首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
超大型浮体在海洋资源开发和海洋空间利用方面有重要应用前景.非均匀海洋环境中的水弹性响应是其应用中的一个重要问题.在近海中最典型的非均匀海洋环境当属由于底部变化引起的非均匀现象.本文分别采用多重尺度法(零阶近似)和常规的有限水深势流格林函数边界积分法,对底部呈二维缓变情况下超大型浮体的水弹性响应问题进行了研究和对比,并与实验工况进行了对照.两种方法与试验结果吻合较好,证明非均匀海洋环境确实对超大型浮体的水弹性响应具有一定的影响.  相似文献   

2.
The application of very large floating structure (VLFS) to the utilization of ocean space and exploitation of ocean resources has become one of the issues of great interest in international ocean engineering field. Owing to the advantage of simplicity in structure and low cost of construction and maintenance, box-type VLFS can be used in the calm water area near the coast as the structure configuration of floating airport. In this paper, a 3D linear hydroelastic theory is used to study the dynamic response of box-type VLFS in sinusoidal regular waves. A beam model and a 3D FEM model are respectively employed to describe the dynamic characteristics of the box-type structure in vacuum. A hydrodynamic model (3D potential theory of flexible body) is applied to investigate the effect of different dry models on the hydroelastic response of box-type structure. Based on the calculation of hydroelastic response in regular waves, the rigid body motion displacement, flexible deflection, and the short term and long  相似文献   

3.
This paper presents the use of a modular raft Wave Energy Converter (WEC)-type attachment at the fore edge of a rectangular Very Large Floating Structure (VLFS) for extracting wave energy while reducing hydroelastic responses of the VLFS under wave action. The proposed modular attachment comprises multiple independent auxiliary pontoons (i.e. modules) that are connected to the fore edge of the VLFS with hinges and linear Power Take-Off (PTO) systems. For the hydroelastic analysis, the auxiliary pontoons and the VLFS are modelled by using the Mindlin plate theory while the linear wave theory is used for modelling the fluid motion. The analysis is performed in the frequency domain using the hybrid Finite Element-Boundary Element (FE-BE) method. Parametric studies are carried out to investigate the effects of pontoon length, PTO damping coefficient, gap between auxiliary pontoons, and incident wave angle on the power capture factor as well as reductions in the hydroelastic responses of the VLFS with the modular attachment. It is found that in oblique waves, the modular attachment comprising multiple narrow pontoons outperforms the corresponding rigid attachment that consists of a single wide pontoon with respect to the power capture factor and the reduction in the deflection of the VLFS. In addition, it is possible to have a considerable gap between pontoons without significantly compromising the effectiveness of the modular attachment.  相似文献   

4.
箱式超大型浮体在非均匀海洋环境下的水弹性试验   总被引:6,自引:4,他引:2  
超大型浮体(Very Large foating Structure,VLFS)作为人类开发海洋的前沿基地,正在成为世界各国海洋工程界研究的一个热点。由于超大型浮体覆盖的面积比普通的船舶和海洋结构物要大很多,其首尾两端所处的海洋环境可能有显著的差异,因此必须考虑非均匀海洋环境对其水弹性性能的影响。介绍了国内首次进行的箱式超大型浮体在非均匀海洋环境中的水弹性试验,对非均匀海洋环境、超大型浮体的水弹性性能以及两者相互之间的关系进行了研究。  相似文献   

5.
1 .IntroductionIntheexploitationofoceanresourcesandintheutilizationofoceanspaces,verylargefloatingstructures (VLFS)suchasMega FloatinJapan (Isobe ,1 999)andMobileOffshoreBase (MOB)inUSA (Remmers ,1 999)playasignificantrole .However,owingtotheirlargesizesandrelativelylowbendingrigidities ,theirhydroelasticresponsesinwavesareofthemostconcern .ManystudieshavebeencarriedoutforthepredictionofthehydroelasticresponsesofVLFS′s (Kashiwagi,2 0 0 0 ;Cui,2 0 0 2 ) .However,inalmostallofthesestu…  相似文献   

6.
A time-dependent finite element method (FEM) is developed to analyze the transient hydroelastie responses of very large floating structures (VLFS) subjected to dynamic loads. The hydrodynamic problem is formulated based on the linear theory of fluid and the structural response is analyzed based on the thin plate theory. The FEM truncates the unbounded fluid domain by introducing an artificial boundary surface, thus defining a finite computational domain. At this boundary surface an impedance boundary conditions are applied so that no wave reflections occur. In the proposed scheme, all of the procedures are processed directly in time domain, which is efficient for nonlinear analyses of structure floating on unbounded fluid. Numerical results indicate acceptable accuracy of the proposed method.  相似文献   

7.
The hydroelastic responses of a submerged horizontal solid/porous plate attached at the front of a very large rectangular floating structure(VLFS) under wave action has been investigated in the context of linear water wave theory. Darcy's law is adopted to represent energy dissipation in pores. It is assumed that the porous plates are made of material with very fine pores so that the normal velocity across the perforated porous is linearly associated with the pressure drop. In the analytic method, the eigenfunction expansion-matching method(EEMM) for multiple domains is applied to solve the hydrodynamic problem and the elastic equation of motion is solved by the modal expansion method. The performance of the proposed submerged horizontal solid/porous plate can be significantly enhanced by selecting optimal design parameters, such as plate length, horizontal position, submerged depth and porosity. It is concluded that good damping effect can be achieved through installation of solid and porous plate.Porous plate has better damping effect at low frequencies, while solid plate has better damping effect at high frequencies. The optimal ratio of plate length to water depth is 0.25-0.375, and the optimal ratio of submerged depth to water depth is 0.09-0.181.  相似文献   

8.
《Ocean Engineering》2007,34(3-4):362-370
The conceptual design of a very large floating structure (VLFS) requires a convenient computer code for predicting hydroelastic behavior of it. The code should not be time consuming, but it should be flexible for all environmental conditions. In order to meet the needs, we apply the ray theory for predicting hydroelastic behavior of a mat-like VLFS. The hydroelastic behavior of the VLFS is treated as wave propagation in the platform. The theory itself is based on the classical ray theory, which yields a quick computational scheme. The parabolic approximation is applied to smoothing the discontinuous deformation obtained by the classical ray theory. An experimental technique in a small wave tank with a mini scale model has been developed. Through comparisons with the mini scale experiment and other data found in literatures, it is confirmed that the ray theory has enough accuracy for the conceptual design, unless the assumptions of the ray theory are completely violated.  相似文献   

9.
Unified Water Gravity Wave Theory and Improved Linear Wave   总被引:2,自引:0,他引:2  
- Based on Least Square Method, this paper presents variational principle for handling various water gravity wave theories and the unified water gravity wave theory was given. By using this variational principle of unified water wave theory, two kinds of improved linear waves were derived. The first one uses the same boundary conditions which were applied to derive 5-order Stokes wave. The second one uses the accurate boundary conditions (Eqs. 11 and 12). The two improved linear waves were compared with the existing linear wave.  相似文献   

10.
This paper investigates the characteristics of bending moments, shear forces and stresses at unit connections of very large floating structures (VLFS) under wave loads. The responses of VLFS are calculated by solving multi-body motion equation considering hydroelasticity and connection stiffness. Hydroelastic responses are calculated by the direct method. Higher-order boundary element method (HOBEM) is used for fluid analysis and finite element method (FEM) is introduced for structural analysis. The equation of motion is modified to describe the unit connections by employing spring elements. Bending moments and shear forces at the connections are obtained from the dynamic equilibrium condition for pressures and inertia forces. Two types of VLFS units such as tandem arranged units and side-by-side arranged units are considered in the numerical examples. The influences of connection stiffness, wave frequency and heading angle on responses of VLFS are investigated through the numerical examples. Rigid body analysis along with hydroelastic analysis is also carried out in the numerical analysis and comparison of those two approaches is discussed.  相似文献   

11.
This paper is concerned with the hydroelastic responses of a mat-like, rectangular very large floating structure (VLFS) edged with a pair of horizontal/inclined perforated anti-motion plates in the context of the direct coupling method. The updated Lagrangian formulae are applied to establish the equilibrium equations of the VLFS and the total potential formula is employed for fluids in the numerical model including the viscous effect of the perforated plates through the Darcy''s law. The hybrid finite element-boundary element (FE-BE) method is implemented to determine the response reduction of VLFS with attached perforated plates under various oblique incident waves. Also, the numerical solutions are validated against a series of experimental tests. The effectiveness of the attached perforated plates in reducing the deflections of the VLFS can be significantly improved by selecting the proper design parameters such as the porous parameter, submergence depth, plate width and inclination angle for the given sea conditions.  相似文献   

12.
Very Large Floating Structures (VLFS) have received considerable attention recently. Efficient and accurate estimation of their hydroelastic responses in waves is very important for the design. The most efficient approach would obviously be the analytical one. Within the category of analytical approaches, the simplified method proposed by Ohkusu and his colleague are of special characteristics. However, when one studies their methods, several questions arise. The purpose of this paper is to critically study the simplified methods proposed by Ohkusu and his colleague in order to answer these questions. Some problems in their original methods have been found and possible improvements are suggested. It is concluded that the improved simplified method using the same idea of Ohkusu and his colleague could provide a reasonable estimate of the hydroelastic response of mat-like VLFS in a certain range of incident angles of waves.  相似文献   

13.
The hydroelastic response of a circular, very large floating structure (VLFS), idealized as a floating circular elastic thin plate, is investigated for the case of time-harmonic incident waves of the surface and interfacial wave modes, of a given wave frequency, on a two-layer fluid of finite and constant depth. In linear potential-flow theory, with the aid of angular eigenfunction expansions, the diffraction potentials can be expressed by the Bessel functions. A system of simultaneous equations is derived by matching the velocity and the pressure between the open-water and the plate-covered regions, while incorporating the edge conditions of the plate. Then the complex nested series are simplified by utilizing the orthogonality of the vertical eigenfunctions in the open-water region. Numerical computations are presentedto investigate the effects of different physical quantities, such as the thickness of the plate, Young's modulus, the ratios ofthe densities and of the layer depths, on the dispersion relations of the flexural-gravity waves for the two-layer fluid.Rapid convergence of the method is observed, but is slower at higher wave frequency. At high frequency, it is found that there is some energy transferred from the interfacial mode to the surface mode.  相似文献   

14.
用直接法分析超大型浮体的水弹性响应   总被引:4,自引:2,他引:2  
探讨了浮舟桥型超大型浮体结构的水弹性响应分析问题。将超大型浮体结构简化成弹性平板模型,用压力分布法计算流体压力,用直接法计算流体-结构系统,给出了它们的数学计算模型。计算表明本计算方法和程序是正确的,并能保证充分的精度,进而计算了更大尺度的超大型浮体,分析了波长、波向等对响应振幅的影响。  相似文献   

15.
不同干结构模型对箱式超大型浮体结构水弹性响应的影响   总被引:1,自引:7,他引:1  
三维线性水弹性力学利用结构在真空中弹性振型的正交性 ,对结构振动进行模态分析 ,用弹性体三维势流理论计算结构的水动力系数。因此 ,结构的干模态计算是十分重要的。应用三维线性水弹性理论研究箱式超大型浮体结构在波浪中的动力响应时 ,分别采用梁模型和三维空间有限元模型计算结构的干模态 ,并且采用同样的水动力模型 (弹性体三维势流理论 )研究了不同干结构模型对结构水弹性响应的影响  相似文献   

16.
The hydroelastic responses of a very-long floating structure (VLFS) placed behind a reverse T-shape freely floating breakwater with a built-in oscillating water column (OWC) chamber are analyzed in two dimensions. The Bernoulli–Euler beam equation is coupled with the equations of rigid and elastic motions of the breakwater and the VLFS. The interaction of waves between the floating rigid breakwater and the elastic VLFS is formulated in a consistent manner. It has been shown numerically that the structural deflections of the VLFS can be reduced significantly by a suitably designed reverse T-shape floating breakwater.  相似文献   

17.
Existing hydroelastic theories are reviewed. The theories are classified into different types: two-dimensional linear theory, two-dimensional nonlinear theory, three-dimensional linear theory and three-dimensional nonlinear theory. Applications to analysis of very large floating structures (VLFS) are reviewed and discussed in details. Special emphasis is placed on papers from China and Japan (in native languages) as these papers are not generally publicly known in the rest of the world.  相似文献   

18.
The hydroelastic response of a semi-infinite thin elastic plate floating on a two-layer fluid of finite depth due to obliquely incident waves is investigated. The upper and lower fluids with different densities separated by a sharp and stable interface are assumed to be inviscid and incompressible and the motion to be irrotational. Simply time-harmonic incident waves of the surface and interfacial wave modes with a given angular frequency are considered within the framework of linear potential flow theory. With the aid of the methods of matched eigenfunction expansion and the inner product of the two-layer fluid, a closed system of simultaneous linear equations is derived for the reflection and transmission coefficients of the series solutions. Based on the dispersion relations for the gravity waves and the flexural–gravity waves in a two-layer fluid and Snell’s law for refraction, we obtain a critical angle for the incident waves of the surface wave mode and three critical angles for the incident waves of the interfacial wave mode, which are related to the existence of the propagating waves. Graphical representations of the series solutions show the interaction between the water waves and the plate. The effects of several physical parameters, including the density and depth ratios of the fluid and the thickness of the plate, on the wave scattering and the hydroelastic response of the plate are studied. It is found that the variation of the thickness of the plate may change the wave numbers and the critical angles. The density ratio is the main factor to influence the wave numbers of the interfacial wave modes. Finally, the stress state is considered.  相似文献   

19.
A three-dimensional general mathematical hydroelastic model dealing with the problem of wave interaction with a floating and a submerged flexible structure is developed based on small amplitude wave theory and linear structural response. The horizontal floating and submerged flexible structures are modelled with a thin plate theory. The linearized long wave equations based on shallow water approximations are derived and results are compared. Three-dimensional Green’s functions are derived using fundamental source potentials in water of finite and infinite depths. The expansion formulae associated with orthogonal mode-coupling relations are derived based on the application of Fourier transform in finite and infinite depths in case of finite width in three-dimensions. The usefulness of the expansion formula is demonstrated by analysing a physical problem of surface gravity wave interaction with a moored finite floating elastic plate in the presence of a finite submerged flexible membrane in three-dimensions. The numerical accuracy of the method is demonstrated by computing the complex values of reflected wave amplitudes for different modes of oscillation and mooring stiffness. Further, the effect of compressive force and modes of oscillations on a free oscillation hydroelastic waves in a closed channel of finite width and length for floating and submerged elastic plate system is analysed.  相似文献   

20.
High waves at ocean occur during a complex space–time evolution of wave groups. In this paper the nonlinear structure of three-dimensional sea wave groups at intermediate water depth is investigated. To this purpose, the Boccotti's Quasi-Determinism theory is firstly applied to describe the linear wave groups when a given exceptionally high crest occurs. Then, the second-order correction to the linear solution is derived for the general condition of three-dimensional wave groups, at a finite water depth. Several numerical applications, finally, have been carried out in order to show how both the spectral bandwidth and the directional spreading modify the nonlinear high waves at different water depth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号