首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Analysis of current structure is a main objective in the Kuroshio study. During the Sino- Japan cooperation investigation from 1986 to 1993, each season had a cruise for this topic, and a series of papers on the Kuroshio route, flux and velocity distrib…  相似文献   

2.
1997—1998年El-Ni?o至La-Nia期间东海黑潮的变异   总被引:3,自引:1,他引:3       下载免费PDF全文
基于日本“长风号”调查船在1997与1998年10个航次的CTD资料,采用改进逆方法及改进动力计算方法对东海黑潮的流速、流量进行计算. 1997年5月出现了El-Ni?o现象,东海黑潮流量在1997年夏季减少,1997年东海黑潮的平均流量也减少. 在1997年1月与6—7月,即El-Ni?o现象出现前后,东海环流的流态有些不同. 在1998年4至11月黑潮在PN断面出现多流核心的结构,特别在10—11月出现3个流核心,黑潮主流核的位置秋季时东移. 1995年与1998年都是东海黑潮异常年,这些异常现象可能与冲绳岛以南出现的反气旋涡的强度变化以及从El-Ni?o现象过渡到La-Ni?a现象有关.  相似文献   

3.
基于日本“长风号”调查船在 1 997与 1 998年 1 0个航次的CTD资料 ,采用改进逆方法及改进动力计算方法对东海黑潮的流速、流量进行计算 .1 997年 5月出现了El Ni no现象 ,东海黑潮流量在 1 997年夏季减少 ,1 997年东海黑潮的平均流量也减少 .在 1 997年 1月与 6— 7月 ,即El Ni no现象出现前后 ,东海环流的流态有些不同 .在 1 998年 4至 1 1月黑潮在PN断面出现多流核心的结构 ,特别在 1 0— 1 1月出现 3个流核心 ,黑潮主流核的位置秋季时东移 .1 995年与 1 998年都是东海黑潮异常年 ,这些异常现象可能与冲绳岛以南出现的反气旋涡的强度变化以及从El Ni no现象过渡到La Ni na现象有关  相似文献   

4.
An analysis of surface current data obtained from 2002 to 2005 using long-range high-frequency radar provides the first evidence for the presence of biweekly (11–14 day) periodic variations of the Kuroshio axis northeast of Taiwan. This analysis clarifies the spatiotemporal characteristics of these variations and reveals that cyclonic/anticyclonic eddies propagating along the shelf slope from the vicinity of the deep channel east of Taiwan induce these variations northeast of Taiwan. The behavior of the cyclonic/anticyclonic eddies on the shelf slope is well explained by 2nd-mode interior shelf waves advected by the Kuroshio's mean flow. Remote effects from the vicinity of the deep channel east of Taiwan, or from outside the East China Sea, are believed to play an important role in the generation of these biweekly periodic variations of the Kuroshio axis northeast of Taiwan. Moreover, on the shelf slope, these variations cause an onshore current across the shelf slope, suggesting topographically controlled upwelling. Therefore, the biweekly periodic variations of the Kuroshio axis northeast of Taiwan might contribute not only to the onshore transport of Kuroshio surface water but also to transport nutrient-rich Kuroshio subsurface water onto the shelf in the East China Sea.  相似文献   

5.
East China Sea (ECS) is bounded by the continent where the fourth largest river of Changjiang discharges large amounts of freshwater to the west and by the Kuroshio in the East and connected to the South China Sea via Taiwan Strait, therefore water characteristics are very complex and undergo great seasonal changes. The dominant source waters in the ECS are found to be Kuroshio Surface Water (KSW), Kuroshio Sub-surface Water (KSSW), Changjiang Diluted Water (CDW), and Taiwan Strait Warm Water (TSWW). Optimum multiparameter analysis (OMP) using temperature, salinity and 226Ra were applied to quantify the contribution of individual source water to the surface water of the ECS in summer. The successful application of radium isotope in OMP analysis demonstrates the usefulness of 226Ra in the discrimination of mixing among multiple water sources. In 1987, one interesting phenomenon was that the KSSW entered the surface with the upwelling at the margin of continental shelf, and affected the coastal water obviously. In 1999, the TSWW extended northward continuously up to the Changjiang Estuary.  相似文献   

6.
Kuroshio intrusion into the South China Sea (SCS) has different forms. In this study, a Kuroshio SCS Index (KSI) is defined using the integral of geostrophic vorticity from 118° to 121° E and from 19° to 23° N. Three typical paths (the looping path, the leaking path, and the leaping path) were identified based on the KSI derived from the weekly satellite Absolute Dynamic Topography from 1993 to 2008. The KSI has a near normal distribution. Using ±1 standard deviation (σ) as the thresholds, the leaking path is the most frequent form with the probability of occurrence at 68.2%, while the probabilities of occurrence for the looping path and the leaping path are 16.4% and 15.4%, respectively. Similar analysis is also conducted on the daily Hybrid Coordinate Ocean Model (HYCOM) Global Analysis from 2004 to 2008. The results are generally consistent with the KSI analysis of the satellite data. The HYCOM data are further analyzed to illustrate patterns of inflows/outflows and the maximum/minimum salinity as representatives of the subsurface/intermediate waters. The Kuroshio bending and the net inflow through the Luzon Strait reduce from the looping path to the leaking path to the leaping path. However, the Kuroshio subsurface water intrudes farthest into the SCS for the leaking path. Vorticity budget associated with the different intrusion types is then analyzed. The tilting of the relative vorticity, the stretching of the absolute vorticity, and the advection of planetary vorticity are important for the change of vorticity, whereas the baroclinic and frictional contributions are three orders smaller.  相似文献   

7.
It has long been recognized that the circulation in the East China Sea (ECS) and Japan/East Sea (JES) is closely related with that in Pacific, especially with the Kuroshio (e.g., Nitani[1], Hi-daka[2]). Based on current measurements in the Taiwan Strait a…  相似文献   

8.
An advanced artificial neural network classification algorithm is applied to 18?years of gridded mean geostrophic velocity multi-satellite data to study the Kuroshio intrusion into the South China Sea through the Luzon Strait. The results suggest that the Kuroshio intrusion may occur year round. However, intrusion is not the major characteristic of the region. The intrusion mode occurs only 25.8?% of the time. Winter intrusion events are more frequent than summer events. Both stronger intrusion (which is related to wind speed) and weaker intrusion (which may be related to the upstream Kuroshio transport) may occur during winter, but stronger intrusion is dominant. In summer, the Kuroshio intrusion is almost the weaker type. The Kuroshio intrusion through the Luzon Strait usually occurs when the Pacific decadal oscillation index is positive (72.1?% of the time). This study shows that growing hierarchical self-organizing map is a useful tool for analyzing Kuroshio intrusion through the Luzon Strait.  相似文献   

9.
海平面变化是社会经济发展和科学研究的重要内容.利用1993年1月至2012年12月共20年的TOPEX/Poseidon、Jason-1和Jason-2卫星测高数据,研究中国海海平面的时空变化.首先通过三颗卫星伴飞阶段数据得到三颗卫星之间的逐点海面高系统偏差,进行逐点海面高改正,建立了20年的中国海海面高异常时间序列.分析了中国海海面高异常空间分布,给出了1月到12月月均平均海平面异常的空间变化规律.分析了中国海海面高异常的时变规律,分别给出了年、季度和月的海面上升速率.利用小波分析研究了中国海海面高异常周期变化规律,分别给出了渤海、黄海、东海和南海的海面高变化周期.讨论了ENSO对海面高异常的影响.  相似文献   

10.
Previous investigations have suggested that wind stress curl, the balance of influx- and outflux-induced upwelling, as well as a positive vorticity source fed from the left flank of the Kuroshio are all possible mechanisms that contribute to a persistent cyclonic gyre in the South China Sea (SCS). Studies have also suggested that the loop current that forms from the Kuroshio intrusion in the Luzon Strait, similar to the Loop Current in the Gulf of Mexico (GOM), has rarely been observed in the northern SCS. In this research, an idealized numerical model driven by annual mean wind stress was adopted to investigate the relative importance of dynamic processes that control the mean flow pattern of Kuroshio in the Luzon Strait and regulate circulation in the SCS. An analysis of results drawn from numerical experiments suggests that the three mechanisms are of approximately equal importance in the formation of the persistent cyclonic gyre in the northern SCS. Unlike the Gulf Stream which enters the Gulf of Mexico through the Yucatan Channel, the two topographic ridges that align nearly meridionally in the Luzon Strait keep the Kuroshio flowing roughly northward without distinct intrusion into the SCS. Unsurprisingly, an anticyclonic loop current similar to the Gulf Stream pathway in the GOM was barely observed in the northern SCS.  相似文献   

11.
The China Seas include the South China Sea, East China Sea, Yellow Sea, and Bohai Sea. Located off the Northwestern Pacific margin, covering 4700000 km~2 from tropical to northern temperate zones, and including a variety of continental margins/basins and depths, the China Seas provide typical cases for carbon budget studies. The South China Sea being a deep basin and part of the Western Pacific Warm Pool is characterized by oceanic features; the East China Sea with a wide continental shelf, enormous terrestrial discharges and open margins to the West Pacific, is featured by strong cross-shelf materials transport; the Yellow Sea is featured by the confluence of cold and warm waters; and the Bohai Sea is a shallow semiclosed gulf with strong impacts of human activities. Three large rivers, the Yangtze River, Yellow River, and Pearl River, flow into the East China Sea, the Bohai Sea, and the South China Sea, respectively. The Kuroshio Current at the outer margin of the Chinese continental shelf is one of the two major western boundary currents of the world oceans and its strength and position directly affect the regional climate of China. These characteristics make the China Seas a typical case of marginal seas to study carbon storage and fluxes. This paper systematically analyzes the literature data on the carbon pools and fluxes of the Bohai Sea,Yellow Sea, East China Sea, and South China Sea, including different interfaces(land-sea, sea-air, sediment-water, and marginal sea-open ocean) and different ecosystems(mangroves, wetland, seagrass beds, macroalgae mariculture, coral reefs, euphotic zones, and water column). Among the four seas, the Bohai Sea and South China Sea are acting as CO_2 sources, releasing about0.22 and 13.86–33.60 Tg C yr~(-1) into the atmosphere, respectively, whereas the Yellow Sea and East China Sea are acting as carbon sinks, absorbing about 1.15 and 6.92–23.30 Tg C yr~(-1) of atmospheric CO_2, respectively. Overall, if only the CO_2 exchange at the sea-air interface is considered, the Chinese marginal seas appear to be a source of atmospheric CO_2, with a net release of 6.01–9.33 Tg C yr~(-1), mainly from the inputs of rivers and adjacent oceans. The riverine dissolved inorganic carbon (DIC) input into the Bohai Sea and Yellow Sea, East China Sea, and South China Sea are 5.04, 14.60, and 40.14 Tg C yr~(-1),respectively. The DIC input from adjacent oceans is as high as 144.81 Tg C yr~(-1), significantly exceeding the carbon released from the seas to the atmosphere. In terms of output, the depositional fluxes of organic carbon in the Bohai Sea, Yellow Sea, East China Sea, and South China Sea are 2.00, 3.60, 7.40, and 5.92 Tg C yr~(-1), respectively. The fluxes of organic carbon from the East China Sea and South China Sea to the adjacent oceans are 15.25–36.70 and 43.93 Tg C yr~(-1), respectively. The annual carbon storage of mangroves, wetlands, and seagrass in Chinese coastal waters is 0.36–1.75 Tg C yr~(-1), with a dissolved organic carbon(DOC) output from seagrass beds of up to 0.59 Tg C yr~(-1). Removable organic carbon flux by Chinese macroalgae mariculture account for 0.68 Tg C yr~(-1) and the associated POC depositional and DOC releasing fluxes are 0.14 and 0.82 Tg C yr~(-1), respectively. Thus, in total, the annual output of organic carbon, which is mainly DOC, in the China Seas is 81.72–104.56 Tg C yr~(-1). The DOC efflux from the East China Sea to the adjacent oceans is 15.00–35.00 Tg C yr~(-1). The DOC efflux from the South China Sea is 31.39 Tg C yr~(-1). Although the marginal China Seas seem to be a source of atmospheric CO_2 based on the CO_2 flux at the sea-air interface, the combined effects of the riverine input in the area, oceanic input, depositional export,and microbial carbon pump(DOC conversion and output) indicate that the China Seas represent an important carbon storage area.  相似文献   

12.
From May to June 2014, the geochemical characteristics of dissolved barium(Ba) in sea water and its influx from the Kuroshio into the East China Sea(ECS) were studied by investigation of the Kuroshio mainstream east of Taiwan Island and the adjacent ECS. This allowed for the scope and extent of the Kuroshio incursion to be quantitatively described for the first time by using Ba as a tracer. The concentration of Ba in the Kuroshio mainstream increased gradually downward from the surface in the range 4.91–19.2 μg L.1. In the surface layer of the ECS, the Ba concentration was highest in coastal water and gradually decreased seaward, while it was higher in coastal and offshore water but lowest in middle shelf for bottom layer. The influx of Ba from Kuroshio into the ECS during May to October was calculated to be 2.19×108 kg by a water exchange model, in which the subsurface layer had the largest portion. The distribution of Ba indicated that Kuroshio upwelled in the sea area northeast of Taiwan Island. The north-flowing water in the Taiwan Strait restrained the incursion of Kuroshio surface water onto the ECS shelf, while Kuroshio subsurface water gradually affected the bottom of the ECS from outside. The results of end member calculation, using Ba as a parameter, showed that the Kuroshio surface water had little impact on the ECS, while the Kuroshio subsurface water formed an intrusion current by climbing northwest along the bottom of the middle shelf from the sea area northeast of Taiwan Island into the Qiantang Estuary, of which the volume of Kuroshio water was nearly 65%. Kuroshio water was the predominant part of the water on the outer shelf bottom and its proportion in areas deeper than the 100 m isobath could reach more than 95%. In the DH9 section(north of Taiwan Island), Kuroshio subsurface water intruded westward along the bottom from the shelf edge and then rose upward(in lower proportion). Kuroshio water accounted for 95% of the ocean volume could reach as far as 122°E. Ba was able to provide detailed tracing of the Kuroshio incursion into the ECS owing to its geochemical characteristics and became an effective tracer for revealing quantitative interactions between the Kuroshio and the ECS.  相似文献   

13.
Wave climate plays an important role in the air-sea interaction over marginal seas. Extreme wave height provides fundamental information for various ocean engineering practices, such as hazard mitigation, coastal structure design, and risk assessment. In this paper, we implement a third generation wave model and conduct a high-resolution wave hindcast over the East China Sea to reconstruct a 15-year wave field from 1988 to 2002 for derivation of monthly mean wave parameters and analysis of extreme wave conditions. The numerical results of the wave field are validated through comparison with satellite altimetry measurements, low-resolution reanalysis, and the ocean wave buoy record. The monthly averaged wave height and wave period show seasonal variation and refined spatial patterns of surface waves in the East China Sea. The climatological significant wave height and mean wave period decrease from the open ocean in the southeast toward the continental area in the northwest, with the pattern generally following the bathymetry. Extreme analysis on the significant wave height at the buoy station indicates the hindcast data underestimate the extreme values relative to the observations. The spatial pattern of extreme wave height shows single peak emerges at the southwest of Ryukyu Island although a wind forcing with multi-core structure at the extreme is applied.  相似文献   

14.
中国近海海平面变化特征分析   总被引:6,自引:1,他引:5       下载免费PDF全文
用经验正交函数分析方法,对中国近海14年多的测高海平面同化格网资料进行分析,给出了黄海、东海和南海各海平面变化主要主成分的空间变化和时间变化特征.用标准Morlet小波变换方法分析了各海区主成分时间变化序列的时频特征.分析结果表明,各主成分的空间分布特征与当地的海洋环流或洋流特征相对应.时频分析结果显示,中国近海海平面变化的显著周期主要为年周期信号.其次,黄海和东海还显示准2个月的非稳态信号,东海和南海具有较显著的半年周期信号,东海半年周期信号的能量不稳定.此外,在南海及台湾东部海域,首次发现存在较为显著的准540天周期信号,其动力学机制目前尚不明确.坎门和西沙验潮站资料的时频特征分析也验证了该信号的存在.最后本文给出了中国近海海平面在1993~2007年间的平均上升速率和其区域分布特征.  相似文献   

15.
The Kuroshio inflow northeast of Taiwan Island plays an important role in the heat and nutrient balances over the East China Sea(ECS). Based on merged satellite altimeter data and the PCM-1 mooring observation at the East Taiwan Channel(ETC), the study employs a correlation iteration scheme to find the optimal transport index for the Kuroshio inflow. The sea level difference with the highest correlation to the ETC transport is across the ECS shelf break rather than along the PCM-1 line. The counter-intuitive result is caused by large signal noise and poor track coverage of altimeters near the Taiwan coast. The optimal altimetric index is highly correlated with the two-year in-situ measurements as well as the ten-year output of the global assimilation model. It serves as a better estimator of Kuroshio inflow than those using tidal gauge data, and helps pinpoint a 5 cm mismatch of mean sea level in the Keelung tidal record. The mean transport of Kuroshio inflow based on the twenty-year altimetric index is 20.55 Sv with a standard deviation of 3.05 Sv. Wavelet spectrum of the index reveals that semi-annual period dominates the Kuroshio variation northeast of Taiwan Island.  相似文献   

16.
中国东海及邻近海域一条剖面的地壳速度结构研究   总被引:11,自引:3,他引:11  
1982年以来,中国科学院海洋研究所在东海海域进行了二十多个站位的遥测浮标折射地震测量,1991年又在东海陆架区进行了OBS测量,本文在我国东海域选择了横穿东海陆架,冲绳海槽,琉球岛弧,琉球海沟和菲律宾海盆的一条剖面,利用上述折射地震资料及其它该剖面附近的折射地震资料,对该剖面的地壳速度结构进行了研究,并进行了速度年代对比。研究表明,剖面的速度结构在纵向上和横向上都表现出明显的差异,横向上可分为三隆三盆,纵向上大致可划分为1.8-2.2km/s,2.4-2.8km/s,3.0-3.6km/s,4.2-5.1km/s和5.75-6.0km/s的速度层,从地壳的速度结构否则 本海区至少有如下的沉积旋回:降冲 槽的中抽外,上新世纪至第四纪本海区沉积环境稳定,而冲第槽中轴可能一直处于构造活跃的状态;始新世为本区沉积的全盛渐新世该区域处于抬升的时期,钓鱼岛隆起区、琉球岛弧隆起区在此期的沉积被剥蚀殆,东海陆架和冲 槽此时斯 沉积也受到相当程度的剥蚀,东海陆架盆地和冲绳槽此时期的沉积也受到相当沉的剥蚀。,东海陆架盆地和冲槽盆地的出现可能在5.75-6.0km/s的速度层沉积之后,菲律宾海盆为典型的大洋地壳结构。  相似文献   

17.
Why does the Kuroshio northeast of Taiwan shift shelfward in winter?   总被引:2,自引:0,他引:2  
Observations indicate that off the northeastern coast of Taiwan a branch of the Kuroshio intrudes farther northward in winter onto the shelf of the East China Sea. We demonstrate that this seasonal shift can be explained solely by winter cooling. Cooling produces downslope flux of dense shelf water that is compensated by shelfward intrusion. Parabathic isopycnals steepen eastward in winter and couple with the cross-shelf topographic slope (the “JEBAR” effect) to balance the enhanced intrusion. The downslope flow also increases vortex stretching and decreases the thickness of the inertial boundary layer, resulting in a Kuroshio that shifts closer to the shelf break.  相似文献   

18.
Using a new functional analysis tool, multiscale window transform(MWT), and the MWT-based localized multiscale energetics analysis and canonical transfer theory, this study reconstructs the Kuroshio system on three scale windows, namely,the mean flow window, the interannual-scale(low-frequency) window, and the transient eddy window, and investigates the climatological characteristics of the intricate nonlinear interactions among these windows. Significant upscale energy transfer is observed east of Taiwan, where the mean Kuroshio current extracts kinetic energy from both the interannual and eddy windows.It is found that the canonical transfer from the interannual variability is an intrinsic source that drives the eddy activities in this region. The multiscale variabilities of the Kuroshio in the East China Sea(ECS) are mainly controlled by the interaction between the mean flow and the eddies.The mean flow undergoes mixed instabilities(i.e., both barotropic and baroclinic instabilities) in the southern ECS, while it is barotropically stable but baroclinically unstable to the north. The multiscale interactions are found to be most intense south of Japan, where strong mixed instabilities occur; both the canonical transfers from the mean flow and the interannual scale are important mechanisms to fuel the eddies. It is also found that the interannual-scale energy mainly comes from the barotropically unstable jet, rather than the upscale energy transfer from the high frequency eddies.  相似文献   

19.
应用重力资源估算东海冲绳海槽地壳厚度   总被引:2,自引:1,他引:2  
利用东海地区的重力资源,并参考在该地区进行的地震测深结果,应用线性公式估算了研究区的地壳厚度,分析了研究区地壳结构特征,根据与中国东部地球物理场、地壳结构的对比,指出东海大陆架地区应是中国大陆的自然延伸,对冲绳海槽的地壳性质进行了探讨,指出冲绳海槽应该为东海大陆架的自然终结。  相似文献   

20.
Previous studies have demonstrated that the low-frequency sea surface temperature (SST) variability in the Yellow Sea and East China Sea (YECS) is linked to large-scale climate variability, but explanations on the mechanisms vary. This study examines the low-frequency variability and trends of some atmospheric and oceanic variables to discuss their different effects on the YECS warming. The increasing temperature trend is also observed at a hydrographic section transecting the Kuroshio. The increasing rate of ocean temperature decreases with depth, which might result in an increase in vertical stratification and a decrease in vertical mixing, and thus plays a positive role on the YECS warming. The surface net heat flux (downward positive) displays a decreasing trend, which is possibly a result of the YECS warming, and, in turn, inhibits it. Wind speeds show different trends in different datasets, such that its role in the YECS warming is uncertain. The trends in wind stress divergence and curl have large uncertainties, so their effects on SST warming are still unclear. The Kuroshio heat transport calculated in this study, displays no significantly increasing trend, so is an unlikely explanation for the SST warming. Limited by sparse ocean observations, sophisticated assimilative climate models are still needed to unravel the mechanisms behind the YECS warming.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号