首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent theoretical and observational work has shown that the asteroids belonging to the Taurid meteoroid complex have a cometary nature. If so, then they might possess related meteoroid streams producing meteor showers in the Earth atmosphere. We studied the orbital evolution of ten numbered Taurid complex asteroids by the Halphen-Goryachev method. It turned out that all of these asteroids are quadruple crossers relative to the Earth's orbit. Therefore their proposed meteoroid streams may in theory each produce four meteor showers. The theoretical orbital elements and geocentric radiants of these showers are determined and compared with the available observational data. The existence of the predicted forty meteor showers of the ten Taurid complex asteroids is confirmed by a search of the published catalogues of observed meteor shower radiants and orbits, and of the archives of the IAU Meteor Data Center (Lund). The existence of meteor showers associated with the Taurid Complex Asteroids confirms that, most likely, these asteroids are extinct comets. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
We investigate the possibility of detectable meteor shower activity in the atmosphere of Venus. We compare the Venus-approaching population of known periodic comets, suspected cometary asteroids and meteor streams with that of the Earth. We find that a similar number of Halley-type comets but a substantially lesser population of Jupiter family comets approach Venus. Parent bodies of prominent meteor showers that might occur at Venus have been determined based on minimum orbital distance. These are: Comets 1P/Halley, parent of the η Aquarid and Orionid streams at the Earth; 45P/Honda-Mrkos-Pajdusakova which currently approaches the venusian orbit to 0.0016 AU; three Halley-type comets (12P/Pons-Brooks, 27P/Crommelin and 122P/de Vico), all intercepting the planet's orbit within a 5-day arc in solar longitude; and Asteroid (3200) Phaethon, parent of the December Geminids at the Earth. In addition, several minor streams and a number of cometary asteroid orbits are found to approach the orbit of Venus sufficiently close to raise the possibility of some activity at that planet. Using an analytical approach described in Adolfsson et al. (Icarus 119 (1996) 144) we show that venusian meteors would be as bright or up to 2 magnitudes brighter than their Earth counterparts and reach maximum luminosity at an altitude range of 100-120, 20-30 km higher than at the Earth, in a predominantly clear region of the atmosphere. We discuss the feasibility of observing venusian showers based on current capabilities and conclude that a downward-looking Venus-orbiting meteor detector would be more suitable for these purposes than Earth-based monitoring. The former would detect a shower of an equivalent Zenithal Hourly Rate of at least several tens of meteors.  相似文献   

3.
This study is motivated by the possibility of determining the large-body meteoroid flux at the orbit of Venus. Towards this end, we attempt to estimate the times at which enhanced meteoric activity might be observed in the planet's atmosphere. While a number of meteoroid streams are identified as satisfying common Earth and Venus intercept conditions, it is not clear from the Earth-observed data if these streams contain large-body meteoroids. A subset of the Taurid Complex objects may produce fireball-rich meteor showers on Venus. A total of 11 short-period, periodic comets and 46 near-Earth asteroids approach the orbit of Venus to within 0.1 au, and these objects may have associated meteoroid streams. Comets 27P/Crommelin and 7P/Pons–Winnecke are identified as candidate parents to possible periodic meteor showers at the orbit of Venus.  相似文献   

4.
Probably the majority of meteor showers has a cometary origin. Investigation of Near-Earth asteroids' orbital evolution to determine whether they have related meteor showers are necessary to determine which asteroids evolved from comets. The results of calculations show that asteroid Orthos' orbit is an octuple Earth-crosser. Therefore, if Orthos has an old meteoroid stream it may produce eight meteor showers observable on the Earth. The existence of four Orthos' Northern meteor showers is confirmed by our search in the published catalogues of meteor radiants and orbits or in the archives of the IAU Meteor Data Center (Lund, Sweden).  相似文献   

5.
Probably most meteor showers have a cometary origin. Investigation of Near-Earth asteroids' orbital evolution to determine whether they have related meteor showers is necessary to determine which asteroids evolved from comets. The results of calculations show that asteroid Orthos' orbit is an octuple Earth-crosser. Therefore, if Orthos has an old meteoroid stream it may produce eight meteor showers observable on the Earth. The existence of four Orthos' Northern meteor showers is confirmed by our search in the published catalogues of meteor radiants and orbits or in the archives of the IAU Meteor Data Center (Lund, Sweden).  相似文献   

6.
Probably most meteor showers have a cometary origin. Investigation of Near-Earth asteroids' orbital evolution to determine whether they have related meteor showers is necessary to determine which asteroids evolved from comets. The results of calculations show that asteroid Orthos' orbit is an octuple Earth-crosser. Therefore, if Orthos has an old meteoroid stream it may produce eight meteor showers observable on the Earth. The existence of four Orthos' Northern meteor showers is confirmed by our search in the published catalogues of meteor radiants and orbits or in the archives of the IAU Meteor Data Center (Lund, Sweden).  相似文献   

7.
Various points are discussed concerning the association of Earth-crossing asteroids (ECAs) with meteoroid streams, including the drawbacks of the techniques used in some previous work. In comparing the theoretical radiants of any ECA (or, indeed, comet) with observed meteor radiants it is necessary that the orbit used be that appropriate for epochs when the ECA has a node at 1 AU; in each precession cycle of the argument of perihelion () there will be four values rendering a node at the Earth's orbit, so that four showers are expected. Precession of the node will result in sets of showers at different times of year from different-precession cycles, whilst for some objects the orbital evolution is more convoluted. For diffuse, low-flux showers a problem is differentiating the meteors associated with any ECA from the sporadic background; a new graphical technique is introduced for illuminating whether such associations exist. A re-evaluation is required of whether ECAs should be thought of as being parent bodies of specific showers. Although this might be the case for some very large ECAs (such as (3200) Phaethon, associated with the Geminid stream), the bodies observed now being extinct or dormant cometary cores, it is suggested that in general the ECAs are better thought of as being large fragments produced in hierarchical cometary disintegrations. That is, some ECAs are just the largest meteoroids in meteoroid streams.  相似文献   

8.
For both asteroids and meteor streams, and also for comets, resonances play a major role for their orbital evolutions but on different time scales. For asteroids both mean motion resonances and secular resonances not only structure the phase space of regular orbits but are mainly at the origin for the inherent chaos of planet crosser objects.For comets and their chaotic routes temporary trapping into orbital resonances is a well known phenomenon. In addition for slow diffusion through the Kuiper belt resonances are the only candidates for originating a slow chaos.Like for asteroids, resonances with Jupiter play a major role for the orbital evolution of meteor streams. Crossing of separatrix like zones appears to be crucial for the formation of arcs and for the dissolution of streams. In particular the orbital inclination of a meteor stream appears to be a critical parameter for arc formation. Numerical results obtained in an other context show that the competition between the Poynting-Robertson drag and the gravitational interaction of grains near the 2/1 resonance might be very important in the long run for the structure of meteor streams.  相似文献   

9.
The Canadian Meteor Orbit Radar (CMOR) has collected information on a number of weak meteor showers that have not been well characterized in the literature. A subsample of these showers (1) do not show a strong orbital resemblance to any known comets or asteroids, (2) have highly inclined orbits, (3) are at low perihelion distances ( AU) and (4) are at small semimajor axes (<2 AU). Though one might conclude that the absence of a parent object could be the result of its disruption, it is unclear how this relatively inaccessible (dynamically speaking) region of phase space might have been populated by parents in the first place. It will be shown that the Kozai secular resonance and/or Poynting–Robertson drag can modify meteor stream orbits rapidly (on time scales comparable to a precession cycle) and may be responsible for placing some of these streams into their current locations. These same effects are also argued to act on these streams so as to contribute to the high-ecliptic latitude north and south toroidal sporadic meteor sources. There remain some differences between the simple model results presented here and observations, but there may be no need to invoke a substantial population of high-inclination parents for the observed high-inclination meteoroid streams with small perihelion distances.  相似文献   

10.
The thermal evolution of the Geminid meteor stream and the Phaethon–Geminid stream Complex (PGC) are summarized. Sodium contents of Geminid meteor streams are altered thermally, perhaps during orbital motion in interplanetary space due to the short perihelion distance of the orbit (q ~ 0.14 AU). However, the temperature of meteoroids is less than the sublimation temperature of Na in alkali silicates, suggesting that the parent body 3200 Phaethon itself might have suffered from the thermal processing. On the other hand, a breakup event on PGC parent is suggested by the existence of dynamically associated asteroids (Phaethon, 2005 UD and 1999 YC) sharing pristine features (C, B types). A possible mechanism behind the breakup is the sublimation of ice inside the PGC parent due to its thermal evolution. It is tempting to guess that the PGC parent might be evolved dynamically from the outer part of the main asteroid belt where the residence of ice-rich asteroids (main belt comets) into current PGC-like orbit.  相似文献   

11.
流星群研究     
对流星群的研究作了简明而系统的介绍,重点叙述流星天文学的历史与现状;流星群的地面和空间观测;流星雨观测和理论辐射点;流星群的轨道计算、运动速度和轨道演变;流星群与彗星和小行星的相互关系以及流星群研究中的新课题。  相似文献   

12.
Meteor showers have been observed for a considerable time, and the cause, meteoroids from a meteoroid stream ablating in the Earth's atmosphere, has also been understood for centuries. The connection between meteoroid streams and comets was also established 150 years ago. Since that time our ability both to understand the physics and to numerically model the situation has steadily increased. We will review the current state of knowledge. However, just as there are differences between the behaviour of long period comets, Halley family comets and Jupiter family comets, so also differences exist between the associated meteoroid streams. Streams associated with Jupiter family comets show much more variety in their behaviour, driven by the gravitational perturbations from Jupiter. The more interesting showers associated with Jupiter family comets will be discussed individually.  相似文献   

13.
The recent systematic monitoring of the skies has led to the discovery of an increasingly large number of objects on Earth approaching orbits. Not surprisingly, an increasing number of this population have also been associated with meteoroid streams in the literature. We will review the history of this topic. We have also conducted our own search for asteroids moving on orbits that are similar to the orbits of known fireball streams. As NEOs are moving in prograde orbits with low geocentric velocities, any potential streams will have large radiant areas and in consequence, may have been identified as several "sub-streams". This greatly hampers both their detection and their recognition as single meteoroid streams. With the large number of Near Earth Asteroids detected, the probability of two orbits being similar at the present time by coincidence is high. We have therefore also investigated the evolution of the orbits and only include as real asteroid-stream pairs those where the evolution is also similar over 5000 years. We have identified nine pairs, including the well known pair of the Geminid meteoroid stream and asteroid 3200 Phaethon. Currently there are a number of papers being published on the pairing of asteroid 2003 EH1 and the Quadrantid meteoroid stream. Because of the newness of the research and the fact that this is a high inclination pair, we have excluded this pair from our discussions.  相似文献   

14.
The meteoroid streams associated to short-period comets 9P/Tempel 1 (the target of the Deep Impact mission). and 67P/Churyumov-Gerasimenko (the target of the Rosetta mission) are studied. Their structure is overwhelmingly under the control of Jupiter and repeated relatively close encounters cause a reversal of the direction of the spatial distribution of the stream relative to the comet* an initial stream trailing the comet as usually seen eventually collapses, becomes a new stream leading the comet and even splits into several components. Although these two comets do not produce meteor showers on Earth, this above feature shows that meteor storms can occur several years before the perihelion passage of a parent body.  相似文献   

15.
The dynamical evolution of meteoroid streams associated with cornets Encke, Halley, Machholz 1986 VIII and asteroid Phaethon is discussed. It is shown that the planetary perturbations can greatly increase the streams thickness and each stream may produce several couples of meteor showers active in different seasons of the year. The theoretical and observed data are in a satisfactory accordance.  相似文献   

16.
In order to assess the possibility of meteoroid streams detectable from the surface of Mars as meteor showers we have derived minimum distances and associated velocities for a large sample of small body orbits relative to the orbits of Mars and the Earth. The population ratio for objects approaching to within 0.2 AU of these two planets is found to be approximately 2:1. The smaller relative velocities in the case of Mars appears to be the main impediment to the detection of meteors in the upper atmosphere of that planet. We identify five bodies, including the unusual object (5335) Damocles and periodic comet 1P/Halley, with relative orbital parameters most suitable to produce prominent meteor showers. We identify specific epochs at which showers related to these bodies are expected to occur. An overview of possible detection methods taking into account the unique characteristics of the Martian environment is presented. We pay particular attention on the effects of such streams on the dust rings believed to be present around Mars.  相似文献   

17.
We analyse several mechanisms capable of creating orphan meteoroid streams (OMSs) for which a parent has not been identified. OMSs have been observed as meteor showers since the XIXth century and by the IRAS satellite in the 1980s. We find that the process of close encounters with giant planets (particularly Jupiter) is the most efficient mechanism to create them: only a limited section of the stream is perturbed and follows the parent body on its new orbit, while the majority of the meteoroids remain in their pre-encounter orbit or in an intermediate state, breaking the link with their parent body. Cometary non-gravitational forces can also contribute to the process since they cause the comet to drift away from its stream. However, they are not sufficient by themselves to produce an OMS. Resonances can either split or confine a stream over a long time (>1000 yr). Some meteoroid streams may look like OMSs since their parent comet is dormant or not observable (e.g. long period). Even if new techniques succeed in linking minor objects to meteoroid streams, OMSs will still exist simply because cometary nuclei are subject to complete disruption leading to their disappearance.  相似文献   

18.
The calculation of theoretical meteor radiants is discussed for comets and asteroids whose orbits pass within, but at present do not necessarily intersect, that of the Earth, in particular from the perspective of developing a suitable method for application to Taurid Complex orbits. The main question addressed here is how to allow for dynamical evolution between epochs when an orbit isnot Earth-intersecting (as at present in most cases for macroscopic bodies) and those when itis (i.e., when meteors can actually be observed). This should be understood in terms of evolution in the past, such that meteoroids released some time ago have evolved differentially from the putative parents, allowing meteors to be detected now. Theoretical radiants for macroscopic Taurid objects are then presented and compared with observations of the nighttime and daytime Taurid meteor showers. These are found to be broadly similar in form, given the sparsity of some of the data, adding weight to the hypothesis that this sub-jovian complex contains kilometre-plus asteroids. A similar conclusion results for the group of objects in similar orbits to (2212) Hephaistos.  相似文献   

19.
Peter Jenniskens 《Icarus》2008,194(1):13-22
In an effort to identify space mission targets of interest, the association of known meteoroid streams with Near-Earth Objects (NEOs) was investigated. In addition to updating previous searches to include NEOs discovered up to January 1, 2007, a new dissimilarity criterion based on dynamical arguments was applied to evaluate the likelihood of each candidate association. The new criterion is based on the fact that the few established cases, such as 2003 EH1 and the Quadrantid stream, involve parent bodies that fragmented in the most recent nutation cycle of their secular orbital evolution. In established cases, the statistics speak strongly of an association due to the lack of NEOs in the a, e, i phase space occupied by these showers. The newly proposed associations are much more uncertain, because the odds of chance associations greatly increase as orbital inclination of the showers decreases. Forty-two plausible candidate dormant comets were identified, that deserve further scrutiny. Both comet and stream typically lack sufficient data to prove the association. Most candidate parent bodies pertain to NEOs with an aphelion distance just short of Jupiter's orbit, a perihelion distance near Earth orbit, and an eccentricity in the range 0.5-0.8. Surprisingly many have , which means that most candidate parent bodies are dormant Jupiter family comets that have not yet fully decoupled from Jupiter. Establishing these associations can provide further evidence that (mostly) dormant comets break frequently, making this the dominant mechanism for replenishing the zodiacal cloud.  相似文献   

20.
Z. Sekanina 《Icarus》1973,18(2):253-284
Using a computerized technique of stream search, based on the statistical model of meteor streams, we have detected 72 additional streams in a sample of 19303 radio meteor orbits. The streams are found to have a tendency to cluster, partly along the ecliptic and partly in high-inclination orbits. Also noticed are specific relations among the detected streams, such as stream pairs, stream branches, and twin showers. A very probable association of a prominent stream, the a Capricornids, with the minor planet Adonis has been established, and possible associations of several streams with comets and minor planets of the Apollo and Albert types are also discussed. Identification of the detected radio streams with previously known streams is presented, and plans for future work are briefly outlined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号