic trend associated with both the demise of continental glaciation and the end of active extensional tectonics. As basin margins were flooded, compositionally and texturally mature but coarse-grained quartzose sand was swept by currents into tidal sandsheets and estuary-fills along a broad littoral margin situated in the eastern fringe of the study area. The development of meso-macrotidal conditions over extensive sandy shelves and coastlines appears to be a common but unexplained feature of the Ediacaran and Early Cambrian interval.  相似文献   

13.
Precambrian fluvial deposits have been traditionally described as architecturally simple, forming shallow and wide braidplains with sheet‐like geometry. The varied architecture and morphodynamics of the 1·6 Ga Ellice Formation of Elu Basin, Nunavut, Canada, are examined from detailed studies of section and planform exposures along coastal platforms and stepped cliffs. The Ellice Formation overlies older Proterozoic sandstones and Archean crystalline rocks, recording sedimentation in fluvial, aeolian, coastal and nearshore‐marine environments. The fluvial deposits display palaeoflow towards the west/north‐west, while overlying shallow‐marine deposits record transgression towards the east/south‐east. The Ellice Formation displays dispersed palaeoflow at its base, and also at higher stratigraphic levels, where fluvial and aeolian deposits are associated. Elsewhere, mainly unimodal palaeoflow points to extensive low‐sinuosity fluvial deposition. Within the terrestrial deposits, fluvial, fluvial–aeolian and coastal architectural elements are recognized. Fluvial elements comprise cross‐bedded sandstone and minor conglomerate, exhibiting an overall fining‐upward trend with associated decrease in preservation, dimension and amalgamation of channel bodies. These motifs are interpreted to portray a shift in depositional environment from proximal trunk rivers to distal alluvial plains. Low‐sinuosity fluvial elements are the most common, and include major channel bodies, elongate side bars and mid‐channel bars with well‐developed scroll topography. High‐sinuosity channel‐bar complexes exhibit upbar‐flow rotation and yield evidence of bar expansion coupled with rotation and translation. Fluvial–aeolian elements are composed of aeolian dunes juxtaposed with isolated channel bodies and bank‐attached bars. Minor mixed fluvial–aeolian sheets record local deposition in unconfined settings (possibly floodbasins) or inter‐distributary highlands. Finally, coastal elements comprise small deltaic complexes composed of sand‐rich distributary‐channel bodies feeding heterolithic mouth bars. Overall, the sedimentary record of the Ellice Formation demonstrates an example from the Precambrian where alluvium was locally characterized by a higher geomorphic variability than previously recognized.  相似文献   

14.
《Quaternary Science Reviews》2007,26(17-18):2247-2264
In the semiarid loess regions, slackwater deposition of overbank flooding over the piedmont alluvial plains was episodic and alternated with dust accumulation and soil formation throughout the Holocene. The records of past hydrological events are therefore preserved within the architecture of loess and soils and are protected from subsequent erosion and destruction. Several Holocene loess–soil sequences with the deposits of overbank flooding over the semiarid piedmont alluvial plains in the southeast part of the middle reaches of the Yellow River drainage basin were investigated by field observation, OSL and C14 dating, measurement of magnetic susceptibility, particle-size distribution and chemical elements. This enables the reconstruction of a complete catalog of Holocene overbank flooding events at a watershed scale and an investigation of hydrological response to monsoonal climatic change as well. During the Holocene, there are six episodes of overbank flooding recorded over the alluvial plain. The first occurred at 11,500–11,000 a BP, i.e. the onset of the Holocene. The second took place at 9500–8500 a BP, immediately before the mid-Holocene Climatic Optimum. After an extended geomorphic stability and soil formation, the third overbank flooding episode came at about 3620–3520 a BP, i.e. the late stage of the mid-Holocene Climatic Optimum, and the floodwater inundated and devastated a Bronze-age town of the Xia Culture built on the alluvial plain, and therefore the town was abandoned for a period of ca 100 years. During the late Holocene, the alluvial plain experienced three episodes of overbank flooding at 2420–2170, 1860–1700 and 680–100 a BP, respectively. The occurrence of these overbank flooding episodes corresponds to the anomalous change in monsoonal climate in the middle reaches of the Yellow River drainage basin when rapid climate change or climatic decline occurs. During at least the last four episodes, both extreme floods and droughts occurred and climate departed from its normal condition, which was defined as a balanced change between the northwestern continental monsoon and southeastern maritime monsoon over time. Great floods occurred as a result of extreme rainstorms in summers caused by rare intensive meridianal airflows involving northwestward moving tropical cyclone systems from the Pacific. These results could be applied to improve our understanding of high-resolution climatic change, and of hydrological response to climatic change in the semiarid zones.  相似文献   

15.
Irene Zembo 《Sedimentary Geology》2010,223(3-4):206-234
The sedimentary record of the Val d'Agri basin is of great importance for understanding the Quaternary tectonic activity and climatic variability in the Southern Apennines. Changes in tectonic controls, sediment supply and climatic input have been identified. The interval from ~ 56 to ~ 43 ka was associated with asymmetric subsidence restricted to the north-eastern actively faulted margin of the basin and development of axial braided river and transverse alluvial fan systems. Short-lasting Mediterranean-type pedogenesis between ~ 43 and ~ 32 ka (MIS Stage 3) coexisted with progradation–aggradation of the southern alluvial fan deposits and southwards tilting of the basin floor. Aggradation ended with consumption of accommodation space after 32 ka. During a subsequent stage of decline of vegetation cover, possibly as a consequence of climatic cooling (probably MIS Stage 2), active progradation of alluvial fans occurred. Breakthrough of the basin threshold and entrenchment of the drainage network must therefore be attributed to a latest Pleistocene to Holocene age. The first stages of basin opening and fill, predating ~ 56 ka have only been inferred by stratigraphic considerations: the earliest lacustrine sedimentation should be middle Pleistocene or older in age. The following south-eastward basin widening allowed progradation of alluvial fan systems, which completely filled the lacustrine area (tentatively late middle Pleistocene). Pedogenesis in “Mediterranean-like” climate conditions caused the final development of a highly mature fersiallitic paleosol at the top of the fan surfaces, in areas of morpho-tectonic stability, plausibly during MIS Stage 5. The study results demonstrate the potential of applying a multidisciplinary approach in an intermontane continental settings marked by a relative rapid and constant tectonic subsidence and a high rate of sediment supply during the Pleistocene glacial–interglacial cycles.  相似文献   

16.
Strata of the Bardas Blancas Formation (lower Toarcian–lower Bajocian) are exposed in northern Neuquén Basin. Five sections have been studied in this work. Shoreface/delta front to offshore deposits predominate in four of the sections studied exhibiting a high abundance of hummocky cross-stratified, horizontally bedded and massive sandstones, as well as massive and laminated mudstones. Shell beds and trace fossils of the mixed Skolithos-Cruziana ichnofacies appear in sandstone beds, being related with storm event deposition. Gravel deposits are frequent in only one of these sections, with planar cross-stratified, normal graded and massive orthoconglomerates characterizing fan deltas interstratified with shoreface facies. A fifth outcrop exhibiting planar cross-stratified orthoconglomerates, pebbly sandstones with low-angle stratification and laminated mudstones have been interpreted as fluvial channel deposits and overbank facies. The analysis of the vertical distribution of facies and the recognition of stratigraphic surfaces in two sections in Río Potimalal area let recognized four transgressive–regressive sequences. Forced regressive events are recognized in the regressive intervals. Comparison of vertical distribution of facies also shows differences in thickness in the lower interval among the sections studied. This would be related to variations in accommodation space by previous half-graben structures. The succession shows a retrogradational arrangement of facies related with a widespread transgressive period. Lateral variation of facies let recognize the deepening of the basin through the southwest.  相似文献   

17.
The Cenozoic record of the north-western domain of the Duero basin is articulated at the surface through a set of continental depositional sequences called, from base to top, the Vegaquemada sequence, the Candanedo sequence, and the Barrillos sequence. These depositional sequences were deposited in continental sedimentary environments. The deposition of the first sequence occurred through a fluvial system with floodplains cut by low-sinuosity channels. The Vegaquemada sequence was developed between the Middle Eocene and the Early Agenian. The second sequence was formed by a set of highly efficient transport alluvial fans that evolved laterally towards fluvial systems with low-sinuosity fluvial channels and an extensive floodplain, where several types of palaeosols were formed. This sequence developed between the Early Agenian and the Late Vallesian. The third unit–the Barrillos sequence (between the Late Vallesian and the Turolian/Ruscinian transition), was generated by a set of highly efficient transport alluvial fans dominated by low-sinuosity fluvial channels.In subsurface geology, seismic and well data are used to rebuild the stratigraphic architecture. The two basal depositional sequences can be identified with two seismic units: the Palaeogene Seismic Unit (PgSU) and the Neogene Seismic Unit (NgSU), respectively. In the present work, we obtained the isovelocity, isochron, and isobath maps for the top and base of the two Cenozoic units. The Palaeozoic (PzSU) and Mesozoic (MzSU) seismic units are found under these two units. Through study of the logs of the various boreholes, it was only possible to analyse the upper 700 m of the Candanedo Sequence (NgSU), without encompassing the total thickness of the unit. Several middle-order sequences were differentiated, in general showing a sequential fining-upwards evolutionary character. Additionally, for the boreholes analysed two main types of electrofacies were identified, both representing fluvial channels and floodplain deposits.The north-western domain of the Duero basin is interpreted to have been formed in response to the tectonic uplifting of the Cantabrian Mountains since Middle-Eocene times. Integration of the data concerning the surface and subsurface geology in this domain reveals that this basin edge behaved as a foreland basin during Cenozoic stages. The foredeep, with a depth of 2800 m, is oriented east–west and has a sediment thickness of up to 3500 m. The forebulge is located in the southwestern zone and represents an area of basement uplifting in which a minimum thickness of materials from the Cenozoic depositional sequences has accumulated.  相似文献   

18.
This paper investigates slope channel initiation by seabed irregularities that were initially formed by slump scars in the lower to middle Jatiluhur Formation, part of the middle- to late Miocene successions in the Bogor Trough, West Java. This Miocene succession is up to 1000 m thick in the study area, and is interpreted as a prograding slope–shelf system that formed during a period of falling- and lowstand stages in relative sea level. The lower part of the formation is a siltstone-dominated siliciclastic succession, containing slump deposits, slump-scar-fill deposits, and minor channel-fill deposits, which formed in slope and shelf-margin environments. In contrast, the middle part, which gradationally overlies the lower part, is characterized by shallow-marine carbonates.The slump-scars-fill deposits have an overall lenticular geometry, and are 140–480 m wide and 0.4–1.6 m thick. Some have distinct erosional bases, which cut into the underlying siltstones, in association with medium- to coarse-grained sandstones with lateral-accretion surfaces and tractional structures common in channel-fill deposits. The incident link of slump-scar-fill deposits and channel-fill deposits in the prograding slope–shelf succession of the lower to middle Jatiluhur Formation suggests that some slump scars formed incipient seabed irregularities that may have played an important role in the development of slope channels. The present study provides one example of the various potential mechanisms that can result in channel formation in a slope setting.  相似文献   

19.
《Sedimentology》2018,65(3):775-808
Fluvial systems in which peat formation occurs are typified by autogenic processes such as river meandering, crevasse splaying and channel avulsion. Nevertheless, autogenic processes cannot satisfactorily explain the repetitive nature and lateral continuity of many coal seams (compacted peats). The fluvial lower Palaeocene Tullock Member of the Fort Union Formation (Western Interior Williston Basin; Montana, USA ) contains lignite rank coal seams that are traceable over distances of several kilometres. This sequence is used to test the hypothesis that peat formation in the fluvial system was controlled by orbitally forced climate change interacting with autogenic processes. Major successions are documented with an average thickness of 6·8 m consisting of ca 6 m thick intervals of channel and overbank deposits overlain by ca 1 m thick coal seam units. These major coal seams locally split and merge. Time‐stratigraphic correlation, using a Cretaceous–Palaeogene boundary event horizon, several distinctive volcanic ash‐fall layers, and the C29r/C29n magnetic polarity reversal, shows consistent lateral recurrence of seven successive major successions along a 10 km wide fence panel perpendicular to east/south‐east palaeo‐flow. The stratigraphic pattern, complemented by stratigraphic age control and cyclostratigraphic tests, suggests that the major peat‐forming phases, resulting in major coal seams, were driven by 100 kyr eccentricity‐related climate cycles. Two distinct conceptual models were developed, both based on the hypothesis that the major peat‐forming phases ended when enhanced seasonal contrast, at times of minimum precession during increasing eccentricity, intensified mire degradation and flooding. In model 1, orbitally forced climate change controls the timing of peat compaction, leading to enhancement of autogenic channel avulsions. In model 2, orbitally forced climate change controls upstream sediment supply and clastic influx determining the persistence of peat‐forming conditions. At the scale of the major successions, model 2 is supported because interfingering channel sandstones do not interrupt lateral continuity of major coal seams.  相似文献   

20.
The Paleoproterozoic McArthur Basin (McArthur Group) of northern Australia hosts world-class sedimentary ‘exhalative’ (SEDEX) McArthur type Zn–Pb deposits, which are largely hosted within a sequence of 1.64 Ga pyritic carbonaceous shales deposited in an extensional rift setting. A well-known example of these is McArthur River (or Here's Your Chance [HYC] Zn–Pb–Ag deposit). The ~ 1.78 Ga McDermott and ~ 1.73 Ga Wollogorang formations (Tawallah Group) both contain carbonaceous shales deposited in similar environments. Our observations suggest the carbonaceous facies of the Wollogorang Formation were deposited under mostly euxinic conditions, with periodically-high concentrations of sedimentary pyrite deposition. The carbonaceous shales in the older McDermott Formation contain considerably less early pyrite, reflecting a mostly sulfide-poor, anoxic depositional environment. Localized fault-bound sub-basins likely facilitated lateral facies variations, which is evident from synsedimentary breccias.The presence of evaporitic oxidized facies within the McDermott and Wollogorang formations, alongside evidence for synsedimentary brecciation in reduced shales are favourable criteria for SEDEX-style base metal deposition. Both formations overlie volcanic units, which could have been sources of base metals. Detailed X-ray petrography, new geochemical data and sulfur isotope data from historical drill cores indicate multiple horizons of stratiform and sediment breccia-hosted base metal sulfide within carbonaceous shale units, with high-grade Zn concentrations. A close association between sphalerite and ferromanganean dolomite alteration draws comparisons with younger SEDEX mineralization at HYC. Additionally, SEDEX alteration indices, used demonstrably as a vector to the younger orebodies, indicate the sedimentary rocks analyzed in this study are marginally below the ore window when compared to the overlying mineralized stratigraphy.Our data imply that localized active circulation of metalliferous brines occurred in the Tawallah Group basin. High-grade sulfide deposition in reduced facies alteration may represent distal expressions of larger SEDEX-style deposits. Furthermore, abundant pyrite and high molybdenum in the Wollogorang Formation suggest the global oceanic sulfate concentration was sufficient by ~ 1.73 Ga to engender intermittent but strong bottom-water euxinia during shale deposition, thus providing a robust chemical trap for base metal sulfide mineralization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号