首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
We develop numerical methods for the simulation of heat and mass transfer in the ground. We use the mixed finite element method for the computation of both the liquid pressure and the temperature, so that the mass is locally and globally well conserved and the computation of the fluid velocity is very accurate. This is quite important since this fluid velocity appears in the first-order term of the equation for the temperature; in turn the partially hyperbolic character of the equation for the temperature is well taken into account since we use the modified method of characteristics for its discretization.  相似文献   

2.
三角网格有限元法声波与弹性波模拟频散分析   总被引:2,自引:2,他引:0       下载免费PDF全文
本文对声波与弹性波方程进行有限元法离散,构造有限元法频散关系的一般特征值问题,分析了时间离散格式为中心差分的三角网格有限元法声波与弹性波模拟的频散特性. 比较了三种质量矩阵即分布式质量矩阵、集中质量矩阵和混合质量矩阵对有限元法频散的影响;选取四种典型三角网格,分析了混合质量矩阵有限元(MFEM)频散的方向各向异性;数值频散、方向各向异性随插值阶数的增加逐渐减弱,当空间为三阶插值时,频散主要表现为随采样率的变化而几乎无明显方向各向异性, 其频散幅值也较小. 控制其他影响因素不变的情况下,研究了不同波速比介质中弹性波的数值频散. 最后给出了三角网格MFEM的数值耗散性.  相似文献   

3.
电导率各向异性的海洋电磁三维有限单元法正演   总被引:10,自引:8,他引:2       下载免费PDF全文
本文提出了一种基于非结构化网格的海洋电磁有限单元正演算法.为了回避场源奇异性,文中选用二次场算法,将背景电阻率设置为水平层状且各向异性,场源在水平层状各向异性介质中所激发的一次场通过汉克尔积分得到.基于Coulomb规范得到二次矢量位和标量位所满足的Maxwell方程组,通过Galerkin加权余量法形成大型稀疏有限元方程,采用不完全LU分解(ILU)预条件因子的quasi-minimum residual(QMR)迭代解法对有限元方程进行求解得到二次矢量位和标量位;进而,利用滑动平均方法得到二次矢量位和标量位在空间的导数,由此得到二次电磁场;通过一维模型对算法的可靠性进行验证,与此同时,针对实际复杂海洋电磁模型,比较有限元模拟结果与积分方程模拟结果,进一步验证算法精度.若干计算结果均表明,文中算法具有良好的通用性,适用于井中电磁、航空电磁,环境地球物理等非均匀且各向异性介质中的电磁感应基础研究.  相似文献   

4.
In this article, we discuss the application of multiscale finite element method (MsFEM) to groundwater flow in heterogeneous porous media. We investigate the ability of MsFEM in qualifying the flow uncertainty. Monte Carlo simulation is employed to implement the stochastic analysis, and MsFEM is used to avoid a full resolution to the spatial variable conductivity field. Large-scale flow with high variability is investigated by inspecting the single realization as well as the probability distribution functions of head and velocity. The numerical results show that the performance of MsFEM depends on the ratio between the correlation length and the coarse element size. An accurate prediction to the velocity requires a much lower ratio than the head. The MsFEM has different convergence rates for the head and the velocity, while the convergence rates do not deteriorate as the variance grows.  相似文献   

5.
Richards’ equation (RE) is commonly used to model flow in variably saturated porous media. However, its solution continues to be difficult for many conditions of practical interest. Among the various time discretizations applied to RE, the method of lines (MOL) has been used successfully to introduce robust, accurate, and efficient temporal approximations. At the same time, a mixed-hybrid finite element method combined with an adaptive, higher order time discretization has shown benefits over traditional, lower order temporal approximations for modeling single-phase groundwater flow in heterogeneous porous media. Here, we extend earlier work for single-phase flow and consider two mixed finite element methods that have been used previously to solve RE using lower order time discretizations with either fixed time steps or empirically based adaption. We formulate the two spatial discretizations within a MOL context for the pressure head form of RE as well as a fully mass-conservative version. We conduct several numerical experiments for both spatial discretizations with each formulation, and we compare the higher order, adaptive time discretization to a first-order approximation with formal error control and adaptive time step selection. Based on the numerical results, we evaluate the performance of the methods for robustness and efficiency.  相似文献   

6.
The multiscale finite element method is developed for solving the coupling problems of consolidation of heterogeneous saturated porous media under external loading conditions. Two sets of multiscale base functions are constructed, respectively, for the pressure field of fluid flow and the displacement field of solid skeleton. The coupling problems are then solved with a multiscale numerical procedure in space and time domain. The heterogeneities induced by permeabilities and mechanical parameters of the saturated porous media are both taken into account. Numerical experiments are carried out for different cases in comparison with the standard finite element method. The numerical results show that the coupling multiscale finite element method can be successfully used for solving the complicated coupling problems. It reduces greatly the computing effort in both memory and time for transient problems.  相似文献   

7.
In this paper, we describe an efficient approach for quantifying uncertainty in two-phase flow applications due to perturbations of the permeability in a multiscale heterogeneous porous medium. The method is based on the application of the multiscale finite element method within the framework of Monte Carlo simulation and an efficient preprocessing construction of the multiscale basis functions. The quantities of interest for our applications are the Darcy velocity and breakthrough time and we quantify their uncertainty by constructing the respective cumulative distribution functions. For the Darcy velocity we use the multiscale finite element method, but due to lack of conservation, we apply the multiscale finite volume element method as an alternative for use with the two-phase flow problem. We provide a number of numerical examples to illustrate the performance of the method.  相似文献   

8.
In this paper, we deduced the corresponding first-order velocity–stress equation for curvilinear coordinates from the first-order velocity–stress equation based on the modified Biot/squirt model for a two-dimensional two-phase medium. The equations are then numerically solved by an optimized high-order non-staggered finite difference scheme, that is, the dispersion relation preserving/optimization MacCormack scheme. To implement undulating free-surface topography, we derive an analytical relationship between the derivatives of the particle velocity components and use the compact finite-difference scheme plus a traction-image method. In the undulating free surface and the undulating subsurface interface of two-phase medium, the complex reflected wave and transmitted wave can be clearly recognized in the numerical simulation results. The simulation results show that the curvilinear-grid finite-difference method, which uses a body-conforming grid to describe the undulating surface, can accurately reduce the numerical scattering effect of seismic wave propagation caused by the use of ladder-shaped grid to fit the surfaces when undulating topography is present in a two-phase isotropic medium.  相似文献   

9.
地电磁场的直接求解法存在伪解现象,且电磁场分量在界面上的不连续性与节点型有限元的基本要求矛盾. 本文将Coulomb 规范下磁矢量势-电标量势与自适应有限元相结合,提出了地球物理电磁场计算的快速、高精度方法. 首先从地电磁场一般边值问题出发,给出了Coulomb 规范下磁矢量势-电标量势的公式系统,分析了求解域内势的连续性. 采用Galerkin 加权余值法推导出积分弱解形式和Delaunay非结构化四面体单元时Hierarchal 基函数的有限元方程. 基于超收敛恢复技术,提出了适用于电磁场的后验误差估计方法,阐述了地电磁场自适应计算的策略及迭代算法,分析了计算时间消耗和误差收敛性质,表明本文方法可以用最优的计算资源得到呈拟指数收敛到准确解的数值结果,从而为后续的数值计算奠定了理论基础.  相似文献   

10.
We present an efficient numerical method for solving stochastic porous media flow problems. Single-phase flow with a random conductivity field is considered in a standard first-order perturbation expansion framework. The numerical scheme, based on finite element techniques, is computationally more efficient than traditional approaches because one can work with a much coarser finite element mesh. This is achieved by avoiding the common finite element representation of the conductivity field. Computations with the random conductivity field only arise in integrals of the log conductivity covariance function. The method is demonstrated in several two- and three-dimensional flow situations and compared to analytical solutions and Monte Carlo simulations. Provided that the integrals involving the covariance of the log conductivity are computed by higher-order Gaussian quadrature rules, excellent results can be obtained with characteristic element sizes equal to about five correlation lengths of the log conductivity field. Investigations of the validity of the proposed first-order method are performed by comparing nonlinear Monte Carlo results with linear solutions. In box-shaped domains the log conductivity standard deviation σY may be as large as 1.5, while the head variance is considerably influenced by nonlinear effects as σY approaches unity in more general domains.  相似文献   

11.
The dynamic inhomogeneous finite element method is studied for use in the transient analysis of one dimensional inhomogeneous media. The general formula of the inhomogeneous consistent mass matrix is established based on the shape function. In order to research the advantages of this method, it is compared with the general finite element method. A linear bar element is chosen for the discretization tests of material parameters with two fictitious distributions. And, a numerical example is solved to observe the differences in the results between these two methods. Some characteristics of the dynamic inhomogeneous finite element method that demonstrate its advantages are obtained through comparison with the general finite element method. It is found that the method can be used to solve elastic wave motion problems with a large element scale and a large number of iteration steps.  相似文献   

12.
Steel well casings in or near a hydrocarbon reservoir can be used as source electrodes in time‐lapse monitoring using grounded line electromagnetic methods. A requisite component of carrying out such monitoring is the capability to numerically model the electromagnetic response of a set of source electrodes of finite length. We present a modelling algorithm using the finite‐element method for calculating the electromagnetic response of a three‐dimensional conductivity model excited using a vertical steel‐cased borehole as a source. The method is based on a combination of the method of moments and the Coulomb‐gauged primary–secondary potential formulation. Using the method of moments, we obtain the primary field in a half‐space due to an energized vertical steel casing by dividing the casing into a set of segments, each assumed to carry a piecewise constant alternating current density. The primary field is then substituted into the primary–secondary potential finite‐element formulation of the three‐dimensional problem to obtain the secondary field. To validate the algorithm, we compare our numerical results with: (i) the analytical solution for an infinite length casing in a whole space, excited by a line source, and (ii) a three‐layered Earth model without a casing. The agreement between the numerical and analytical solutions demonstrates the effectiveness of our algorithm. As an illustration, we also present the time‐lapse electromagnetic response of a synthetic model representing a gas reservoir undergoing water flooding.  相似文献   

13.
本文实现了一种面向目标自适应海洋可控源电磁三维矢量有限元方法.为满足三维复杂电性结构模拟的需求,网格剖分采用非结构化六面体.在组装刚度矩阵之后,形成的大型复数线性方程组分解为等价的实数形式,利用带预条件的广义最小残差法进行求解.在获得微分方程的解之后,为提高解的准确性,通过面向目标的自适应误差估计来指示网格细化,重点加密能使观测点数值模拟精度提高的网格.对于大规模三维数据,为了使模型空间的并行计算达到均衡负载的效果,我们使用METIS函数库来进行网格计算任务量的划分.最后,通过对比一维解析解与三维自适应矢量有限元计算结果,验证了程序的正确性;通过自适应过程中误差指示子的分布,验证了面向目标自适应的有效性;通过对三维复杂模型进行均衡负载下的并行计算,测试了程序的可扩展性.  相似文献   

14.
Contrast in capillary pressure of heterogeneous permeable media can have a significant effect on the flow path in two-phase immiscible flow. Very little work has appeared on the subject of capillary heterogeneity despite the fact that in certain cases it may be as important as permeability heterogeneity. The discontinuity in saturation as a result of capillary continuity, and in some cases capillary discontinuity may arise from contrast in capillary pressure functions in heterogeneous permeable media leading to complications in numerical modeling. There are also other challenges for accurate numerical modeling due to distorted unstructured grids because of the grid orientation and numerical dispersion effects. Limited attempts have been made in the literature to assess the accuracy of fluid flow modeling in heterogeneous permeable media with capillarity heterogeneity. The basic mixed finite element (MFE) framework is a superior method for accurate flux calculation in heterogeneous media in comparison to the conventional finite difference and finite volume approaches. However, a deficiency in the MFE from the direct use of fractional flow formulation has been recognized lately in application to flow in permeable media with capillary heterogeneity. In this work, we propose a new consistent formulation in 3D in which the total velocity is expressed in terms of the wetting-phase potential gradient and the capillary potential gradient. In our formulation, the coefficient of the wetting potential gradient is in terms of the total mobility which is smoother than the wetting mobility. We combine the MFE and discontinuous Galerkin (DG) methods to solve the pressure equation and the saturation equation, respectively. Our numerical model is verified with 1D analytical solutions in homogeneous and heterogeneous media. We also present 2D examples to demonstrate the significance of capillary heterogeneity in flow, and a 3D example to demonstrate the negligible effect of distorted meshes on the numerical solution in our proposed algorithm.  相似文献   

15.
We present a new finite element (FE) method for magnetotelluric modelling of three-dimensional conductivity structures. Maxwell's equations are treated as a system of first-order partial differential equations for the secondary fields. Absorbing boundary conditions are introduced, minimizing undesired boundary effects and allowing the use of small computational domains. The numerical algorithm presented here is an iterative, domain decomposition procedure employing a nonconforming FE space. It does not use global matrices, therefore allowing the modellization of large and complicated structures. The algorithm is naturally parallellizable, and we show results obtained in the IBM SP2 parallel supercomputer at Purdue University. The accuracy of the numerical method is verified by checking the computed solutions with the results of COMMEMI, the international project on the comparison of modelling methods for electromagnetic induction.  相似文献   

16.
Various numerical methods have been used in the literature to simulate single and multiphase flow in fractured media. A promising approach is the use of the discrete-fracture model where the fracture entities in the permeable media are described explicitly in the computational grid. In this work, we present a critical review of the main conventional methods for multiphase flow in fractured media including the finite difference (FD), finite volume (FV), and finite element (FE) methods, that are coupled with the discrete-fracture model. All the conventional methods have inherent limitations in accuracy and applications. The FD method, for example, is restricted to horizontal and vertical fractures. The accuracy of the vertex-centered FV method depends on the size of the matrix gridcells next to the fractures; for an acceptable accuracy the matrix gridcells next to the fractures should be small. The FE method cannot describe properly the saturation discontinuity at the matrix–fracture interface. In this work, we introduce a new approach that is free from the limitations of the conventional methods. Our proposed approach is applicable in 2D and 3D unstructured griddings with low mesh orientation effect; it captures the saturation discontinuity from the contrast in capillary pressure between the rock matrix and fractures. The matrix–fracture and fracture–fracture fluxes are calculated based on powerful features of the mixed finite element (MFE) method which provides, in addition to the gridcell pressures, the pressures at the gridcell interfaces and can readily model the pressure discontinuities at impermeable faults in a simple way. To reduce the numerical dispersion, we use the discontinuous Galerkin (DG) method to approximate the saturation equation. We take advantage of a hybrid time scheme to alleviate the restrictions on the size of the time step in the fracture network. Several numerical examples in 2D and 3D demonstrate the robustness of the proposed model. Results show the significance of capillary pressure and orders of magnitude increase in computational speed compared to previous works.  相似文献   

17.
Existing numerical methods for the solution of the diffusion-convection equation are unsatisfactory for convection dominated flow problems. A new finite element method incorporating the method of characteristics for the solution of the diffusion-convection equation with constant coefficients in one spatial dimensions is derived. This method is capable of solving diffusion-convection equation without any of the difficulties encountered in the existing numerical methods for the whole spectrum of dispersion from pure diffusion, through mixed dispersion, to pure convection. Several examples for the one-dimensional case are solved and results are compared with the exact solutions. The generalization of the method to variable coefficients and to the diffusion-convection equation in two space dimensions are discussed.  相似文献   

18.
基于三角网格的有限差分法叠后逆时偏移   总被引:1,自引:1,他引:0  
Compared with other migration methods, reverse-time migration is based on a precise wave equation, not an approximation, and performs extrapolation in the depth domain rather than the time domain. It is highly accurate and not affected by strong subsurface structure complexity and horizontal velocity variations. The difference method based on triangular grids maintains the simplicity of the difference method and the precision of the finite element method. It can be used directly for forward modeling on models with complex top surfaces and migration without statics preprocessing. We apply a finite difference method based on triangular grids for post-stack reverse-time migration for the first time. Tests on model data verify that the combination of the two methods can achieve near-perfect results in application.  相似文献   

19.
陈玉香  杜建国  刘红 《地震》2007,27(4):99-109
有限元方法的基本思想是将连续的求解区域离散为一组有限个、 且按一定方式相互联结在一起的单元的组合体。 有限元方法是目前应用最为广泛的数值模拟方法, 由于能够将复杂介质的力学本构关系及边界条件问题转化成为常规问题的计算程序, 所以越来越多的地震学者将其应用于地震成因与前兆机理研究中。 该文着重介绍了有限元数值分析方法及其模拟在地震孕育过程与前兆机理研究中的应用进展, 并提出开展小尺度规模如岩石中矿物颗粒之间的力学行为的有限元模拟研究等几点建议。  相似文献   

20.
The development of a displacement finite element formulation and its application to convective transport problems is presented. The formulation is based on the introduction of a generalized quantity defined as transport displacement. The governing equation is expressed in terms of this quantity and by using generalized coordinates a variational form of the governing equation is obtained. This equation may be solved by any numerical method, though it is of particular interest for application of the finite element method. Two finite element models are derived for the solution of convection-diffusion boundary value problems. The performance of the two element models is discussed and numerical results are given for different cases of convection and diffusion with two types of boundary conditions. The numerical results obtained show not only the efficiency of the numerical models in handling pure convection, pure diffusion and mixed convection-diffusion problems, but also good stability and accuracy. The applications of the developed numerical models are not limited to diffusion-convection problems but can also be applied to other types of problems such as mass transfer, hydrodynamics and wave propagation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号