首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
利用近十年的T/P测高数据来反演南海(8°~23°N,109°~120°E)九个主要分潮的潮汐参数,并计算了Geosat/ERM卫星对应的各主分潮的混叠周期及Rayleigh周期。根据潮汐参数提取的要求,选取了7个主分潮,为了克服混叠影响,将T/P沿迹点处的主要分潮间的5组差比关系引入到Geosat沿迹点处,并利用T/P提供的Sa模型去除Sa对M2的扰动影响。精度估计的结果表明,Geosat/ERM反演的潮汐参数的精度与传统的月分析结果的精度相近;因差比关系的捆绑,整个全日和半日潮族迟角偏差相近,这主要和Geosat/ERM的轨道设计有关。本文的方法可以应用于利用轨道调整后的T/P卫星的测高数据提取潮汐参数。  相似文献   

2.
Cryosat-2卫星首次提供了369d重复周期的密集漂移轨道测高数据,可用于改进海洋重力场反演精度和分辨率。从信号和噪声两个角度对其沿轨数据进行自回归建模,给出了一种以重复轨道观测序列差分加和确定信号谱和噪声谱,并比较分析测高数据大地水准面分辨能力的方法(称为信噪比分析法)。对全球5个试验区域采用谱关联性法和信噪比法来分析Cryosat-2沿轨数据的大地水准面,其分辨能力约为23~33km,均值约为27km,优于单周期Geosat/ERM、ERS-1/ERM和T/P数据的38km、43km和37km。研究表明,Cryosat-2数据具有更低噪声水平和更高大地水准面信号辨识度,可以为构建海洋重力场模型提供更高分辨率的短波信息。  相似文献   

3.
南中国海TOPEX/POSEIDON轨迹交叉点测高数据的潮汐调和分析   总被引:25,自引:2,他引:23  
讨论了由卫星测高数据进行潮汐分析的混叠问题和分潮的可分辨性;用TOPEX/PO-SEIDON海面重复轨迹交叉点测高数据计算南中国海12个分潮(Sa,Ssa,Mm,Mf,Q1,O1,P1,K1,N2,M2,S2,K2)的调和常数;用不同方法验证了计算结果的精度,分析表明,分潮的振幅精度和潮高精度已达到±2cm,四个较大分潮(O1,P1,K1,M2)的迟角误差不超过±7°。其中O1,K1,和M2与验潮站实测值的最大偏差小于7°;给出了最大的全日和半日分潮(K1,M2)的潮波图。  相似文献   

4.
逆气压改正对卫星测高数据反演潮汐参数的影响   总被引:4,自引:0,他引:4  
定量分析了逆气压改正对各主分潮潮汐参数反演的影响。结果表明,逆气压改正对Sa的反演结果影响最大,在Sa的实际振幅中,气压变化的平均贡献比率为42%,气压变化使Sa的迟角减小了约27°,而对其他主分潮的影响可忽略不计。建议在应用卫星测高数据时,不加逆气压改正,但在数据处理时,需加Sa分潮的改正。  相似文献   

5.
处理了 TOPEX/Poseidon(第 9周期至第 2 4 9周期 ) ,ERS2 (第 0周期至第 44周期 )和Geosat/GM(第 1周期至第 2 5周期 )以及 Geosat ERM(第 1周期至第 66周期 )卫星测高资料 ,求解了各自卫星任务的交叉点和垂线偏差 ,利用逆 Vening- Meinesz公式确定了 2 .5′×2 .5′中国近海海洋重力异常 ,并与我国南海船测重力异常作了比较 ,其精度为± 9.3m Gal( 1 Gal=1 cm/s2 )。本文同时导出了严密的 2维平面卷积公式 ,它与 1维严密卷积公式计算结果差值的标准差为± 0 .1 m Gal,而 2维球面公式为± 0 .5 m Gal  相似文献   

6.
海洋重力场模型反演的质量主要依赖于采用测高数据的精度、空间分辨率和数据分布密集程度。本文联合Geosat GM/ERM、ERS-1 GM/ERM、TOPEX/Poseidon、Envisat、Cryosat-2、Jason-1 ERM/GM和SARAL/AltiKa等多种测高观测数据集,深入比较了多种波形重跟踪算法的效果,回波数据重跟踪处理后的沿轨海面高标准差。统计表明,Sandwell算法优于MLE-4算法、Davis阈值法、改进阈值法和β参数拟合法;基于不同测高数据波形重采样的结果给出了沿轨海面梯度计算中低通滤波的参数选择方法,并采用Sandwell提出的垂线偏差法,反演了全球海域1′×1′的重力场模型。检核表明,反演结果与DTU13和SIO V23.1模型检核的差值均方根分别为3.4、1.8 mGal,与NGDC船测数据的检核精度为4~8 mGal,且本文模型在部分典型海区内精度更优。  相似文献   

7.
CH20001710 南中国海 TOPEX/POSEIDON 轨迹交叉点测高数据的潮汐调和分析/暴景阳(武汉测绘科技大学)…∥测绘学报.—2000,29(1).—17~23讨论了由卫星测高数据进行潮汐分析的混叠问题和分潮的可分辨性;用 TOPEX/POSEI-DON 海面重复轨迹交叉点测高数据计算南中国海12个分潮(S_a,S_(sa),M_m,M_f,Q_1,Q_1,P_1,K_1,N_2,M_2,S_2,K_2)的调和常数;用不同方法验证了计算结果的精度,分析表明,分潮的振幅精度和  相似文献   

8.
孙新轩  许军  暴景阳 《测绘通报》2006,(7):16-18,39
采用8年的T/P卫星测高数据在重复轨迹上以0.1°的密度进行中国近海及西北太平洋海域的潮汐调和分析,通过上升与下降轨迹数据在交叉点处的分析结果的比较及沿轨分析结果与验潮站数据的比较,验证计算精度和可靠性,证实在大陆架浅海区域沿轨分析结果的精度与深海相当,现有全球潮汐模型在近海的不准确性完全是由于分析方法的分辨率不够造成的。  相似文献   

9.
王海瑛 《测绘学报》2001,30(2):185-185
本文围绕卫星测高原理、数据处理与应用,着 重对大地水准面、重力异常和海平面进行了探讨 和研究,研究范围涵盖了整个中国近海及其邻近 海域,包括部分西北太平洋海域.主要工作和成果 包括以下5个方面: 1.卫星测高原始观测数据的预处理.①原 始观测数据(Geosat/ERM/GM,ERS-1和 TOPEX/Poseidon)的误差分析与环境改正; ②多颗卫星测高数据处理与径向轨道误差的改 正--单,双星交叠平差;③卫星测高数据的共 线轨道(stacking)处理.  相似文献   

10.
联合多种卫星测高数据分析全球和中国海海平面变化   总被引:1,自引:0,他引:1  
利用了 7年的T/P数据 (第 9周期至第 2 49周期 )、4年的ERS2数据 (第 0周期至第 44周期 )和Geosat精密重复任务 (ERM)数据 ,由共线法研究了全球海平面变化和中国海域海平面变化。测高数据的逆气压改正采用了每个周期的平均大气压重新计算 ,对T/P和ERS2两种数据源计算的 1995~ 1999年海平面变化作了相应的比较  相似文献   

11.
Xu  Jun  Bao  Jingyang  Liu  Yanchun  Yu  Caixia 《地球空间信息科学学报》2008,11(1):17-20
An algorithm (differential mode) is presented for the improvement of harmonic tidal analysis along T/P tracks, in which the differences between the observed sea surface heights at adjacent points are taken as observations. Also, the observation equations are constrained with the results of the crossover analysis; the parameter estimations are performed at 0.1° latitude intervals by the least squares. Cycle 10 to 330 T/P altimeter data covering the China Sea and the Northwest Pacific Ocean (2°-50° N,105°-150° E) are adopted for a refined along-track harmonic tidal analysis, and harmonic constants of 12 constituents in 8 474 points are obtained, which indicates that the algorithm can efficiently remove non-tidal effects in the altimeter observations, and improve the precision of tide parameters. Moreover, parameters along altimetry tracks represent a smoother distribution than those obtained by traditional algorithms. The root mean squares of the fitting errors between the tidal height model and the observations reduce from 11 cm to 1.3 cm.  相似文献   

12.
 Aliasing of the diurnal and semi-diurnal tides is a major problem when estimating the ocean tides from satellite altimetry. As a result of aliasing, the tides become correlated and many years of altimeter observations may be needed to seperate them. For the three major satellite altimetry missions to date i.e., GEOSAT, ERS-1, and TOPEX/POSEIDON (T/P), the alias periods as well as the Rayleigh periods over which the tides decorrelate can be identified. Especially in case of GEOSAT and ERS-1, severe correlation problems arise. However, it is shown by means of covariance analyses that the tidal phase advance differences on crossing satellite groundtracks can significantly reduce the correlations among the diurnal and semi-diurnal tides and among these tides and the seasonal cycles of ocean variability. Therefore, it has been attempted to solve a multi-satellite response tidal solution for the diurnal and semi-diurnal bands from a total of 7 years of altimetry. Unfortunately, it could be shown that the GEOSAT and ERS-1 orbit errors are too large to improve a 3-year T/P tidal solution with about 2 years of GEOSAT and 2 years of ERS-1 altimeter observations. However, these results are preliminary and it is expected that more accurate orbits, which have become available recently for ERS-1, and additional altimeter data from ERS-2 and the GEOSAT Follow-On (GFO) should lead to an improved T/P tidal model. Received: 4 May 1999 / Accepted: 24 January 2000  相似文献   

13.
以相邻点海面高度差为观测量的沿迹调和分析新方法   总被引:2,自引:0,他引:2  
采用TOPEX/POSEIDON卫星轨迹上相邻点的海面高差作为观测量,在交叉点分析结果的控制下构成同一弧段上观测量在两相邻交叉点间的综合观测方程,以轨迹上纬差0.1°的正常点的潮汐参数构成总体待估参数系列,实施最小二乘综合解算。分析结果表明,这种差分模式可以基本消除非潮汐因素的影响,提高潮汐参数估计的精度和可靠性,可比一般沿迹逐点分析给出更为平滑的沿迹参数分布,更符合海洋潮汐运动的物理背景。  相似文献   

14.
On the basis of the characteristic of the perfect spatial distribution of the T/P altimeter data, a spatial harmonic tidal analysis is performed, which transfers tidal harmonic constantsH andg of each constituent into a pair of parameters: the cosine part U and sine partV. And each part is expanded into a polynomial. The polynomial coefficients are estimated with altimeter data upon the least squares criteria. Thus the models of principal tidal waves in the South China Sea are established. 72 cycles of T/P data from cycle 11 through 82 are included in the calculation. The models are evaluated with different approaches and data set. The conclusions are that the tide modes can provide partial tide amplitudes with 3 cm accuracy, and that phase lags deviation of those tides with amplitude large than 10 cm are within ±10°.  相似文献   

15.
This paper analyzes several systematic errors affecting sea surface gradients derived from Seasat, Geosat/ERM, Geosat/GM, ERS-1/35d, ERS-1/GM and TOPEX/POSEIDON altimetry. Considering the data noises, the conclusion is: (1) only Seasat needs to correct for the non-geocentricity induced error, (2) only Seasat and Geosat/GM need to correct for the one cycle per revolution error, (3) only Seasat, ERS-1/GM and Geosat/GM need to correct for the tide model error; over shallow waters it is suggested to use a local tide model not solely from altimetry. The effects of the sea surface topography on gravity and geoid computations from altimetry are significant over areas with major oceanographic phenomena. In conclusion, sea surface gradient is a better data type than sea surface height. Sea surface gradients from altimetry, land gravity anomalies, ship gravity anomalies and elevation data were then used to calculate the geoid over Taiwan by least-squares collocation. The inclusion of sea surface gradients improves the geoid prediction by 27% when comparing the GPS-derived and the predicted geoidal heights, and by 30% when comparing the observed and the geoid-derived deflections of the vertical. The predicted geoid along coastal areas is accurate to 2 cm and can help GPS to do the third-order leveling. Received 22 January 1996; Accepted 13 September 1996  相似文献   

16.
1 IntroductionSince 1 96 0’s ,especiallyduringthelasttwodecades,manytidalistshavestudiedonthetidalwavesystemsoftheSouthChinaSea .YeAnle ,etal.(1 983 ) ,ShenYujiang ,etal.(1 985 ) ,FangGuohong,etal.(1 994) ,andCaoDeming ,etal.(1 997)simulatedthetidalfieldinthisareabasedonthenumeri…  相似文献   

17.
本文联合T/P数据、T/P新轨道数据、ERS数据、GFO数据、GeosatGM数据和ERS-1/168数据,用测高卫星记录点的位置信息直接计算沿轨大地水准面的方向导数,结合测线轨迹方向的方位角在交叉点处推求垂线偏差,然后利用逆Vening-Meinesz公式计算了中国近海(0o~41oN,105o~132oN)2′×2′格网分辨率的海域重力异常模型。将其与CLS_SHOW99重力异常模型比较,统计结果表示与该模型差异的RMS为8.15mgal,在剔除差值大于20mgal的点(剔除3.3%)以后,RMS为4.72mgal;与某海区船测重力异常比较的RMS为8.91mgal。  相似文献   

18.
We can presently construct two independent time series of sea level, each at a precision of a few centimeters, from Geosat (1985–1988) and TOPEX/Poseidon (1992–1995) collinear altimetry. Both are based on precise satellite orbits computed using a common geopotential model, JGM-2 (Nerem et al. 1994). We have attempted to connect these series using Geosat-T/P crossover differences in order to assess long-term ocean changes between these missions. Unfortunately, the observed result are large-scale sea level differences which appear to be due to a combination of geodetic and geopotential error sources. The most significant geodetic component seems to be a coordinate system bias for Geosat sea level (relative to T/P) of −7 to −9 cm in the y-axis (towards the Eastern Pacific). The Geosat-T/P sea height differences at crossovers (with JGM-2 orbits) probably also contain stationary geopotential-orbit error of about the same magnitude which also distort any oceanographic interpretation of the observed changes. We also found JGM-3 Geosat orbits have not resolved the datum errors evident from the JGM-2 Geosat -T/P results. We conclude that the direct altimetric approach to accurate determination of sea level change using Geosat and T/P data still depends on further improvement in the Geosat orbits, including definition of the geocenter. Received: 11 March 1996; Accepted: 19 September 1996  相似文献   

19.
利用T/P测高数据反演了中国近海及西北太平洋海域的潮汐参数,构造了CSR3.0、FES95.2和T/P反演的海潮模型改正下的海面高时间序列,通过海面高变化曲线及功率谱的比较确定了利用测高数据发现的海平面季节内变化主要是潮汐模型误差的贡献.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号