首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The presence and persistence of an 18-day quasi-periodic oscillation in the ionospheric electron density variations were studied. The data of lower ionosphere (radio-wave absorption at equivalent frequency near 1 MHz), middle and upper ionosphere (critical frequencies f0E and f0F2) for the period 1970–1990 have been used in the analysis. Also, solar and geomagnetic activity data (the sunspot numbers Rz and solar radio flux F10.7 cm, and aN index respectively) were used to compare the time variations of the ionospheric with the solar and geomagnetic activity data. Periodogram, complex demodulation, auto- and cross-correlation analysis have been used. It was found that 18-day quasi-periodic oscillation exists and persists in the temporal variations of the ionospheric parameters under study with high level of correlation and mean period of 18–19 days. The time variation of the amplitude of the 18-day quasi-periodic oscillation in the ionosphere seems to be modulated by the long-term solar cycle variations. Such oscillations exist in some solar and geomagnetic parameters and in the planetary wave activity of the middle atmosphere. The high similarities in the amplitude modulation, long-term amplitude variation, period range between the oscillation of investigated parameters and the global activity of oscillation suggests a possible solar influence on the 18-day quasi-periodic oscillation in the ionosphere.  相似文献   

2.
The characteristics of ionospheric scintillations at Rajkot in the equatorial anomaly crest region in India are described for the years 1987–1991 by monitoring the 244-MHz transmission from the satellite FLEETSAT. This period covers the ascending phase of solar cycle 22. Scintillations occur predominantly in the pre-midnight period during equinoxes and winter seasons and in the post-midnight period during summer season. During equinoxes and winter, scintillation occurrence increases with solar activity, whilst in summer it is found to decrease with solar activity. Statistically, scintillation occurrence is suppressed by magnetic activity. The characteristics observed during winter and equinoxes are similar to those seen at the equatorial station, Trivandrum. This, coupled with the nature of the post-sunset equatorial F-region drift and hF variations, supports the view that at the anomaly crest station, scintillations are of equatorial origin during equinox and winter, whilst in summer they may be of mid-latitude type. The variations in scintillation intensity (in dB) with season and solar activity are also reported.  相似文献   

3.
Enhancements in the auroral electrojets associated with magnetospheric substorms result from those in either the electric field or the ionospheric conductivities, or both. Their relative importance varies significantly, even during a single substorm, depending on the location as well as on the substorm phases. It is predicted that different parts of the electrojets tend to respond in different ways to substorm activity. The unprecedented, unique opportunity for CLUSTER spacecraft observations of electric/magnetic fields and precipitating particles, combined with radar measurements of ionospheric quantities and with ground magnetometers, will provide us with crucial information regarding the physical nature of the separation between the “electric field-dominant” and “conductivity-dominant” auroral electrojets. This study also discusses the implications of these two auroral-electrojet components in terms of solar wind-magnetosphere-ionosphere interactions.  相似文献   

4.
A new single-station model (SSM) for monthly median values of the ionospheric parameters foF2 and M(3000)F2 has been developed. Fourier analysis provides a tool for decomposing the time-varying ionospheric parameters. The 12–month smoothed sunspot number R 12 was used as an external solar characteristic because of its availability and predictability. However, for the first time, the solar activity is described not only by R 12 , but also by the linear coefficient K R representing the tendency of the change of solar activity. A general non-linear approximation of the influence of the solar-cycle characteristics R 12 and K R and ionospheric parameters foF2 and M(3000)F2 was accepted. The new SSM is applied to several European stations and its statistical evaluation shows better results than the other two SSMs used in the paper. The approach described in the paper does not contradict the use of different synthetic ionospheric indices (as the T-index, MF2–index); the basic aim is to show only that using one additional new characteristic of the solar-cycle variations, such as K R , improves the monthly median model.  相似文献   

5.
The bases of the classification method of ionospheric disturbances caused by solar-geomagnetic activity on the basis of the critical frequency of the F2 layer are developed. Data for the total solar activity cycle from 1975 to 1986 were used for studying variations in the critical frequency of the ionospheric F2 layer. The critical frequency was measured at the Moscow ionospheric observatory (55°45′N, 37°37′E) at an interval of 1 h. The gaps in the critical frequency values were filled in by the cubic interpolation method. The solar activity level was estimated using the F10.7 index. The geomagnetic disturbance was determined using the Kp · 10, Dst, and AE indices. According to the developed classification, an index of ionospheric activity is introduced. An analysis of the obtained values of the index for years of solar activity minimum and maximum shows that an increase in the absolute values of the index as a rule occurs at an increase in global geomagnetic and/or auroral disturbances. This fact indicates the sufficient information content of the developed index for characterizing ionospheric activity in any season. Moreover, using the sign of the index, one can form an opinion regarding an increase or decrease in the concentration of the ionospheric F2 layer, because the values of the considered index correspond to real oscillations in the critical frequency of the midlatitude ionosphere.  相似文献   

6.
We present the first triangulation measurements of electric fields with the electron drift instrument (EDI) on Equator-S. We show results from five high-data-rate passes of the satellite through the near-midnight equatorial region, at geocentric distances of approximately 5–6 RE, during geomagnetically quiet conditions. In a co-rotating frame of reference, the measured electric fields have magnitudes of a few tenths of mV/m, with the E × B drift generally directed sunward but with large variations. Temporal variations of the electric field on time scales of several seconds to minutes are large compared to the average magnitude. Comparisons of the “DC” baseline of the EDI-measured electric fields with the mapped Weimer ionospheric model and the Rowland and Wygant CRRES measurements yield reasonable agreement.  相似文献   

7.
The CRISTA/MAHRSI experiment on board a space shuttle was accompanied by a broad campaign of rocket, balloon and ground-based measurements. Supporting lower ionospheric ground-based measurements were run in Europe and Eastern Asia between 1 October–30 November, 1994. Results of comparisons with long ionospheric data series together with short-term comparisons inside the interval October-November, 1994, showed that the upper middle atmosphere (h =80–100 km) at middle latitudes of the Northern Hemisphere in the interval of the CRISTA/MAHRSI experiment (4–12 November, 1994) was very close to its expected climatological state. In other words, the average results of the experiment can be used as climatological data, at least for the given area/altitudes. The role of solar/geomagnetic and “meteorological” control of the lower ionosphere is investigated and compared with the results of MAP/WINE, MAC/SINE and DYANA campaigns. The effects of both solar/geomagnetic and global meteorological factors on the lower ionosphere are found to be weak during autumn 1994 compared to those in MAP/WINE and DYANA winters, and they are even slightly weaker than those in MAP/SINE summer. The comparison of the four campaigns suggests the following overall pattern: in winter the lower ionosphere at northern middle latitudes appears to be fairly well “meteorologically” controlled with a very weak solar influence. In summer, solar influence is somewhat stronger and dominates the weak “meteorological” influence, but the overall solar/meteorological control is weaker than in winter. In autumn we find the weakest overall solar/meteorological control, local effects evidently dominate.  相似文献   

8.
The measurements of variations in the total electron content of the Earth’s ionosphere along the GPS satellite signal propagation path are described. The signal parameters were measured at a network of receivers at three distant sites: Sura (Vasilsursk), Zelenodolsk, and Kazan. They are arranged along the geomagnetic latitude of the Sura Facility under short-wave radio irradiation of the ionosphere. One feature of the experiment is the crossing of a disturbed region by the radio path between a GPS satellite and Vasilsursk. This resulted from the angular sizes of the Sura array pattern; the radio paths between a GPS satellite and Zelenodolsk and a GPS satellite and Kazan did not cross. Variations in the total electron content of up to 0.15?0.3 TECU were revealed at all three sites during four experimental campaigns (March 2010, March 2013, May 2013, and November 2013). The lateral scale of an ionospheric disturbance stimulated by a high-power radio wave and the velocity of its west-to-east propagation along the geomagnetic latitude were 30–60 km and 270–350 m/s, respectively. A decrease in the total electron content (down to 0.55 TECU) was recorded along the Kazan–Zelenodolsk–Vasilsurks line, which is connected with the solar terminator transit; the lateral scale of the related ionospheric inhomogeneities was ~65–80 km.  相似文献   

9.
The zone of anomalous diurnal variations in foF2, which is characterized by an excess of nighttime foF2 values over daytime ones, has been distinguished in the Southern Hemisphere based on the Intercosmos-19 satellite data. In English literature, this zone is usually defined as the Weddell Sea anomaly (WSA). The anomaly occupies the longitudes of 180°–360° E in the Western Hemisphere and the latitudes of 40°–80° S, and the effect is maximal (up to ∼5 MHz) at longitudes of 255°–315° E and latitudes of 60°–70° S (50°–55° ILAT). The anomaly is observed at all levels of solar activity. The anomaly formation causes have been considered based on calculations and qualitative analysis. For this purpose, the longitudinal variations in the ionospheric and thermospheric parameters in the Southern Hemisphere have been analyzed in detail for near-noon and near-midnight conditions. The analysis shows that the daytime foF2 values are much smaller in the Western Hemisphere than in the Eastern one, and, on the contrary, the nighttime values are much larger, as a result of which the foF2 diurnal variations are anomalous. Such a character of the longitudinal effect mainly depends on the vertical plasma drift under the action of the neutral wind and ionization by solar radiation. Other causes have also been considered: the composition and temperature of the atmosphere, plasma flows from the plasmasphere, electric fields, particle precipitation, and the relationship to the equatorial anomaly and the main ionospheric trough.  相似文献   

10.
Experimental observations of the daytime variations of VLF phase and amplitude over a variety of long subionospheric paths have been found to be satisfactorily modelled with a D-region ionosphere, described by the two traditional parameters, H′ and β (being measures of the ionospheric height and the rate of increase of electron density with height, respectively). This VLF radio modelling uses the NOSC Earth–ionosphere waveguide programs but with an experimentally deduced dependence of these two ionospheric parameters on solar zenith angle. Phase and amplitude measurements from several VLF Omega and MSK stations were compared with calculations from the programs LWPC and Modefinder using values of H′ and β determined previously from amplitude only data. This led to refined curves for the diurnal variations of H′ and β which, when used in these programs, give not only calculated amplitudes but also, for the first time, calculated phase variations that agree well with a series of observations at Dunedin, New Zealand, of VLF signals from Omega Japan, Omega Hawaii, NPM (Hawaii) and NLK (Seattle) covering a frequency range of 10–25 kHz.  相似文献   

11.
New ionospheric activity indices are derived from automatically scaled online data from several European ionosonde stations. These indices are used to distinguish between normal ionospheric conditions expected from prevailing solar activity and ionospheric disturbances caused by specific solar and atmospheric events (flares, coronal mass ejections, atmospheric waves, etc.). The most reliable indices are derived from the maximum electron density of the ionospheric 2-layer expressed by the maximum critical frequency foF 2. Similar indices derived from ionospheric M(3000)2 values show a markedly lower variability indicating that the changes of the altitude of the 2-layer maximum are proportionally smaller than those estimated from the maximum electron density in the 2-layer. By using the ionospheric activity indices for several stations the ionospheric disturbance level over a substantial part of Europe (34°N–60°N; 5°W–40°E) can now be displayed online.  相似文献   

12.
We have combined ∼300 h of tristatic measurements of the field-perpendicular F region ionospheric flow measured overhead at Tromsø by the EISCAT UHF radar, with simultaneous IMP-8 measurements of the solar wind and interplanetary magnetic field (IMF) upstream of the Earth’s magnetosphere, in order to examine the response time of the ionospheric flow to changes in the north-south component of the IMF (Bz). In calculating the flow response delay, the time taken by field changes observed by the spacecraft to first effect the ionosphere has been carefully estimated and subtracted from the response time. Two analysis methods have been employed. In the first, the flow data were divided into 2 h-intervals of magnetic local time (MLT) and cross-correlated with the “half-wave rectifier” function V2Bs, where V is the solar wind speed, and Bs is equal to IMF Bz if the latter is negative, and is zero otherwise. Response delays, determined from the time lag of the peak value of the cross-correlation coefficient, were computed versus MLT for both the east-west and north-south components of flow. The combined data set suggests minimum delays at ∼1400 MLT, with increased response times on the nightside. For the 12-h sector centred on 1400 MLT, the weighted average response delay was found to be 1.3 ± 0.8 min, while for the 12-h sector centred on 0200 MLT the weighted average delay was found to increase to 8.8 ± 1.7 min. In the second method we first inspected the IMF data for sharp and enduring (at least ∼5 min) changes in polarity of the north-south component, and then examined concurrent EISCAT flow data to determine the onset time of the corresponding enhancement or decay of the flow. For the case in which the flow response was timed from whichever of the flow components responded first, minimum response delays were again found at ∼1400 MLT, with average delays of 4.8 ± 0.5 min for the 12-h sector centred on 1400 MLT, increasing to 9.2 ± 0.8 min on the nightside. The response delay is thus found to be reasonably small at all local times, but typically ∼6 min longer on the nightside compared with the dayside. In order to make an estimate of the ionospheric information propagation speed implied by these results, we have fitted a simple theoretical curve to the delay data which assumes that information concerning the excitation and decay of flow propagates with constant speed away from some point on the equatorward edge of the dayside open-closed field line boundary, taken to lie at 77° magnetic latitude. For the combined cross-correlation results the best-fit epicentre of information propagation was found to be at 1400 MLT, with an information propagation phase speed of 9.0 km s−1. For the combined event analysis, the best-fit epicentre was also found to be located at 1400 MLT, with a phase speed of 6.8 km s−1.  相似文献   

13.
This paper presents results from the TIME-GCM-CCM3 thermosphere–ionosphere–lower atmosphere flux-coupled model, and investigates how well the model simulates known F2-layer day/night and seasonal behaviour and patterns of day-to-day variability at seven ionosonde stations. Of the many possible contributors to F2-layer variability, the present work includes only the influence of ‘meteorological’ disturbances transmitted from lower levels in the atmosphere, solar and geomagnetic conditions being held at constant levels throughout a model year.In comparison to ionosonde data, TIME-GCM-CCM3 models the peak electron density (NmF2) quite well, except for overemphasizing the daytime summer/winter anomaly in both hemispheres and seriously underestimating night NmF2 in summer. The peak height hmF2 is satisfactorily modelled by day, except that the model does not reproduce its observed semiannual variation. Nighttime values of hmF2 are much too low, thus causing low model values of night NmF2. Comparison of the variations of NmF2 and the neutral [O/N2] ratio supports the idea that both annual and semiannual variations of F2-layer electron density are largely caused by changes of neutral composition, which in turn are driven by the global thermospheric circulation.Finally, the paper describes and discusses the characteristics of the F2-layer response to the imposed ‘meteorological’ disturbances. The ionospheric response is evaluated as the standard deviations of five ionospheric parameters for each station within 11-day blocks of data. At any one station, the patterns of variability show some coherence between different parameters, such as peak electron density and the neutral atomic/molecular ratio. Coherence between stations is found only between the closest pairs, some 2500 km apart, which is presumably related to the scale size of the ‘meteorological’ disturbances. The F2-layer day-to-day variability appears to be related more to variations in winds than to variations of thermospheric composition.  相似文献   

14.
Changes in the critical frequencies of the F2 layer at several midlatitude stations of ionospheric vertical sounding during a sharp depletion in atmospheric pressure under quiet solar and geomagnetic conditions are analyzed. It is shown that in such periods, the observed foF2 values differ from the mean values by approximately 10–15% and the deviations from the mean could be both negative (in the daytime hours) and positive (at night). Such variations in foF2 could be referred to the known class of ionospheric disturbances observed under a quiet geomagnetic situation, that is, to the so-called “Q-disturbances.” Analysis of wavelet spectra of foF2 variations shows the presence in the F region of oscillations of various periods (from 0.5 to 10 days). The decrease in the amplitude of daily variations during pressure depletion is found. Presumably, the observed effect is caused by the dynamic impact of waves formed in the lower atmosphere on the ionospheric F2 layer.  相似文献   

15.
Using the empirical magnetic field model dependent on the Dst index and solar wind dynamic pressure, we calculated the behaviour of the contour B = Bs in the equatorial plane of the magnetosphere where Bs is the magnetic field in the subsolar point at the magnetopause. The inner domain of the magnetosphere outlined by this contour contains the bulk of geomag-netically trapped particles. During quiet time the boundary of the inner magnetosphere passes at the distance ∼10RE at noon and at ∼7RE at midnight. During very intense storms this distance can be reduced to 4–5 RE for all MLT. The calculation results agree well with the satellite measurements of the magneto-pause location during storms. The ionospheric projection of the B = Bs contour calculated with the Euler potential technique is close to the equatorward edge of the auroral oval.  相似文献   

16.
We present the results of studies of the subauroral and mid-latitude ionosphere variations in the north-eastern region of Asia. We used the data from network of vertical and oblique-incidence sounding ionosondes and optical measurements. Long-term experiments on the radio paths Magadan–Irkutsk and Norilsk–Irkutsk were carried out within the period 2005–2007. Vertical sounding stations operated in standard regime. Observation of airglow near Irkutsk was provided by the zenith photometer that measured intensities of 557.7 and 630.0 nm atomic oxygen emissions. The results may be summarized as follows. (1) Large daytime negative disturbances are observed during the main and recovery phases mainly at high latitudes, whereas the positive disturbances observed during the main phase at mid latitudes. The disturbances changed their sign between Yakutsk and Irkutsk. (2) During the main and recovery storm phases the fall of foF2 associated with the equatorward wall of the main ionospheric trough is observed in the afternoon and evening. (3) Fluctuations of the electron density more intensive at mid latitudes during the storm main phase are observed during all considered periods. They are classed as traveling ionospheric disturbances (TID). Such sharp gradients of electron density are responsible for the strong changes in the characteristics of the radio wave propagation, particularity MOF. (4) A large-scale ionospheric disturbance is noted at the meridional chain of ionosonds in December 2006 as the sharp increase of foF2. It appears in the evening in the minimum of Dst at high latitude and propagate to equator. (5) A maximum of 630 nm emission above Irkutsk corresponds to the foF2 increase. (6) The obtained experimental data on the net of vertical and oblique-incidence sounding with high time resolution show that such net is the effective facility to study the conditions of the radio wave propagation and can be used for the diagnostic of the ionosphere.  相似文献   

17.
Partial reflection differential absorption and differential phase observations have been used to systematically study collision frequencies (ν) in D-region of the lower ionosphere. The observations made with the large MF radar located at Buckland Park (35°S, 138°E) near Adelaide in the period September 1996–December 2000 show ν values larger than predicted by previously used models. The new estimates are compared with values calculated using new collision frequency momentum cross-sections for N2(σ) measured in the laboratory. The two types of measurements are found to be in good agreement, with a moderate seasonal variation of ν at a constant height. No change due to solar cycle variations is found.  相似文献   

18.
The statistical characteristics of the intensity of VLF-LF radio signals transmitted from the midlatitude radio stations and recorded by the receiver at the Mikhnevo geophysical observatory (54.94°N, 37.73°E; Institute of Geosphere Dynamics, Russian Academy of Sciences) in 2007–2010 are analyzed. The experiments revealed strong variations in the intensity of radio signals during the deep solar minimum conditions, when the medium does not experience impacts from above associated with solar and geomagnetic activity. We relate the observed variations to the disturbances from below, which are caused by the meteorological and wave processes occurring in the lower atmosphere.  相似文献   

19.
Results of comparing ionospheric radio noise at wavelength of 2 m at midlatitudes to the data of the ionospheric vertical sounding during the partial phase of the solar eclipse of August 11, 1999, are presented. Disturbances in the ionospheric layers, radio noise of the ionospheric plasma, and variations and fluctuations in the atmospheric pressure at the Earth surface during the eclipse are considered. The parameters of the Lamb wave, which propagated with velocity of 300 m/s from the region of the total phase of the eclipse are determined. The Lamb wave characteristics in the summer midlatitude and auroral ionosphere have been compared.  相似文献   

20.
A Polish-made vertical ionosonde (VI) has been operated at the Kandilli Observatory in Istanbul, for almost one year (May 1993 - April 1994) as part of the COST 238, PRIME Project, The critical frequencies were obtained for every half-hour interval. The data obtained during this campaign, on the descending branch of solar cycle 22, and the data measured earlier in Istanbul for cycle 20 were analysed and the characteristic behaviour of the F2 region ionosphere over Istanbul has been determined. This is a unique data set for this area. Several markers of the solar cycle activities in terms of the daily relative sunspot numbers, F10.7 cm solar radio flux and solar flare index, and the magnetic daily index of Ap were then used to seek the possible influence of the solar and ionospheric activities on the critical frequencies observed in Istanbul. It was found that the solar flare index, as a solar activity index, was more reliable in determining quiet ionospheric days. It is shown that the minimum and maximum time values of the solar activity are more convenient for ionospheric prediction and modelling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号