首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The impact of internal atmospheric variability on North Pacific sea surface temperature (SST) variability is examined based on three coupled general circulation model simulations. The three simulations differ only in the level of atmospheric noise occuring over the ocean at the air-sea interface. The amplitude of atmospheric noise is controlled by use of the interactive ensemble technique. This technique simultaneously couples multiple realizations of a single atmospheric model to a single realization of an ocean model. The atmospheric component models all experience the same SST, but the ocean component is forced by the ensemble averaged fluxes thereby reducing the impact of internal atmospheric dynamics at the air-sea interface. The ensemble averaging is only applied at the air-sea interface so that the internal atmospheric dynamics (i.e., transients) of each atmospheric ensemble member is unaffected. This interactive ensemble technique significantly reduces the SST variance throughout the North Pacific. The reduction in SST variance is proportional to the number of ensemble members indicating that most of the variability can simply be explained as the response to atmospheric stochastic forcing. In addition, the impact of the internal atmospheric dynamics at the air-sea interface masks out much of the tropical-midlatitude SST teleconnections on interannual time scales. Once this interference is reduced (i.e., applying the interactive ensemble technique), tropical-midlatitude SST teleconnections are easily detected.  相似文献   

2.
Summary:Diagnosing a coupled system with linear inverse modelling (LIM) can provide insight into the nature and strength of the coupling. This technique is applied to the cold season output of the GFDL GCM, forced by observed tropical Pacific SSTs and including a slab mixed layer ocean model elsewhere. It is found that extratropical SST anomalies act to enhance atmospheric thermal variability and diminish barotropic variability over the east Pacific in these GCM runs, in agreement with other theoretical and modelling studies. North-west Atlantic barotropic variability is also enhanced. However, all these feedbacks are very weak. LIM results also suggest that North Pacific extratropical SST anomalies in this model would rapidly decay without atmospheric forcing induced by tropical SST anomalies.  相似文献   

3.
The atmospheric circulation response to decadal fluctuations of the Atlantic meridional overturning circulation (MOC) in the IPSL climate model is investigated using the associated sea surface temperature signature. A SST anomaly is prescribed in sensitivity experiments with the atmospheric component of the IPSL model coupled to a slab ocean. The prescribed SST anomaly in the North Atlantic is the surface signature of the MOC influence on the atmosphere detected in the coupled simulation. It follows a maximum of the MOC by a few years and resembles the model Atlantic multidecadal oscillation. It is mainly characterized by a warming of the North Atlantic south of Iceland, and a cooling of the Nordic Seas. There are substantial seasonal variations in the geopotential height response to the prescribed SST anomaly, with an East Atlantic Pattern-like response in summer and a North Atlantic oscillation-like signal in winter. In summer, the response of the atmosphere is global in scale, resembling the climatic impact detected in the coupled simulation, albeit with a weaker amplitude. The zonally asymmetric or eddy part of the response is characterized by a trough over warm SST associated with changes in the stationary waves. A diagnostic analysis with daily data emphasizes the role of transient-eddy forcing in shaping and maintaining the equilibrium response. We show that in response to an intensified MOC, the North Atlantic storm tracks are enhanced and shifted northward during summer, consistent with a strengthening of the westerlies. However the anomalous response is weak, which suggests a statistically significant but rather modest influence of the extratropical SST on the atmosphere. The winter response to the MOC-induced North Atlantic warming is an intensification of the subtropical jet and a southward shift of the Atlantic storm track activity, resulting in an equatorward shift of the polar jet. Although the SST anomaly is only prescribed in the Atlantic ocean, significant impacts are found globally, indicating that the Atlantic ocean can drive a large scale atmospheric variability at decadal timescales. The atmospheric response is highly non-linear in both seasons and is consistent with the strong interaction between transient eddies and the mean flow. This study emphasizes that decadal fluctuations of the MOC can affect the storm tracks in both seasons and lead to weak but significant dynamical changes in the atmosphere.  相似文献   

4.
Monthly or seasonally mean anomalies of large-scale atmospheric circulation are better represented by wave packets or their combination. Both qualitative and quantitative analyses of equations of wave packet dynamics, which are obtained by the use of WKB approximation, are very helpful for the understanding of structure, formation and propagation of stationary and quasi-stationary planetary wave packet patterns in the atmosphere. Indeed, these equations of wave packet dynamics can be directly solved by the method of characteristic lines, and the results can be simply and clearly interpreted by physical laws. In this paper, a quasi-geostrophic barotropic model is taken for simplicity, and the wave packets superimposed on several ideal profiles of the basic current and excited by some ideal forcings are investigated in order to make comparison of the accuracy of calculation with the analytical solution. It is revealed that (a) the rays of stationary planetary wave packet do not coincide with but go away from the great circle with significant difference if the shear of the basic zonal flow is not too small; (b) being superimposed on a westerly jet flow with positive shear (Uλ/y>0), the stationary wave packets excited by low-latitudinal forcing are first intensified during their northeastward propagation in the Northern Hemisphere, then reach their maximum of amplitude at some critical latitude, and after that weaken again; (c) the connected line of extremes (the positive and negative centres) of wave packet does not coincide with but crosses the ray by an angle, the larger the scale of external forcing, the larger the angle; and (d) the whole pattern of a trapped stationary wave packet is complicated by the interference between the incident and reflected waves.  相似文献   

5.
A regional coupled atmosphere–ocean model was developed to study the role of air–sea interactions in the simulation of the Indian summer monsoon. The coupled model includes the regional climate model (RegCM3) as atmospheric component and the regional ocean modeling system (ROMS) as oceanic component. The two-way coupled model system exchanges sea surface temperature (SST) from the ocean to the atmospheric model and surface wind stress and energy fluxes from the atmosphere to the ocean model. The coupled model is run for four years 1997, 1998, 2002 and 2003 and the results are compared with observations and atmosphere-only model runs employing Reynolds SSTs as lower boundary condition. It is found that the coupled model captures the main features of the Indian monsoon and simulates a substantially more realistic spatial and temporal distribution of monsoon rainfall compared to the uncoupled atmosphere-only model. The intraseasonal oscillations are also better simulated in the coupled model compared to the atmosphere-only model. These improvements are due to a better representation of the feedbacks between the SST and convection and highlight the importance of air–sea coupling in the simulation of the Indian monsoon.  相似文献   

6.
张学洪  俞永强  刘辉 《大气科学》1998,22(4):511-521
利用一个全球海气耦合模式长期积分所给出的资料,分析了冬季北太平洋海表湍流热通量(潜热和感热)异常及其对海表温度(SST)异常的影响,并比较了海表热通量诸分量和海洋内部的动力学过程对SST变化的相对重要性。结果表明,冬季热带外海洋上的湍流热通量是影响SST的主要因子,但在北太平洋中部海水的平流作用也不可忽视。冬季热带外海洋向大气释放的潜热和感热通量与SST倾向(而不是SST本身)之间存在着显著的相关,这同Cayan和Reynolds等利用COADS资料和NCEP资料同化模式分析的结果是一致的。模式诊断的结果支持这样一种看法:和热带海洋不同,冬季热带外海洋上的海气相互作用主要地表现为大气对海洋的强迫作用,而不是相反。模式给出的SST倾向的第一个EOF分量及其与海平面气压场的相关特征同Wallace等从观测资料分析所得到的结果是一致的;进一步的分析表明:在冬季北太平洋的大部分区域(特别是西太平洋),大尺度大气环流异常在很大程度上决定着SST的异常,而这种决定作用正是通过它对湍流热通量的强烈影响来实现的。  相似文献   

7.
A series of climate ensemble experiments using the climate model from National Centers for Environmental Prediction (NCEP) were performed to exam impact of sea surface temperature (SST) on dynamics of El-Nino/South-crn Oscillation (ENSO).A specific question addressed in this paper is how important the mean stationary wave influences anomalous Rossby wave trains or teleconnection patterns as often observed during ENSO events.Evidences from those ensemble simulations argue that ENSO anomalies,especially over Pacific-North America (PNA) region,appear to be a result of modification for climatological mean stationary wave forced by persistent tropical SST anomalies Therefore,the role of SST forcing in maintaining climate basic state is emphasized.In this argument,the interaction between atmospheric internal dynamics and external forcing,such as SST is a key element to understand and ultimately predict ENSO.  相似文献   

8.
The climate of the last glacial maximum (LGM) is simulated with a coupled climate model. The simulated climate undergoes a rapid adjustment during the first several decades after imposition of LGM boundary conditions, as described in Part 1, and then evolves toward equilibrium over 900 model years. The climate simulated by the coupled model at this period is compared with observationally-based LGM reconstructions and with LGM results obtained with an atmosphere-mixed layer (slab) ocean version of the model in order to investigate the role of ocean dynamics in the LGM climate. Global mean surface air temperature and sea surface temperature (SST) decrease by about 10 °C and 5.6 °C in the coupled model which includes ocean dynamics, compared to decreases of 6.3 and 3.8 °C in slab ocean case. The coupled model simulates a cooling of about 6.5 °C over the tropics, which is larger than that of the CLIMAP reconstruction (1.7 °C) and larger than that of the slab ocean simulation (3.3 °C), but which is in reasonable agreement with some recent proxy estimates. The ocean dynamics of the coupled model captures features found in the CLIMAP reconstructions such as a relative maximum of ocean cooling over the tropical Pacific associated with a mean La Niña-like response and lead to a more realistic SST pattern than in the slab model case. The reduction in global mean precipitation simulated in the coupled model is larger (15%) than that simulated with the slab ocean model (~10%) in conjunction with the enhanced cooling. Some regions, such as the USA and the Mediterranean region, experience increased precipitation in accord with proxy paleoclimate evidence. The overall much drier climate over the ocean leads to higher sea surface salinity (SSS) in most ocean basins except for the North Atlantic where SSS is considerably lower due to an increase in the supply of fresh water from the Mississippi and Amazon rivers and presumably a decrease in salt transport by the weakened North Atlantic overturning circulation. The North Atlantic overturning stream function weakens to less than half of the control run value. The overturning is limited to a shallower depth (less than 1000 m) and its outflow is confined to the Northern Hemisphere. In the Southern Ocean, convection is much stronger than in the control run leading to a stronger overturning stream function associated with enhanced Antarctic Bottom Water formation. As a result, Southern Ocean water masses fill the entire deep ocean. The Antarctic Circumpolar Current (ACC) transport through the Drake Passage increases by about 25%. The ACC transport, despite weaker zonal winds, is enhanced due to changes in bottom pressure torque. The weakening of the overturning circulation in the North Atlantic and the accompanying 30% decrease in the poleward ocean heat transport contrasts with the strengthening of the overturning circulation in the Southern Ocean and a 40% increase in heat transport. As a result, sea ice coverage and thickness are affected in opposite senses in the two hemispheres. The LGM climate simulated by the coupled model is in reasonable agreement with paleoclimate proxy evidence. The dynamical response of the ocean in the coupled model plays an important role in determining the simulated, and undoubtedly, the actual, LGM climate.  相似文献   

9.
In this study a coupled air–sea–wave model system, containing the model components of GRAPES-TCM, ECOM-si and WAVEWATCH III, is established based on an air–sea coupled model. The changes of wave state and the effects of sea spray are both considered. Using the complex air–sea–wave model, a set of idealized simulations was applied to investigate the effects of air–sea–wave interaction in the upper ocean. Results show that air–wave coupling can strengthen tropical cyclones while air–sea coupling can weaken them; and air–sea–wave coupling is comparable to that of air–sea coupling, as the intensity is almost unchanged with the wave model coupled to the air–sea coupled model. The mixing by vertical advection is strengthened if the wave effect is considered, and causes much more obvious sea surface temperature (SST) decreases in the upper ocean in the air–sea coupled model. Air–wave coupling strengthens the air–sea heat exchange, while the thermodynamic coupling between the atmosphere and ocean weakens the air–sea heat exchange: the air–sea–wave coupling is the result of their balance. The wave field distribution characteristic is determined by the wind field. Experiments are also conducted to simulate ocean responses to different mixed layer depths. With increasing depth of the initial mixed layer, the decrease of SST weakens, but the temperature decrease of deeper layers is enhanced and the loss of heat in the upper ocean is increased. The significant wave height is larger when the initial mixed layer depth increases.  相似文献   

10.
The Kuroshio Extension region is characterized by energetic oceanic mesoscale and frontal variability that alters the air–sea fluxes that can influence large-scale climate variability in the North Pacific. We investigate this mesoscale air-sea coupling using a regional eddy-resolving coupled ocean–atmosphere (OA) model that downscales the observed large-scale climate variability from 2001 to 2007. The model simulates many aspects of the observed seasonal cycle of OA coupling strength for both momentum and turbulent heat fluxes. We introduce a new modeling approach to study the scale-dependence of two well-known mechanisms for the surface wind response to mesoscale sea surface temperatures (SSTs), namely, the ‘vertical mixing mechanism’ (VMM) and the ‘pressure adjustment mechanism’ (PAM). We compare the fully coupled model to the same model with an online, 2-D spatial smoother applied to remove the mesoscale SST field felt by the atmosphere. Both VMM and PAM are found to be active during the strong wintertime peak seen in the coupling strength in both the model and observations. For VMM, large-scale SST gradients surprisingly generate coupling between downwind SST gradient and wind stress divergence that is often stronger than the coupling on the mesoscale, indicating their joint importance in OA interaction in this region. In contrast, VMM coupling between crosswind SST gradient and wind stress curl occurs only on the mesoscale, and not over large-scale SST gradients, indicating the essential role of the ocean mesocale. For PAM, the model results indicate that coupling between the Laplacian of sea level pressure and surface wind convergence occurs for both mesoscale and large-scale processes, but inclusion of the mesoscale roughly doubles the coupling strength. Coupling between latent heat flux and SST is found to be significant throughout the entire seasonal cycle in both fully coupled mode and large-scale coupled mode, with peak coupling during winter months. The atmospheric response to the oceanic mesoscale SST is also studied by comparing the fully coupled run to an uncoupled atmospheric model forced with smoothed SST prescribed from the coupled run. Precipitation anomalies are found to be forced by surface wind convergence patterns that are driven by mesoscale SST gradients, indicating the importance of the ocean forcing the atmosphere at this scale.  相似文献   

11.
两层正压准平衡海洋模型的中纬度自由涡旋波动解   总被引:2,自引:2,他引:0  
建立了具有瑞利摩擦且仅考虑大洋西海岸或同时考虑大洋东、西海岸的两层正压准平衡海洋模型,并做了解析求解,用以研究中纬度的自由涡旋波。得到的主要结论有:模型中该波动的解为波包。在仅考虑大洋西海岸时该波包的载频频率是连续谱;而同时考虑大洋东、西海岸时其为离散谱;且均有载频频率越高(周期越短)水平尺度越大的特点,对过分低频的波动,则会使准平衡的假定不再适用。模型中该波动波包载频的周期约在26天至24年。因考虑了摩擦,该波包的振幅随时间呈指数衰减,但摩擦系数的大小仅影响其衰减程度而不改变其空间结构,最终该波包振幅趋于0,故该两层正压海洋模型的解就趋于大气风场的强迫特解。模型中该波包的载频都是西传的;频率较高则西传较快,波包的特性和变形都很明显;频率低,则西传慢,其波形接近平面简谐波。在该两层正压模型中,该波动上层流场与正压模型中的流动类似,而下层海洋流动则其流速与上层海洋相同,而流向相反。该模型中该波动的性质是准平衡(准无辐散)的涡旋波,当摩擦不太大且其水平尺度在10km以上时,其性质则为准地转的Rossby波。  相似文献   

12.
A global coupled air-sea model of shallow water wave is developed based on coupled ocean-atmospheredynamics.The coupling is realized through the air-sea interaction process that the atmosphere acts on theocean by wind stress and the ocean acts on the atmosphere with heating proportional to sea surface temperature(SST)anomaly.The equation is harotropic primitive one.Response experiments of coupling system arealso carried out SSTA in two categories of intensities.Compared with the results of AGCM simulation ex-periment in which only the dynamic change of air system is considered,it demonstrates that the air-seainteraction between the tropical ocean and the global atmosphere plays a very important role in the evolutionof climate system.The results of numerical simulation show that it is encouraging.  相似文献   

13.
This study examines mid-latitude climate variability in a model that couples turbulent oceanic and atmospheric flows through an active oceanic mixed layer. Intrinsic ocean dynamics of the inertial recirculation regions combines with nonlinear atmospheric sensitivity to sea-surface temperature (SST) anomalies to play a dominant role in the variability of the coupled system.Intrinsic low-frequency variability arises in the model atmosphere; when run in a stand-alone mode, it is characterized by irregular transitions between preferred high-latitude and less frequent low-latitude zonal-flow states. When the atmosphere is coupled to the ocean, the low-latitude state occurrences exhibit a statistically significant signal in a broad 5–15-year band. A similar signal is found in the time series of the model ocean's energy in this coupled simulation. Accompanying uncoupled ocean-only and atmosphere-only integrations are characterized by a decrease in the decadal-band variability, relative to the coupled integration; their spectra are indistinguishable from a red spectrum.The time scale of the coupled interdecadal oscillation is set by the nonlinear adjustment of the ocean's inertial recirculations to the high-latitude and low-latitude atmospheric forcing regimes. This adjustment involves, in turn, SST changes resulting in long-term ocean–atmosphere heat-flux anomalies that induce the atmospheric regime transitions.  相似文献   

14.
Chen  Lilan  Fang  Jiabei  Yang  Xiu-Qun 《Climate Dynamics》2020,55(9-10):2557-2577

While recent observational studies have shown the critical role of atmospheric transient eddy (TE) activities in midlatitude unstable air-sea interaction, there is still a lack of a theoretical framework characterizing such an interaction. In this study, an analytical coupled air-sea model with inclusion of the TE dynamical forcing is developed to investigate the role of such a forcing in midlatitude unstable air-sea interaction. In this model, the atmosphere is governed by a barotropic quasi-geostrophic potential vorticity equation forced by surface diabatic heating and TE vorticity forcing. The ocean is governed by a baroclinic Rossby wave equation driven by wind stress. Sea surface temperature (SST) is determined by mixing layer physics. Based on detailed observational analyses, a parameterized linear relationship between TE vorticity forcing and meridional second-order derivative of SST is proposed to close the equations. Analytical solutions of the coupled model show that the midlatitude air-sea interaction with atmospheric TE dynamical forcing can destabilize the oceanic Rossby wave within a wide range of wavelengths. For the most unstable growing mode, characteristic atmospheric streamfunction anomalies are nearly in phase with their oceanic counterparts and both have a northeastward phase shift relative to SST anomalies, as the observed. Although both surface diabatic heating and TE vorticity forcing can lead to unstable air-sea interaction, the latter has a dominant contribution to the unstable growth. Sensitivity analyses further show that the growth rate of the unstable coupled mode is also influenced by the background zonal wind and the air–sea coupling strength. Such an unstable air-sea interaction provides a key positive feedback mechanism for midlatitude coupled climate variabilities.

  相似文献   

15.
The intertropical convergence zone (ITCZ) in atmospheric general circulation models (coupled to slab ocean) shift southwards in response to northern extratropical cooling. Previous studies have demonstrated the utility of diagnosing the atmospheric energy fluxes in interpreting this teleconnection. This study investigates the nature of global energy flux changes in response to North Atlantic high latitude cooling applied to the Community Atmosphere Model version 3 coupled to a slab ocean, focusing on key local and remote feedbacks that collectively act to alter the energy budget and atmospheric energy transport. We also investigate the relative roles of tropical sea surface temperature (SST) and energy flux changes in the ITCZ response to North Atlantic cooling. Using a radiative kernel technique, we quantify the effects of key feedbacks—temperature, cloud and water vapor, to the top-of-the-atmosphere radiative flux changes. The results show only partial local energy flux compensation to the initial perturbation in the high latitudes, originating from the negative temperature feedback and opposed by positive shortwave albedo and longwave water vapor feedbacks. Thus, an increase in the atmospheric energy transport to the Northern extratropics is required to close the energy budget. The additional energy flux providing this increase comes from top-of-the-atmosphere radiative flux increase over the southern tropics, primarily from cloud, temperature and longwave water vapor feedbacks, and largely as a consequence of increased deep convection. It has been previously argued that the role of tropical SST changes was secondary to the role played by the atmospheric energy flux requirements in controlling the ITCZ shifts, proposing that the SST response is a result of the surface energy budget and not a driver of the precipitation response. Using a set of idealized simulations with the fixed tropical SSTs, we demonstrate that the ITCZ shifts are not possible without the tropical SST changes and suggest that the tropical SSTs are a more suitable driver of tropical precipitation shifts compared to the atmospheric energy fluxes. In our simulations, the ITCZ shifts are influenced mainly by the local (tropical) SST forcing, apparently independent of the actual high latitude energy demand.  相似文献   

16.
North Atlantic decadal regimes in a coupled GCM simulation   总被引:7,自引:0,他引:7  
 The non-stationarity of the North Atlantic atmosphere-ocean coupling is investigated utilizing a long time integration of a coupled atmosphere-ocean general circulation model (GCM) and a consistent atmospheric experiment forced by the climatological sea surface temperature (SST) of the coupled GCM. The temporal behavior of the North Atlantic Oscillation (NAO) is non-stationary with two different decadal regimes being identified: (a) phases with enhanced (active) low-frequency variability of the NAO index are characterized by regional modes with a baroclinic Pacific-North America (PNA) and a dominant barotropic North Atlantic pattern; (b) in phases with reduced (passive) low-frequency variability a global mode connects tropics and midlatitudes. The characteristic space scales are similar in the coupled and the consistent atmospheric experiment; the time scales of the atmospheric eigenmodes are modified by ocean dynamics. In the active (passive) phase the corresponding atmospheric mode is reinforced by the North Atlantic (tropical Pacific) SST. Received: 15 September 2000 / Accepted: 30 March 2001  相似文献   

17.
Interactions between the tropical and subtropical northern Pacific at decadal time scales are examined using uncoupled oceanic and atmospheric simulations. An atmospheric model is forced with observed Pacific sea surface temperatures (SST) decadal anomalies, computed as the difference between the 2000–2009 and the 1990–1999 period. The resulting pattern has negative SST anomalies at the equator, with a global pattern reminiscent of the Pacific decadal oscillation. The tropical SST anomalies are responsible for driving a weakening of the Hadley cell and atmospheric meridional heat transport. The atmosphere is then shown to produce a significant response in the subtropics, with wind-stress-curl anomalies having the opposite sign from the climatological mean, consistent with a weakening of the oceanic subtropical gyre (STG). A global ocean model is then forced with the decadal anomalies from the atmospheric model. In the North Pacific, the shallow subtropical cell (STC) spins down and the meridional heat transport is reduced, resulting in positive tropical SST anomalies. The final tropical response is reached after the first 10 years of the experiment, consistent with the Rossby-wave adjustment time for both the STG and the STC. The STC provides the connection between subtropical wind stress anomalies and tropical SSTs. In fact, targeted simulations show the importance of off-equatorial wind stress anomalies in driving the oceanic response, whereas anomalous tropical winds have no role in the SST signal reversal. We further explore the connection between STG, STC and tropical SST with the help of an idealized model. We argue that, in our models, tropical SST decadal variability stems from the forcing of the Pacific subtropical gyre through the atmospheric response to ENSO. The resulting Ekman pumping anomaly alters the STC and oceanic heat transport, providing a negative feedback on the SST. We thus suggest that extratropical atmospheric responses to tropical forcing have feedbacks onto the ocean dynamics that lead to a time-delayed response of the tropical oceans, giving rise to a possible mechanism for multidecadal ocean-atmosphere coupled variability.  相似文献   

18.
Observational analysis and purposely designed coupled atmosphere–ocean (AOGCM) and atmosphere-only (AGCM) model simulations are used together to investigate a new mechanism describing how spring Arctic sea ice impacts the East Asian summer monsoon (EASM). Consistent with previous studies, analysis of observational data from 1979 to 2009 show that spring Arctic sea ice is significantly linked to the EASM on inter-annual timescales. Results of a multivariate Empirical Orthogonal Function analysis reveal that sea surface temperature (SST) changes in the North Pacific play a mediating role for the inter-seasonal connection between spring Arctic sea ice and the EASM. Large-scale atmospheric circulation and precipitation changes are consistent with the SST changes. The mechanism found in the observational data is confirmed by the numerical experiments and can be described as follows: spring Arctic sea ice anomalies cause atmospheric circulation anomalies, which, in turn, cause SST anomalies in the North Pacific. The SST anomalies can persist into summer and then impact the summer monsoon circulation and precipitation over East Asia. The mediating role of SST changes is highlighted by the result that only the AOGCM, but not the AGCM, reproduces the observed sea ice-EASM linkage.  相似文献   

19.
钱永甫  王谦谦 《气象科学》1995,15(4):103-117
本文第一部分设计了一个海洋表层流模式,较成功地模拟出冬夏季海表层中的大尺度洋流和海面高度第二部分是月时间尺度的海气耦合试验,将海表层洋流模式和球带范围的大气模式相耦合,用数值试验讨论了洋流和海气耦合方式对模拟结果的影响。  相似文献   

20.
 The last 810 years of a control integration with the ECHAM1/LSG coupled model are used to clarify the nature of the ocean-atmosphere interactions at low frequencies in the North Atlantic and the North Pacific. To a first approximation, the atmosphere acts as a white noise forcing and the ocean responds as a passive integrator. The sea surface temperature (SST) variability primarily results from short time scale fluctuations in surface heat exchanges and Ekman currents, and the former also damp the SST anomalies after they are generated. The thermocline variability is primarily driven by Ekman pumping. Because the heat, momentum, and vorticity fluxes at the sea surface are correlated in space and time, the SST variability is directly linked to that in the ocean interior. The SST is also modulated by the wind-driven geostrophic fluctuations, resulting in persistent correlation with the thermocline changes and a slight low-frequency redness of the SST spectra. The main dynamics are similar in the two oceans, although in the North Pacific the SST variability is more strongly influenced by advection changes and the oceanic time scales are larger. A maximum covariance analysis based on singular value decomposition in lead and lag conditions indicates that some of the main modes of atmospheric variability in the two oceans are sustained by a very weak positive feedback between the atmosphere, SST, and the strength of the subtropical and subpolar gyres. In addition, in the North Atlantic the main surface pressure mode has a small quasi-oscillatory component at 6-year period, and advective resonance occurs for SST around 10-year period, both periods being also singled out by multichannel singular spectrum analysis. The ocean-atmosphere coupling is however much too weak to redden the tropospheric spectra or create anything more than tiny spectral peaks, so that the atmospheric and oceanic variability is dominated in both ocean sectors by the one-way interactions. Received: 2 April 1999 / Accepted: 14 October 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号