首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Whole rock major and trace element data from granitoids adjacent to the Kalahari Craton–Mozambique–Maud Belt boundary are described. The data from ~1140 Ma old granodioritic and ~1110 Ma old granitic bodies in the Mozambique Belt show that they are typical of calc-alkaline and A-type granitoids respectively. Radiogenic Rb/Sr and Sm/Nd isotope data from the two granitoid bodies suggest significant older crustal contributions during their genesis. The granodioritic gneisses show TDM model ages of ~2100–3500 Ma whereas megacrystic granitic gneisses have TDM model ages of ~1600–3100 Ma. Granite from the Archaean-age Kalahari Craton has TDM model ages of ~3000–3500 Ma.The data from Mozambique are compared with whole rock major and trace element chemistry and U/Pb zircon SHRIMP data from the Maud Belt in western Dronning Maud Land. These show that ~1140 Ma old granodioritic gneisses in Sverdrupfjella and Kirwanveggan have similar ages and chemical compositions to similar rocks in central Mozambique. Radiogenic isotope characteristics of the gneisses from central Mozambique and Sverdrupfjella are similar and suggest older crustal contributions in contrast to the juvenile nature of the gneisses from Kirwanveggan.Similarly, ~1090 Ma old granitic gneisses from central Mozambique, Sverdrupfjella and Kirwanveggan have similar ages and A-type chemical compositions. In contrast the radiogenic isotope compositions from Kirwanveggan are juvenile whereas those from central Mozambique show a significant older crustal contribution.The whole rock radiogenic isotope data can be interpreted to suggest that the Mesoproterozoic Mozambique Belt rocks were generated by partial melting which probably involved mixing of Archaean/Paleoproterozoic crust and younger Mesoproterozoic juvenile magma at ~1100 Ma and suggest that the Kalahari Craton probably extends eastwards at depths for more than 30 km from its exposure at surface.The data support correlations between the Mozambique Belt and the Maud Belt in Antarctica in general and more specifically show similarities between the Kalahari Craton boundary and the Mozambique–Maud Belt in lithologies immediately adjacent to that boundary.Two episodes of anatectic migmatisation are recognized in rocks from the Mozambique Belt in central Mozambique. These show an earlier migmatitic vein phase oriented parallel to the planar foliation in the granitic and tonalitic gneisses and a later discordant vein phase which is oriented parallel to localized but intense N–S oriented shearing along the Kalahari Craton/Mozambique Belt boundary zone. SHRIMP zircon data from the younger migmatitic vein phase suggests a crystallization age of 997 ± 4 Ma. Small numbers of inherited zircons have ages of ~2700 Ma and ~1100–1200 Ma. Younger discordant analyses suggesting metamorphic disturbance between ~400 Ma and 550 Ma are seen. The data imply the high strain along the eastern margin of the Kalahari Craton in the Manica area, occurred at ~1000 Ma and not at ~450 Ma as was previously thought. The data suggest the Pan African deformation and metamorphism in the area involved minor reworking. The undeformed to weakly deformed Tchinadzandze Granodiorite intruded into the Kalahari Craton has an age of 2617 ± 16 Ma.  相似文献   

2.
《Precambrian Research》2004,128(1-2):105-142
The Kanowna Belle Gold Mine is a Late Archaean orogenic lode-gold deposit hosted by felsic volcaniclastic and intrusive rocks (porphyries) of the Kalgoorlie Terrane, Western Australia. Rare gold occurs in fragments of veins and alteration that form clasts within the Black Flag Group volcaniclastic rocks at the Kanowna Belle mine, indicating that epithermal gold mineralisation accompanied Black Flag Group volcanism. The SHRIMP U–Pb zircon age of the volcaniclastic unit is 2668±9 Ma, and xenocrystic zircons with ∼2.68, 2.70 and 2.71 Ga age groupings are common. The Black Flag Group rocks are faulted by a D1 thrust, and ∼2670 Ma is thus an older limit for regional D1 deformation. Although SHRIMP U–Pb zircon ages of felsic porphyries commonly give the best constraints on the timing of deformation and structurally controlled gold mineralisation, the data are complex and dates from single samples can be ambiguous. Four Porphyry samples from the Kanowna Belle Gold Mine were analysed. Backscattered electron and cathodoluminescence imaging show that most magmatic zircon in the porphyries is either high-U and metamict, or restricted to rims on older xenocrysts that are too narrow to be dated by SHRIMP. Some porphyries appear to have been saturated with zircon at source and contain only xenocrystic zircons. Zircons that are interpreted to be magmatic in a sample of the mineralised Kanowna Belle Porphyry gives a mean age of 2655±6 Ma. The Kanowna Belle Porphyry is cross cut by regional D2 fabrics and ∼2655 Ma is thus the maximum age for regional D2 deformation. This is a maximum age for epigenetic lode-gold mineralisation. The age of resetting of high-U zircon grains (2.63 Ga) and the age of ore-related Pb–Pb galenas (2.63 Ga) serves as an approximate date for lode-gold mineralisation. If the complex zircon history of the felsic porphyries at Kanowna Belle is typical of this suite throughout the Eastern Goldfields Province, it is clear that existing single zircon dates from this Province require reevaluation, backed up by careful backscattered and cathodoluminescence imaging and textural studies.  相似文献   

3.
The East-Ujimqin complex, located north of the Erenhot–Hegenshan fault, North China, is composed of mafic–ultramafic and granitic rocks including peridotite, gabbro, alkali granite, and syenite. We investigated the tectonic setting, age, and anorogenic characteristics of the Xing’an–Mongolian Orogenic Belt (XMOB) through field investigation and microscopic and geochemical analyses of samples from the East-Ujimqin complex and LA-MC-ICP-MS zircon U–Pb dating of gabbro and alkali granite. Petrographic and geochemical studies of the complex indicate that this multiphase plutonic suite developed through a combination of fractional crystallization, assimilation processes, and magma mixing. The mafic–ultramafic rocks are alkaline and have within-plate geochemical characteristics, indicating anorogenic magmatism in an extensional setting and derivation from a mantle source. The mafic–ultramafic magmas triggered partial melting of the crust and generated the granitic rocks. The granitic rocks are alkali and metaluminous and have high Fe/(Fe + Mg) characteristics, all of which are common features of within-plate plutons. Zircon U–Pb geochronological dating of two samples of gabbro and alkali granite yielded ages of 280.8 ± 1.5 and 276.4 ± 0.7 Ma, placing them within the Early Permian. The zircon Hf isotopic data give inhomogeneous εHf(t) values of 8.2–14.7 for gabbroic zircons and extraordinary high εHf(t) values (8.9–12.5) for the alkali granite in magmatic zircons. Thus, we consider the East-Ujimqin mafic–ultramafic and granitic rocks to have been formed in an extensional tectonic setting caused by asthenospheric upwelling and lithospheric thinning. The sources of mafic–ultramafic and granitic rocks could be depleted garnet lherzolite mantle and juvenile continental lower crust, respectively. All the above indicate that an anorogenic magma event may have occurred in part of the XMOB during 280–276 Ma.  相似文献   

4.
The Paleoproterozoic Jiao-Liao-Ji Belt lies in the Eastern Block of the North China Craton, with its southern segment extending across the Bohai Sea into the Jiaobei massif. High-pressure pelitic and mafic granulites have been recently recognized in the Paleoproterozoic Jingshan Group (Jiaobei massif). New SHRIMP U–Th–Pb geochronology combined with cathodoluminescence (CL) imaging of zircon has been applied to the determination of the timing of the metamorphism of the high-temperature and high-pressure granulites and associated gneisses and marbles. Metamorphic zircons in these high-pressure granulites, gneisses and marbles occur as either single grains or overgrowth (or recrystallization) rims surrounding and truncating oscillatory-zoned magmatic zircon cores. Metamorphic zircons are all characterized by nebulous zoning or being structureless, with high luminescence and relatively low Th/U values. Metamorphic zircons from two high-pressure mafic granulites yielded 207Pb/206Pb ages of 1956 ± 41 Ma and 1884 ± 24 Ma. One metamorphic zircon from a garnet–sillimanite gneiss also gave an apparent 207Pb/206Pb age of 1939 ± 15 Ma. These results are consistent with interval of ages of c. 1.93–1.90 Ga already obtained by previous studies for the North and South Liaohe Groups and the Laoling Group in the northern segment of the Jiao-Liao-Ji Belt. Metamorphic zircons from a high-pressure pelitic granulite and two pelitic gneisses yielded weighted mean 207Pb/206Pb ages of 1837 ± 8 Ma, 1821 ± 8 Ma and 1836 ± 8 Ma respectively. Two diopside–olivine–phlogopite marbles yielded weighted mean 207Pb/206Pb ages of 1817 ± 9 Ma and 1790 ± 6 Ma. These Paleoproterozoic metamorphic ages are largely in accordance with metamorphic ages of c. 1.85 Ga produced from the Ji'an Group in the northern segment of the Jiao-Liao-Ji Belt and c. 1.86–1.80 Ga obtained for the high-pressure pelitic granulites from the Jingshan Group in the southern segment. As this metamorphic event was coeval with the emplacement of A-type granites in the Jiao-Liao-Ji Belt and its adjacent areas, it is interpreted as having resulted from a post-orogenic or anorogenic extensional event.  相似文献   

5.
Central North Sudan, west of the Keraf suture, is part of the Saharan Metacraton whose crystalline basement encompasses migmatite gneisses and granites. Granites intrude migmatites in form of small plutons, veins, lenses and pods, indicating a complex chronology. This study, based on whole rock element concentrations, isotope geochemistry and single mineral geochronology, is aimed to unravel the petrogenesis of these basement rocks.Whole rock geochemistry indicates an I-type potassic calc-alkaline meta- to peraluminous composition. Granite zircon U–Pb and Pb–Pb evaporation analyses yield an identical age range (597 ± 25–602 ± 3.5 Ma). Similar ages (597 ± 8.6–603.8 ± 2 Ma) are obtained for the migmatite gneisses. Titanite U–Pb ages are also similar in both rock types, but are younger or closely conform with zircon ages. Biotite Rb/Sr ages are younger and identical (566 ± 11–570 ± 17 Ma). These age data suggest coeval granitization and migmatization during the Pan-African period and somewhat later cooling of the central North Sudan basement. Older zircon U–Pb ages, ranging from 613 to 1322 Ma, are thought to be signatures of inheritance, while younger ones (336–594 Ma) suggest radiogenic Pb loss. Sr initial ratios (0.70257–0.72102) and εNd values (−2.3 to −8.8), calculated for the zircon crystallization age of ∼600 Ma indicate a crustal signature. Coupled with Nd model ages of 1460–1990 Ma, isotope data indicate that the central North Sudan basement is recycled Middle to Late Proterozoic continental crust.  相似文献   

6.
《Gondwana Research》2015,28(4):1381-1391
A novel approach of thermally annealing and sequentially partially dissolving single zircon grains prior to high-precision Isotope Dilution Thermal Ionization Mass Spectrometry (ID-TIMS) is presented. This technique is applied to complex zircon from the Precambrian Lewisian Gneiss Complex of Scotland. Up to six partial dissolutions were conducted at incrementally higher temperatures and analysed at each successive step. ID-TIMS analyses reveal the portions of zircon affected by the lowest temperature partial dissolution step have suffered Pb-loss. Successively higher temperature partial dissolution steps yield a series of analyses from the younger domains, followed by mixing trajectories with older components, presumably from the inner domains. Specifically, for a partially retrogressed granulite tonalite gneiss from the central block (Assynt), high-grade metamorphic zircon ages of c. 2500 Ma and c. 2700 Ma are resolved with a protolith age of c. 2860 Ma also recognised. This unequivocally demonstrates two separate episodes of high-grade metamorphism affected rocks from this region. The c. 2700 Ma age provides a minimum age constraint on the highest pressure event known from Archean crustal rocks. Using this technique of pseudo-spatial resolution coupled with high-precision analysis it is possible to recognise discrete Pb-loss and multiple stages of zircon growth or isotopic resetting within single grains to within 0.1–0.2% error (2σ) on individual 207Pb/206Pb ages. This method has relevance to U–Pb zircon geochronology where conventional micro-beam techniques are unable to resolve between separate ages within single grains.  相似文献   

7.
《Gondwana Research》2015,28(4):1392-1406
The Ider Complex of the Tarbagatai Block in northwestern Mongolia is part of a Precambrian microcontinental terrane in the Central Asian Orogen Belt and has experienced a polymetamorphic tectono-metamorphic evolution. We have investigated an enderbitic gneiss, derived from a quartz diorite and a charnockite, derived from a leucogranite, and zircon SHRIMP data reveal late Archaean protolith ages of 2520–2546 Ma for these rocks. Metamorphic overgrowth on these zircons as well as newly-formed metamorphic zircons document a high-temperature metamorphic event (T = 930–950 °C) at about 1855–1860 Ma. Nd whole-rock isotopic systematics show these and other gneisses of the Ider Complex straddling the CHUR-line in a Nd isotope evolution diagram, suggesting both crustal reworking and input of some juvenile material, with Nd model ages ranging between ca. 2.5 and 3.1 Ga. Hf-in-zircon isotopic data provide a similar pattern and also yielded Archaean Hf crustal model ages. The metamorphic zircons seem to have inherited their Hf isotopic composition from the igneous grains, suggesting a complex process of dissolution, transportation, and re-precipitation involving a fluid phase during high-grade metamorphism. The zircon age patterns do not make it possible to unambiguously assign the Tarbagatai Block to any of the cratons bordering the Central Asian Orogenic Belt, since age peaks at ca. 2520–2550 and ca. 1860 Ma are common in the Siberian, North China and Tarim cratons.  相似文献   

8.
South-East Greenland forms part of the North Atlantic Craton and is characterized by migmatitic orthogneisses, narrow bands of mafic granulite, ultramafic and possible meta-sedimentary rocks, and alkaline-carbonatitic intrusive rocks. Mafic granulite, meta-sedimentary and ultramafic rocks form the basement for the emplacement of granitic intrusions at ca. 2865 Ma that lasted episodically until ca. 2790 Ma and continuously during 2750–2700 Ma. The area is structurally complex with evidence of at least seven deformation events including reclined and mushroom-like fold interference patterns. An older (> 2790 Ma) foliation formed in granitic rocks and the basement during the Timmiarmiut Orogeny (DT). Deformation associated with the ca. 2790–2700 Ma Skjoldungen Orogeny folded this early foliation, and is associated with a penetrative foliation that is refolded progressively in a northeast–southwest oriented stress field. The orientation of the stress field progressively rotated into a northnorthwest–southsoutheast orientation during the last stages of the orogeny. The orogeny is also characterized by syn-deformational anatexis at granulite-facies (at approximately 800 °C and 5–8 kbar, ca. 2790–2740 Ma), which decreased to the amphibolite-facies at ca. 2730 Ma.The late- to post-tectonic granite and alkaline rocks assigned to the Skjoldungen Alkaline Province intruded the central-northern part around 2710 Ma. This was followed by north–south extensional deformation during the Singertat Stage forming discrete shear-zones at greenschist-facies grades, which is coeval with the emplacement of pegmatite, ijolite, and carbonatite emplacement during ca. 2680–2650 Ma.Similar lithology and tectonic processes in the Tasiusarsuaq Terrane of southern West Greenland and the Lewisian Complex in Scotland suggest a possibly large Archaean terrane at that time, which, taking the present size, at least covered around 500–600 km in an east–west direction and approximately 200 km in a north–south direction.  相似文献   

9.
In the Panxi region of the Late Permian (~ 260 Ma) Emeishan large igneous province (ELIP) there is a bimodal assemblage of mafic and felsic plutonic rocks. Most Emeishan granitic rocks were derived by differentiation of basaltic magmas (i.e. mantle-derived) or by mixing between crustal melts and primary basaltic magmas (i.e. hybrid). The Yingpanliangzi granitic pluton within the city of Panzhihua intrudes Sinian (~ 600 Ma) marbles and is unlike the mantle-derived or hybrid granitic rocks. The SHRIMP zircon U–Pb ages of the Yingpanliangzi pluton range from 259 ± 8 Ma to 882 ± 22 Ma. Younger ages are found on the zircon rims whereas older ages are found within the cores. Field relationships and petrography indicate that the Yingpanliangzi pluton must be < 600 Ma, therefore the older zircons are interpreted to represent the protolith age whereas the younger analyses represent zircon re-crystallization during emplacement. The Yingpanliangzi granites are metaluminous and have negative Ta–NbPM anomalies, low εNd(260 Ma) values (? 3.9 to ? 4.4), and high ISr (0.71074 to 0.71507) consistent with a crustal origin. The recognition of a crustally-derived pluton along with mantle-derived and mantle–crust hybrid plutons within the Panxi region of the ELIP is evidence for a complete spectrum of sources. As a consequence, the types of Panxi granitoids can be distinguished according to their ASI, Eu/Eu*, εNd(T), εHf(T), TZr(°C) and Nb–TaPM values. The diverse granitic magmatism during the evolution of the ELIP from ~ 260 Ma to ~ 252 Ma demonstrates the complexity of crustal growth associated with LIPs.  相似文献   

10.
The coastal Changle-Nan’ao tectonic zone of SE China contains important geological records of the Late Mesozoic orogeny and post-orogenic extension in this part of the Asian continent. The folded and metamorphosed T3–J1 sedimentary rocks are unconformably overlain by Early Cretaceous volcanic rocks or occur as amphibolite facies enclaves in late Jurassic to early Cretaceous gneissic granites. Moreover, all the metamorphic and/or deformed rocks are intruded by Cretaceous fine-grained granitic plutons or dykes. In order to understand the orogenic development, we undertook a comprehensive zircon U–Pb geochronology on a variety of rock types, including paragneiss, migmatitic gneiss, gneissic granite, leucogranite, and fine-grained granitoids. Zircon U–Pb dating on gneissic granites, migmatitic gneisses, and leucogranite dyke yielded a similar age range of 147–135 Ma. Meanwhile, protoliths of some gneissic granites and migmatitic gneisses are found to be late Jurassic magmatic rocks (ca. 165–150 Ma). The little deformed and unmetamorphosed Cretaceous plutons or dykes were dated at 132–117 Ma. These new age data indicate that the orogeny lasted from late Jurassic (ca. 165 Ma) to early Cretaceous (ca. 135 Ma). The tectonic transition from the syn-kinematic magmatism and migmatization (147–136 Ma) to the post-kinematic plutonism (132–117 Ma) occurred at 136–132 Ma.  相似文献   

11.
The geodynamic evolution of the early Paleozoic ultrahigh-pressure metamorphic belt in North Qaidam, western China, is controversial due to ambiguous interpretations concerning the nature and ages of the eclogitic protoliths. Within this framework, we present new LA-ICP-MS U–Pb zircon ages from eclogites and their country rock gneisses from the Xitieshan terrane, located in the central part of the North Qaidam UHP metamorphic belt. Xitieshan terrane contains clearly different protolith characteristics of eclogites and as such provides a natural laboratory to investigate the geodynamic evolution of the North Qaidam UHP metamorphic terrane. LA-ICP-MS U–Pb zircon dating of three phengite-bearing eclogites and two country rock gneiss samples from the Xitieshan terrane yielded 424–427 Ma and 917–920 Ma ages, respectively. The age of 424–427 Ma from eclogite probably reflects continental lithosphere subduction post-dating oceanic lithosphere subduction at ~ 440–460 Ma. The 0.91–0.92 Ga metamorphic ages from gneiss and associated metamorphic mineral assemblages are interpreted as evidence for the occurrence of a Grenville-age orogeny in the North Qaidam UHPM belt. Using internal microstructure, geochemistry and U–Pb ages of zircon in this study, combined with the petrological and geochemical investigations on the eclogites of previous literature’s data, three types of eclogitic protoliths are identified in the Xitieshan terrane i.e. 1) Subducted early Paleozoic oceanic crust (440–460 Ma), 2) Neoproterozoic oceanic crust material emplaced onto micro-continental fragments ahead of the main, early Paleozoic, collision event (440–420 Ma) and 3) Neoproterozoic mafic dikes intruded in continental fragments (rifted away from the former supercontinent Rodinia). These results demonstrate that the basement rocks of the North Qaidam terrane formed part of the former supercontinent Rodinia, attached to the Yangtze Craton and/or the Qinling microcontinent, and recorded a complex tectono-metamorphic evolution that involved Neoproterozoic and Early Paleozoic orogenies.  相似文献   

12.
《Gondwana Research》2014,25(1):338-357
Four isolated metamorphic complexes located within post-collisional granitoids occupying up to 70% of the total area, were distinguished in Sinai (Egypt) and Elat area (southern Israel), the northernmost part of the Arabian–Nubian Shield. The metamorphic rocks include metasediments, felsic and mafic metavolcanic rocks intruded by granitic, dioritic, and gabbroic plutons, all subjected to penetrative deformation.We present new SIMS U–Pb dating of zircons from 13 rock units comprising metasediments, volcanic rocks, gneisses and plutons from three metamorphic complexes (Sa'al, Feiran–Solaf, and Kid). In addition we present a SIMS U–Pb titanite age of a granitic gneiss previously dated using zircon. On the basis of the new and published U–Pb data, three successive Meso- to Neoproterozoic island arcs formed during a period of ca. 500 My are recognized. The Sa'al arc (represented by the oldest arc rocks in the ANS) evolved from 1.03 to 0.93 Ga (100 My); the Feiran–Elat arc developed from ca. 870 to 740 Ma (130 My), and the Kid arc formed from ca. 640 to 620 Ma (20 My). Evidence for an older, ca. 1.1 Ga, pre-Sa'al island arc was established from the zircon xenocryst population, though no exposures of rocks of this age were found. In the Sa'al and Kid arcs both volcanic and sedimentary rocks are preserved, whereas in the Elat–Feiran arc volcanic rocks are missing. We suggest that at ~ 700 Ma the Elat−Feiran arc was subjected to rifting that resulted in separating of the Qenaia block and its movement to the SE.  相似文献   

13.
The Balkhash Metallogenic Belt (BMB) in Kazakhstan, Central Asia, with the occurrence of the super-large Kounrad and Aktogai, the large Borly porphyry Cu–Mo deposits, and the large Sayak skarn polymetallic ore-field, is one of the central regions of the Paleozoic Central Asian metallogenic domain and orogenic belt. In this study, newly obtained SHRIMP zircon U–Pb ages of nine samples and 40Ar/39Ar ages of six mineral samples (inclding hornblende, biotite and K-feldspar) give more detailed constraints on the timing of the granitic intrusions and their metallogeny. Porphyritic monzonite granite and tonalite porphyry from the Kounrad deposit yield U–Pb zircon SHRIMP ages of 327.3 ± 2.1 Ma and 308.7 ± 2.2 Ma, respectively. Quartz diorite and porphyritic granodiorite from the Aktogai deposit yield U–Pb SHRIMP ages of 335.7 ± 1.3 Ma and 327.5 ± 1.9 Ma, respectively. Porphyritic granodiorite and granodiorite from the Borly deposit yield U–Pb SHRIMP ages of 316.3 ± 0.8 Ma and 305 ± 3 Ma, respectively. Diorite, granodiorite, and monzonite from the Sayak ore-field yield U–Pb SHRIMP ages of 335 ± 2 Ma, 308 ± 10 Ma, and 297 ± 3 Ma, respectively. Hornblende, biotite, and K-feldspar from the Aktogai deposit yield 40Ar/39Ar cooling ages of 310.6 Ma, 271.5 Ma, and 274.9 Ma, respectively. Hornblende, biotite, and K-feldspar from the Sayak ore-field yield 40Ar/39Ar cooling ages of 287.3 ± 2.8 Ma, 307.9 ± 1.8 Ma, and 249.8 ± 1.6 Ma, respectively. The new ages constrain the timing of Late Paleozoic felsic magmatism to ∼336 to ∼297 Ma. Skarn mineralization in the Sayak ore-field formed at ∼335 and ∼308 Ma. Porphyry Cu–Mo mineralization in the Kounrad deposit and the Aktogai deposit formed at ∼327 Ma, and in the Borly deposit at ∼316 Ma. The Late Paleozoic regional cooling in the temperature range of ∼600 °C to ∼150 °C occurred from ∼307 to ∼257 Ma.  相似文献   

14.
In the Caozhuang complex in eastern Hebei, North China Craton, the Paleo- to Eoarchean crustal evolution was earlier revealed by the preservation of detrital zircon grains older than (or as old as) 3.8 Ga in fuchsite-quartzite. In order to test if the Eoarchean antiquity is also preserved in rocks other than the fuchsite quartzite, we collected two paragneisses, a hornblende gneiss and a garnet–biotite gneiss, from Huangbaiyu village and dated their detrital zircon grains. The zircon dating of the hornblende gneiss yielded concordant 207Pb/206Pb ages ranging from 3684 to 3354 Ma. However, an older date of 3782 Ma with 18% discordancy was also obtained. Detrital zircon grains from the garnet–biotite gneiss gave a similar 207Pb/206Pb age range, from 3838 to 3342 Ma. The metamorphic domains of the zircon grains from both samples, including the strongly recrystallized cores and rims, recorded an overprinting metamorphism at ca. 2.5 Ga, which correlates with the most widespread tectono-thermal event in the North China Craton. In situ zircon Hf-isotope analyses on the dated zircon grains yielded a wide range of model ages (TDM1) from 4.0 to 3.3 Ga with corresponding εHf(T) from −36.0 to +4.8. This suggests that the evolution of the crustal segment in this area has involved multiple phases of juvenile crustal addition as well as recycling of older crustal rocks. The new geochronological results imply the presence of a significant amount of Eoarchean crustal fragments in the eastern Hebei area. The sedimentary protoliths of the paragneisses and other high-grade metamorphic rocks in the Caozhuang complex were probably deposited between 3.4 and 2.5 Ga.  相似文献   

15.
The Mercara Shear Zone is sandwiched between the Western Dharwar Craton and the Coorg Block in the Southern Granulite Terrain of India, and is marked by steep gravity gradients interpreted to suggest the presence of underplated high-density material in the lower crust. Here we present geological, petrological and geochemical data, together with zircon U–Pb ages and Lu–Hf isotopes from a suite of metaigneous (TTG-related gneisses, charnockite, metagabbro, mafic granulite) and metasedimentary (quartz mica schist, khondalite, garnet biotite gneiss, kyanite–sillimanite bearing metapelite) rocks from this zone. Geochemical data on the magmatic suite suggests formation through subduction-related arc magmatism, whereas the metasediments represent volcano-sedimentary trench sequences. Phase equilibrium modeling of mafic granulites from the Mercara Shear Zone suggests P–T range of 10–12 kbar at 700 °C to 900 °C. The zircon data yield weighted mean 207Pb/206Pb ages of 3229 ± 80 Ma for metagabbro, 3168 ± 25 Ma for the charnockite, and 3181 ± 20 Ma for the mafic granulite. Ages ranging from 3248 ± 28 Ma to 3506 ± 26 Ma were obtained from zircons in the kyanite/sillimanite bearing metapelite, 3335 ± 44 Ma from khondalite, 3135 ± 14 Ma from garnet biotite gneiss, 3145 ± 17 Ma to 3292 ± 57 Ma from quartz mica schist and 3153 ± 15 Ma to 3252 ± 36 from TTG gneiss. The tightly defined ages of 3.1 to 3.2 Ga from igneous zircons in the magmatic suite suggest prominent Mesoarchean convergent margin magmatism. The timing of high grade metamorphism as constrained from metamorphic overgrowths in zircons is ca. 3.0 Ga which might mark the collisional event between the Western Dharwar Craton and the Coorg Block. Hf isotope features suggest magma derivation mostly from juvenile sources and the Lu–Hf model ages indicate that the crust building might have also involved partial recycling of basement rocks as old as ca. 3.8 Ga. Our study defines the Mercara Shear Zone as a terrane boundary, and possible Mesoarchean suture along which the Coorg Block was accreted to the Western Dharwar Craton. The accretion of these continental fragments might have coincided with the birth of the oldest supercontinent “Ur”.  相似文献   

16.
The Gaoligong belt is located in the southeastern margin of the Tibetan plateau, and is bound by the Tengchong and Baoshan blocks. This paper presents new data from zircon geochronology, geochemistry, and whole-rock Sr–Nd–Pb–Hf isotopes to evaluate the tectonic evolution of the Gaoligong belt. The major rock types analysed in the present study are granitic gneiss, granodiorite, and granite. They are metaluminous to peraluminous and belong to high-K, calc-alkaline series. Laser ablation inductively coupled plasma mass spectrometry (LA–ICP–MS) analyses of zircons from nine granitic rocks yielded crystallization ages of 495–487 Ma, 121 Ma, 89 Ma, and 70–63 Ma. The granitoids can be subdivided into the following four groups. (1) Early Paleozoic granitic gneisses with high εNd(t) and εHf(t) values of − 1.06 to − 3.45 and − 1.16 to 2.09, and model ages of 1.16 Ga to 1.33 Ga and 1.47 Ga to 1.63 Ga, respectively. Their variable 87Sr/86Sr and Pb values resemble the characteristics of the Early Paleozoic Pinghe granite in the Baoshan block. Our data suggest that the rocks were derived from the break-off of the Proto-Tethyan oceanic slab between the outboard continent and the Baoshan block, which induced the partial melting of Mesoproterozoic pelitic sources mixed with depleted mantle materials. (2) Early Cretaceous granodiorites with low εNd(t) and εHf(t) values of − 8.92 and − 4.91 with Nd and Hf model ages of 1.41 Ga and 1.49 Ga, respectively. These rocks have high initial 87Sr/86Sr (0.711992) and lower crustal Pb values, suggesting that they were derived from Mesoproterozoic amphibolites with tholeiitic signature, leaving behind granulite residue at the lower crust. (3) Early Late Cretaceous granites with low εNd(t) and εHf(t) values of − 9.58 and − 4.61 with Nd and Hf model ages of 1.43 Ga and 1.57 Ga, respectively. These rocks have high initial 87Sr/86Sr (0.713045) and lower crustal Pb isotopic values. These rocks were generated from the partial melting of Mesoproterozoic metapelitic sources resulting from the delamination of thickened lithosphere, following the closure of the Bangong–Nujiang Ocean and collision of the Lhasa–Qiangtang blocks. (4) Late Cretaceous to Paleogene granitic gneisses with low εNd(t) and εHf(t) values of − 4.41 to − 10 and − 5.95 to − 8.71, Nd model ages ranging from 1.08 Ga to 1.43 Ga, and Hf model ages from 1.53 Ga to 1.67 Ga, respectively. These rocks show high initial 87Sr/86Sr (0.713201 and 714662) and lower crustal Pb values. The data suggest that these rocks are likely related to the eastward subduction of the Neo-Tethyan Oceanic slab, which induced partial melting of Mesoproterozoic lower crustal metagreywacke. The results presented in this study from the Gaoligong belt offer important insights on the evolution of the Proto-Tethyan, Bangong–Nujiang, and Neo-Tethyan oceans in the southeastern margin of the Tibetan Plateau.  相似文献   

17.
Zircon formation and modification during magmatic crystallization and high-grade metamorphism are explored using TIMS and LA-ICP-MS U–Pb geochronology, Lu–Hf isotope chemistry, trace element analysis and textural clues on zircons from the Koraput alkaline intrusion, Eastern Ghats Belt (EGB), India. The zircon host-rock is a granulite-facies nepheline syenite gneiss with an exceptionally low Zr concentration, prohibiting early magmatic Zr saturation. With zircon formation occurring at a late stage of advanced magmatic cooling, significant amounts of Zr were incorporated into biotite, nearly the only other Zr-bearing phase in the nepheline syenite gneisses. Investigated zircons experienced a multi-stage history of magmatic and metamorphic zircon growth with repeated solid-state recrystallization and partial dissolution–precipitation. These processes are recorded by complex patterns of internal zircon structures and a wide range of apparently concordant U–Pb ages between 869 ± 7 Ma and 690 ± 1 Ma. The oldest ages are interpreted to represent the timing of the emplacement of the Koraput alkaline complex, which significantly postdates the intrusion ages of most of the alkaline intrusion in the western EGB. However, Hf model ages of TDM = 1.5 to 1.0 Ga suggest an earlier separation of the nepheline syenite magma from its depleted mantle source, overlapping with the widespread Mesoproterozoic, rift-related alkaline magmatism in the EGB. Zircons yielding ages younger than 860 Ma have most probably experienced partial resetting of their U–Pb ages during repeated and variable recrystallization events. Consistent youngest LA-ICP-MS and CA-TIMS U–Pb ages of 700–690 Ma reflect a final pulse of high-grade metamorphism in the Koraput area and underline the recurrence of considerable orogenic activity in the western EGB during the Neoproterozoic. Within the nepheline syenite gneisses this final high-grade metamorphic event caused biotite breakdown, releasing sufficient Zr for local saturation and new subsolidus zircon growth along the biotite grain boundaries.  相似文献   

18.
The paper is a first attempt to unravel the Archean multi-stage metaplutonic assemblage of the Meso/Neoarchean terrane of the State of Goiás, Central Brazil, by means of the U–Pb SHRIMP zircon and Sm–Nd techniques. Two stages of granitic plutonism, spanning ca. 140 m.y., were precisely established for the accretion of the gneiss protoliths. The earliest stage embraces tonalitic to granodioritic and minor granitic orthogneisses with Nd juvenile signature, emplaced from ca. 2845 to ca. 2785 Ma, interpreted as the roots of an early arc. Inherited zircon xenocrysts and Nd isotopic data indicate that the juvenile magmas underwent contamination from a sialic crust as old as 3.3 Ga, from which there are, so far, no recognizable exposures. The second stage comprises granodioritic to granitic gneisses and lasted from ca. 2711 to 2707 Ma. Based on their Nd isotopic signatures and on inherited zircon crystals, their protoliths are interpreted as dominantly crustal-derived. The SHRIMP data from zircon crystals did not depict a Paleoproterozoic overprinting on the Archean gneisses, which is due to geological processes with prevailing temperatures below the isotopic stability of the U/Pb/Th system in the mineral. These processes comprise crustal extension and intrusion of a mafic dike swarm at ca. 2.3 Ga, followed by low grade events mostly related to shear zones between ca. 2.15 and 2.0 Ga. The study also revealed the extent of the Pan- African tectono-thermal overprinting on the Archean orthogneisses. Most of the zircon populations show morphological evidence of metamorphic peripheral recrystallization dated between ca. 750 and 550 Ma. One of the banded gneisses with a crystallization age of ca. 2700 Ma (2σ) has a more complex zircon population including magmatic new grains, which yielded a precise 206Pb/238U crystallization age of 590 ± 10 Ma (2σ). These new grains are interpreted to have grown in anatectic veins injected within strongly sheared gneiss.The data characterize a widespread Pan-African-aged metamorphic overprinting, culminating with localized anatexis of the Archean orthogneisses.  相似文献   

19.
The Eastern Ghats Frontal Thrust (EGFT) demarcates the boundary between the Archaean/Paleoproterozoic cratonic rocks to the west, and the Meso/Neoproterozoic granulites of the Eastern Ghats Mobile Belt (EGMB) to the east. At Jeypore (Orissa, India), mafic schists and granites of the cratonic domain document a spatial increase in the metamorphic grade from greenschist facies (garnet, clinozoisite – absent varieties) in the foreland to amphibolite facies (clinozoisite- and garnet-bearing variants) progressively closer to the EGFT. Across the EGFT, the enderbite–charnockite gneisses and mafic granulites of EGMB preserves a high-grade granulite facies history; amphibolite facies overprinting in the enderbite–charnockite gneisses at the cratonic fringe is restricted to multi-layered growth of progressively Al, Ti – poor hornblende at the expense of pyroxene and plagioclase. In associated mafic granulites, the granulite facies gneissic layering is truncated by sub-centimeter wide shear bands defined by synkinematic hornblende + quartz intergrowth, with post-kinematic garnet stabilized at the expense of hornblende and plagioclase. Proximal to the contact, these granulites of the Eastern Ghats rocks are intruded by dolerite dykes. In the metadolerites, the igneous assemblage of pyroxene–plagioclase is replaced by intergrown hornblende + quartz ± calcite that define the thrust-related fabric and are in turn mantled by coronal garnet overgrowth, while scapolite is stabilized at the expense of recrystallized plagioclase and calcite. Petrogenetic grid considerations and thermobarometry of the metamorphic assemblages in metadolerites intrusive into granulites and mafic schists within the craton confirm that the rocks across the EGFT experienced prograde heating (Tmax value ∼650–700 °C at P  6–8 kbar) along the prograde arm of a seemingly clockwise PT path. Since the dolerites were emplaced post-dating the granulite facies metamorphism, the prograde heating is correlated with renewed metamorphism of the granulites proximal to the EGFT. A review of available age data from rocks neighboring the EGFT suggests that the prograde heating of the cratonic granites and the re-heating of the Eastern Ghats granulites are Pan – African in age. The re-heating may relate to an Early Paleozoic Pan-Gondwanic crustal amalgamation of older terrains or reactivation along an old suture.  相似文献   

20.
Several metamorphic complexes in Southeast Asia have been interpreted as Precambrian basement, characterized by amphibolite to granulite facies metamorphism. In this paper, we re-evaluate the timing of this thermal event based on the large-scale geochronology and compositional variation of monazites from amphibolite to granulite facies metamorphic terranes in central Vietnam. Most of the samples in this study are from metamorphic rocks (n = 38) and granitoids (n = 11) in the Kontum Massif. Gneisses (n = 6) and granitoids (n = 5) from the Hai Van Migmatite Complex and the Truong Son Belt, located to the north of the massif, were also studied. Two distinct thermal episodes (245–230 Ma and 460–430 Ma) affected Kontum Massif gneisses, while a single dominant event at 240–220 Ma is recorded in the gneisses from the Hai Van Complex and the Truong Son Belt. Monazites from granitoids commonly yield an age of 240–220 Ma. Mesoproterozoic ages (1530–1340 Ma) were obtained only from monazite cores that are surrounded by c. 440 Ma overgrowths. Thermobarometric results, combined with concentrations of Y2O3, Ce2O3, and heavy rare earth elements in monazite, and recently reported pressure–temperature paths suggest that Triassic ages correspond to retrograde metamorphism following decompression from high- to medium-pressure/temperature conditions. Ordovician–Silurian ages reflect low-pressure/temperature metamorphism accompanied by isobaric heating during prograde metamorphism. Some samples were affected by both metamorphic events. We conclude that high-grade metamorphism observed in so-called Precambrian basement terranes in central Vietnam occurred during both the Permian–Triassic and the Ordovician–Silurian, while peraluminous granitoid magmatism is Triassic. Additionally, our preliminary analyses for U–Pb zircon age and whole-rock chemistry of granitic gneisses from the Truong Song Belt suggests the presence of the Ordovician–Silurian volcanic arc magmatism in the region. Based on the pressure–temperature–time–protolith evolutions, metamorphic rocks from central Vietnam provide a continuous record of subduction–accretion–collision tectonics between the South China and Indochina blocks: in the Ordovician–Silurian, the region was characterized by active continental margin tectonics, followed by continental collision during the Late Permian to Early Triassic and subsequent exhumation during the Late Triassic. The results also suggest that the timing of metamorphism and protolith formation as well as the geochemical features in other Southeast Asian terranes should be verified to achieve a better understanding of the Precambrian to Early Mesozoic tectonic history in Asia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号