首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Forest cover plays a key role in climate change by influencing the carbon stocks, the hydrological cycle and the energy balance. Forest cover information can be determined from fine-resolution data, such as Landsat Enhanced Thematic Mapper Plus (ETM+). However, forest cover classification with fine-resolution data usually uses only one temporal data because successive data acquirement is difficult. It may achieve mis-classification result without involving vegetation growth information, because different vegetation types may have the similar spectral features in the fine-resolution data. To overcome these issues, a forest cover classification method using Landsat ETM+ data appending with time series Moderate-resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) data was proposed. The objective was to investigate the potential of temporal features extracted from coarse-resolution time series vegetation index data on improving the forest cover classification accuracy using fine-resolution remote sensing data. This method firstly fused Landsat ETM+ NDVI and MODIS NDVI data to obtain time series fine-resolution NDVI data, and then the temporal features were extracted from the fused NDVI data. Finally, temporal features combined with Landsat ETM+ spectral data was used to improve forest cover classification accuracy using supervised classifier. The study in North China region confirmed that time series NDVI features had significant effects on improving forest cover classification accuracy of fine resolution remote sensing data. The NDVI features extracted from time series fused NDVI data could improve the overall classification accuracy approximately 5% from 88.99% to 93.88% compared to only using single Landsat ETM+ data.  相似文献   

2.
The scan-line corrector (SLC) for the Enhanced Thematic Mapper Plus (ETM+) sensor, on board the Landsat 7 satellite, failed permanently in 2003. The consequence of the SLC failure (or SLC-off) is that about 20% of the pixels in an ETM+ image are not scanned. We aim to develop a geostatistical method that estimates the missing values. Our rationale is to collect three cloud-free images for a particular Landsat scene, taken within a few weeks of each other: the middle image is the target whose un-scanned locations we wish to estimate; the earlier and later images are used as secondary information. We visit each un-scanned location in the target image and, for each reflectance band in turn, predict the missing value with cokriging (resorting to kriging when there is not enough local secondary information to justify cokriging). For three Landsat scenes in different bio-regions of Queensland, Australia, we compared the performance of geostatistical interpolation with image compositing. Geostatistics was a generally superior estimator. In contrast to compositing, geostatistics was able to estimate accurately values at all un-scanned locations, and was able to quantify the variance associated with each prediction. SLC-off images interpolated with geostatistics were visually sensible, although changes in land-use from pixel to pixel affected adversely the accuracy of prediction. The primary disadvantage of geostatistics was its relatively slow computing speed. We recommend the geostatistical method over compositing, but, if speed takes priority over statistical rigour, a hybrid technique–whereby composites are corrected to the local means and variances of the bands in the target image, and any un-estimable locations are interpolated geostatistically–is an adequate compromise.  相似文献   

3.
LANDSAT-TM has been evaluated for forest cover type and landuse classification in subtropical forests of Kumaon Himalaya (U.P.) Comparative evaluation of false colour composite generated by using various band combinations has been made. Digital image processing of Landsat-TM data on VIPS-32 RRSSC computer system has been carried out to stratify vegetation types. Conventional band combination in false colour composite is Bands 2, 3 and 4 in Red/Green/Blue sequence of Landsat TM for landuse classification. The present study however suggests that false colour combination using Landsat TM bands viz., 4, 5 and 3 in Red/Green/Blue sequence is the most suitable for visual interpretation of various forest cover types and landuse classes. It is felt that to extract full information from increased spatial and spectral resolution of Landsat TM, it is necessary to process the data digitally to classify land cover features like vegetation. Supervised classification using maximum likelihood algorithm has been attemped to stratify the forest vegetation. Only four bands are sufficient enough to classify vegetaton types. These bands are 2,3,4 and 5. The classification results were smoothed digitaly to increase the readiability of the map. Finally, the classification carred out using digital technique were evaluated using systematic sampling design. It is observed that forest cover type mapping can be achieved upto 80% overall mapping accuracy. Monospecies stand Chirpine can be mapped in two density classes viz., dense pine (<40%) with more than 90% accuracy. Poor accuracy (66%) was observed while mapping pine medium dense areas. The digital smoothening reduced the overall mapping accuracy. Conclusively, Landsat-TM can be used as operatonal sensor for forest cover type mapping even in complex landuse-terrain of Kumaon Himalaya (U.P.)  相似文献   

4.
In support to the Remote Sensing Survey of the global Forest Resource Assessment 2010, the TREES-3 project has processed more than 12,000 Landsat TM and ETM+ data subsets systematically distributed over the tropics. The project aims at deriving area estimates of tropical forest cover change for the periods 1990-2000-2005. The paper presents the pre-processing steps applied in an operational and robust manner to this large amount of multi-date and multi-scene imagery: conversion to top-of-atmosphere reflectance, cloud and cloud shadow detection, haze correction and image radiometric normalization. The results show that the haze correction algorithm has improved the visual appearance of the image and significantly corrected the digital numbers for Landsat visible bands, especially the red band. The impact of the normalization procedures (forest normalization and relative normalization) was assessed on 210 image pairs: in all cases the correlation between the spectral values of the same land cover in both images was improved. The developed automatic pre-processing chain provided a consistent multi-temporal data set across the tropics that will constitute the basis for an automatic object-based supervised classification.  相似文献   

5.
Image matching is emerging as a compelling alternative to airborne laser scanning (ALS) as a data source for forest inventory and management. There is currently an open discussion in the forest inventory community about whether, and to what extent, the new method can be applied to practical inventory campaigns. This paper aims to contribute to this discussion by comparing two different image matching algorithms (Semi-Global Matching [SGM] and Next-Generation Automatic Terrain Extraction [NGATE]) and ALS in a typical managed boreal forest environment in southern Finland. Spectral features from unrectified aerial images were included in the modeling and the potential of image matching in areas without a high resolution digital terrain model (DTM) was also explored. Plot level predictions for total volume, stem number, basal area, height of basal area median tree and diameter of basal area median tree were modeled using an area-based approach. Plot level dominant tree species were predicted using a random forest algorithm, also using an area-based approach. The statistical difference between the error rates from different datasets was evaluated using a bootstrap method.Results showed that ALS outperformed image matching with every forest attribute, even when a high resolution DTM was used for height normalization and spectral information from images was included. Dominant tree species classification with image matching achieved accuracy levels similar to ALS regardless of the resolution of the DTM when spectral metrics were used. Neither of the image matching algorithms consistently outperformed the other, but there were noticeably different error rates depending on the parameter configuration, spectral band, resolution of DTM, or response variable. This study showed that image matching provides reasonable point cloud data for forest inventory purposes, especially when a high resolution DTM is available and information from the understory is redundant.  相似文献   

6.
Coffee is a commodity of international trade significance, and its value chain can benefit from age-specific thematic maps. This study aimed to assess the potential of Landsat 8 OLI to develop these maps. Using field-collected samples with the random forest classifier, splitting coffee into three age classes (Scheme A) was compared with running the classification with one compound coffee class (Scheme B). Higher overall classification accuracy was obtained in Scheme B (90.3% for OLI and 86.8% for ETM+) than in Scheme A (86.2% for OLI and 81.0% for ETM+). The NIR band of OLI was the most important band in intra-class discrimination of coffee. Landsat 8 OLI mapped area closely matched farm records (R2?=?0.88) compared to that of Landsat 7 ETM+ (R2?=?0.78). It was concluded that Landsat 8 OLI data can be used to produce age-specific thematic maps in coffee production areas although disaggregating coffee classes reduces overall accuracy.  相似文献   

7.
Biodiversity mapping in extensive tropical forest areas poses a major challenge for the interpretation of Landsat images, because floristically clearly distinct forest types may show little difference in reflectance. In such cases, the effects of the bidirectional reflection distribution function (BRDF) can be sufficiently strong to cause erroneous image interpretation and classification. Since the opening of the Landsat archive in 2008, several BRDF normalization methods for Landsat have been developed. The simplest of these consist of an empirical view angle normalization, whereas more complex approaches apply the semi-empirical Ross–Li BRDF model and the MODIS MCD43-series of products to normalize directional Landsat reflectance to standard view and solar angles. Here we quantify the effect of surface anisotropy on Landsat TM/ETM+ images over old-growth Amazonian forests, and evaluate five angular normalization approaches. Even for the narrow swath of the Landsat sensors, we observed directional effects in all spectral bands. Those normalization methods that are based on removing the surface reflectance gradient as observed in each image were adequate to normalize TM/ETM+ imagery to nadir viewing, but were less suitable for multitemporal analysis when the solar vector varied strongly among images. Approaches based on the MODIS BRDF model parameters successfully reduced directional effects in the visible bands, but removed only half of the systematic errors in the infrared bands. The best results were obtained when the semi-empirical BRDF model was calibrated using pairs of Landsat observation. This method produces a single set of BRDF parameters, which can then be used to operationally normalize Landsat TM/ETM+ imagery over Amazonian forests to nadir viewing and a standard solar configuration.  相似文献   

8.
利用3对同日过空的ASTER和ETM+影像对,开展了ETM+和ASTER热红外影像的定量比较,求出了二者的关系转换方程。定量研究结果表明,ASTER和ETM+热红外数据具有极显著的正相关关系,所求出的转换关系方程有很高的精度。但二者仍有一定的差异,表现在ASTER数据反演的传感器处温度要比ETM+平均高0.66℃~0.82℃,其所表现的热信息量也要比ETM+丰富且连续。  相似文献   

9.
一种高时空分辨率NDVI数据集构建方法-STAVFM   总被引:1,自引:1,他引:0  
ETM NDVI可以用来在30m的尺度上开展植被的监测,然而在Landsat卫星16天的重访周期和云污染等因素的影响下,常常会在相当长的一段时间内无法获取有效的ETM NDVI数据,给这一尺度下的植被动态监测带来了一定困难。相比之下,MODIS虽然在空间上只有250m分辨率的NDVI产品,却可以每天进行相同区域的监测。针对ETM空间分辨率高和MODIS时间分辨率高的特点,本研究选择实验区,基于对STARFM方法的改进,构建不同时空分辨率NDVI的时空融合模型-STAVFM,使用该模型对ETM NDVI与MODIS NDVI融合,构建了高时空分辨率NDVI数据集。研究结果表明,通过MODIS NDVI时间变化信息与ETM NDVI空间差异信息的有机结合,实现缺失高空间分辨率NDVI的有效预测(3景预测NDVI与实际NDVI的相关系数分别达到了0.82、0.90和0.91),从而构建高时空分辨率NDVI数据集。所构建的高时空分辨率NDVI数据集在时间上保留了高时间分辨率数据的时间变化趋势,空间上又反映了高空间分辨率数据的空间细节差异。  相似文献   

10.
In this paper, an attempt has been made to derive the tasselled cap coefficients manually following the rigorous mathematical computations for the three-band Disaster Monitoring Constellation (DMC) data. Considering ten DMC images of same season, it has been found that the first two transformation components, namely brightness and greenness can capture on an average 94.44 % of the three band variance of the DMC image. The coefficients of TC transformation equations for DMC image were derived considering the above mentioned ten DMC images. For the application purpose the TC images were applied to classify the forest types of the New Forest area of UK. For the comparison purpose, the tasselled cap images generated after the automated transformation of the Landsat 7 ETM+ image of the same area were considered to classify the forest types. A series of statistical intra-image and inter-image comparisons were conducted to find out the intra and inter-relationships between the brightness and greenness images obtained from the two different sensors. Finally, the accuracies of both the classified images were assessed based on the field collected GPS data. It was estimated that the overall accuracies of the classified DMC and ETM+ images were 77.44 % and 81.43 % respectively.  相似文献   

11.
Airborne LiDAR techniques can provide accurate measurements of tree height, from which estimates of stem volume and forest woody biomass can be obtained. These techniques, however, are still expensive to apply repeatedly over large areas. The current paper presents a methodology which first transforms mean stand heights obtained from LiDAR over small strips into relevant stem volume estimates. These are then extended over an entire forest by applying two estimation methods (k-NN and locally calibrated regression) to Landsat ETM+ images. The methodology is tested over a coastal area covered by pine forest in the Regional Park of San Rossore (Central Italy). The results are evaluated by comparison with the ground stem volumes of a recent forest inventory, taking into consideration the effect of stand size. In general, the accuracies of two estimation methods are dependent on the size of the forest stands and are satisfactory only when considering stands larger than 5-10 ha. The outputs of the parametric regression procedure are slightly more stable than those of k-NN and more faithfully reproduce the spatial patterns of the ground data.  相似文献   

12.
以湖北大冶为研究区,采用多时相陆地卫星遥感图像,通过不同波段组合,以及ironoxide指数和归一化差异植被指数(NDVI)等,详细分析了各地表地物光谱特征和空间特征,建立了研究区分类知识库表,采用决策二叉树法进行分类,得到了高精度分类结果图。基于不同时相分类结果的变化检测,通过对研究区水体污染、矿区复垦、耕地变化等分析,认为从1986~2002年,研究区水质虽有一定改善,但矿区植被退化严重,耕地大量减少,停产矿区复垦仅为20%,为合理保护矿区生态环境和科学管理采矿企业提供了有用资料。  相似文献   

13.
The successful launch of Landsat 8 provides a new data source for monitoring land cover, which has the potential to significantly improve the characterization of the earth’s surface. To assess data performance, Landsat 8 Operational Land Imager (OLI) data were first compared with Landsat 7 ETM + data using texture features as the indicators. Furthermore, the OLI data were investigated for land cover classification using the maximum likelihood and support vector machine classifiers in Beijing. The results indicated that (1) the OLI data quality was slightly better than the ETM + data quality in the visible bands, especially the near-infrared band of OLI the data, which had a clear improvement; clear improvement was not founded in the shortwave-infrared bands. Moreover, (2) OLI data had a satisfactory performance in terms of land cover classification. In summary, OLI data were a reliable data source for monitoring land cover and provided the continuity in the Landsat earth observation.  相似文献   

14.
Landsat系列卫星对地观测40年回顾及LDCM前瞻   总被引:7,自引:0,他引:7  
姜高珍  韩冰  高应波  杨崇俊 《遥感学报》2013,17(5):1033-1048
Landsat系列卫星数据凭借其长期连续、全球覆盖、适中的时间空间分辨率和科学的数据存档与分发策略等优势,逐渐成为地表特征和地球系统科学研究中最有效的遥感数据之一,并广泛应用于生态环境、农林地矿、能源资源、教育科研和政府管理等领域。而第8代陆地卫星--陆地卫星数据连续任务卫星(LDCM)于2013年2月发射升空,该卫星携带了运行性陆地成像仪(OLI)和热红外传感器(TIRS)两种传感器。与Landsat 7/ETM+相比,OLI/TIRS在波段设置、辐射分辨性能和扫描方式上都得到很大改进,其中OLI共包括9个波段,新增海岸带(coastal)监测和卷云(cirrus)识别波段,TIRS则设置了两个热红外波段。如果LDCM能够成功升空运行,它将继续承担起长期连续对地观测的使命。  相似文献   

15.
Remote sensing indices of burn area and fire severity have been developed and tested for forest ecosystems, but not sparsely vegetated, desert shrub-steppe in which large wildfires are a common occurrence and a major issue for land management. We compared the performance of remote sensing indices for detecting burn area and fire severity with extensive ground-based cover assessments made before and after the prescribed burning of a 3 km2 shrub-steppe area. The remote sensing indices were based on either Landsat 7 ETM+ or SPOT 5 data, using either single or multiple dates of imagery. The indices delineating burned versus unburned areas had better overall, User, and Producer's accuracies than indices delineating levels of fire severity. The Soil Adjusted Vegetation Index (SAVI) calculated from SPOT had the greatest overall accuracy (100%) in delineating burned versus unburned areas. The relative differenced Normalized Burn Ratio (RdNBR) using Landsat ETM+ provided the highest accuracies (73% overall accuracy) for delineating fire severity. Though SPOT's spatial resolution likely conferred advantages for determining burn boundaries, the higher spectral resolution (particularly band 7, 2.21 μm) of Landsat ETM+ may be necessary for detecting differences in fire severity in sparsely vegetated shrub-steppe.  相似文献   

16.
利用Landsat ETM+和ASTER近红外波段数据进行了水体信息提取,然后利用知识规则对2种提取结果进行进一步分类,并分析了波谱分辨率的差异对水体信息提取结果的影响。实验表明,基于Landsat ETM+数据的水体提取总体精度为82.4%,基于ASTER数据的水体信息提取结果总体精度为92.4%;在空间分辨率相同情况下,波谱分辨率的提高可以有效地提高水体信息提取的精度。  相似文献   

17.
Abstract

A linear regression‐based model for mapping forest age using Landsat Thematic Mapper data is evaluated in the lodgepole pine forests of Yellowstone National Park. Regression models predicting age (R2=0.62) and a logarithmic transformation of age (R2 = 0.90) used a combination of visible, near‐infrared, and middle‐infrared TM bands. Forest age maps produced using the regression method match broad‐scale patterns of forest age within the Yellowstone Central Plateau study area. Per‐pixel estimates of forest age, however, may depart substantially from actual forest age, particularly for older stands, and the maps are most appropriate for depicting regional patterns of forest age.  相似文献   

18.
As an important GIS function, spatial interpolation is one of the most often used geographic techniques for spatial query, spatial data visualization, and spatial decision-making processes in GIS and environmental science. However, less attention has been paid on the comparisons of available spatial interpolation methods, although a number of GIS models including inverse distance weighting, spline, radial basis functions, and the typical geostatistical models (i.e. ordinary kriging, universal kriging, and cokriging) are already incorporated in GIS software packages. In this research, the conceptual and methodological aspects of regression kriging and GIS built-in interpolation models and their interpolation performance are compared and evaluated. Regression kriging is the combination of multivariate regression and kriging. It takes into consideration the spatial autocorrelation of the variable of interest, the correlation between the variable of interest and auxiliary variables (e.g., remotely sensed images are often relatively easy to obtain as auxiliary variables), and the unbiased spatial estimation with minimized variance. To assess the efficiency of regression kriging and the difference between stochastic and deterministic interpolation methods, three case studies with strong, medium, and weak correlation between the response and auxiliary variables are compared to assess interpolation performances. Results indicate that regression kriging has the potential to significantly improve spatial prediction accuracy even when using a weakly correlated auxiliary variable.  相似文献   

19.
A main limitation of pixel-based vegetation indices or reflectance values for estimating above-ground biomass is that they do not consider the mixed spectral components on the earth's surface covered by a pixel. In this research, we decomposed mixed reflectance in each pixel before developing models to achieve higher accuracy in above-ground biomass estimation. Spectral mixture analysis was applied to decompose the mixed spectral components of Landsat-7 ETM+ imagery into fractional images. Afterwards, regression models were developed by integrating training data and fraction images. The results showed that the spectral mixture analysis improved the accuracy of biomass estimation of Dipterocarp forests. When applied to the independent validation data set, the model based on the vegetation fraction reduced 5–16% the root mean square error compared to the models using a single band 4 or 5, multiple bands 4, 5, 7 and all non-thermal bands of Landsat ETM+.  相似文献   

20.
A time series of leaf area index (LAI) of a managed birch forest in Germany (near Dresden) has been developed based on 16-day normalized difference vegetation index (NDVI) data from the Landsat ETM+ sensor at 30 m resolution. The Landsat ETM+ LAI was retrieved using a modified physical radiative transfer (RTM) model which establishes a relationship between LAI, fractional vegetation cover (fC), and given patterns of surface reflectance, view-illumination conditions and optical properties of vegetation. In situ measurements of photosynthetically active radiation (PAR) and vegetation structure parameters using hemispherical photography (HSP) served for calibration of model parameters, while data from litter collection at the study site provided the ground-based estimates of LAI for validation of modelling results. Influence of view-illumination conditions on optical properties of canopy was simulated by a view angle geometry model incorporating the solar zenith angle and the sensor viewing angle. Effects of intra-annual and inter-annual variability of structural properties of the canopy on the light extinction coefficient were simulated by implementing variability of the leaf inclination angle (LIA), which was confirmed in the study site. The results revealed good compatibility of the produced Landsat ETM+ LAI data set with the litter-estimated LAI. The results also showed high sensitivity of the LAI retrieval algorithm to variability of structural properties of the canopy: the implementation of LIA dynamics into the LAI retrieval algorithm significantly improved the model accuracy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号