首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
In this study, the adsorption behavior of Ni(II) in an aqueous solution system using natural adsorbent Peganum harmala-L was measured via batch mode. The prepared sorbent was characterized by scanning electron microscope, Fourier transform infrared spectroscopy, N2 adsorption–desorption and pHzpc. Adsorption experiments were carried out by varying several conditions such as contact time, metal ion concentration and pH to assess kinetic and equilibrium parameters. The equilibrium data were analyzed based on the Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherms. Kinetic data were analyzed using the pseudo-first-order, pseudo-second-order and intra-particular diffusion models. Experimental data showed that at contact time 60 min, metal ion concentration 50 mg/L and pH 6, a maximum amount of Ni(II) ions can be removed. The experimental data were best described by the Langmuir isotherm model as is evident from the high R 2 value of 0.988. The adsorption capacity (q m) obtained was 68.02 mg/g at an initial pH of 6 and a temperature of 25 °C. Kinetic studies of the adsorption showed that equilibrium was reached within 60 min of contact and the adsorption process followed the pseudo-first-order model. The obtained results show that P. harmala-L can be used as an effective and a natural low-cost adsorbent for the removal of Ni(II) from aqueous solutions.  相似文献   

2.
In the present study, adsorption of lead (II) ions from aqueous solution by alluvial soil of Bhagirathi River was investigated under batch mode. The influence of solution pH, sorbent dose, initial lead (II) concentration, contact time, stirring rate and temperature on the removal process were investigated. The lead adsorption was favored with maximum adsorption at pH 6.0. Sorption equilibrium time was observed in 60 min. The equilibrium adsorption data were analyzed by the Freundlich, Langmuir, Dubinin–Radushkevich and Temkin adsorption isotherm models. The kinetics of lead (II) ion was discussed by pseudo first-order, pseudo second-order, intra-particle diffusion, and surface mass transfer models. It was shown that the adsorption of lead ions could be described by the pseudo second-order kinetic model. The activation energy of the adsorption process (E a) was found to be ?38.33 kJ mol?1 using the Arrhenius equation, indicating exothermic nature of lead adsorption onto alluvial soil. Thermodynamic parameters, such as Gibbs free energy (?G 0), the enthalpy (?H 0), and the entropy change of sorption (?S 0) have also been evaluated and it has been found that the adsorption process was spontaneous, feasible, and exothermic in nature. The results indicated that alluvial soil of Bhagirathi River can be used as an effective and low cost adsorbent to remove lead ions from aqueous solutions.  相似文献   

3.
Asexual spores of the filamentous fungus Rhizopus arrhizus were used as the resting biomass as they tolerate chitosan gelling for mycelia growing in chitosan beads. Biosorption of lead using the dead detergent pre-treated chitosan-immobilised and grown fungal beads was performed with initial lead (II) nitrate concentrations ranging from 9.02 to 281.65 mg/L. The adsorption data were best correlated with equilibrium adsorption isotherms in the order Redlich–Peterson, Langmuir, Freundlich and Fritz–Schlünder by non-linear regression. The biosorption kinetic model of pseudo second-order (R 2 > 0.99) fitted better than pseudo first-order and modified pseudo first-order models. Among the four pseudo second-order kinetic models, the Blanchard model was the best fit for the experimental biosorption data. The rate-limiting step of biosorption of lead was shown to be intraparticle diffusion controlled according to Weber and Morris model fitting. The beads could be regenerated using 1 M nitric acid solution. This illustrated the good performance of the beads for regenerated sorption/desorption at least five cycles.  相似文献   

4.
Surface modification of two algal biomasses, Nizimuddinia zanardini and Stoechospermum marginatum, using 4-phenyl-3-thiosemicarbazide ligand was performed to investigate the consequences on the adsorption of heavy metals from aqueous solution. Stabilization of amino group of 4-phenyl-3-thiosemicarbazide on the surface of biomasses was confirmed using Fourier transform infrared spectroscopy. Chemical modification was found to exert significant positive effects on biosorption. Adsorption capacities for Pb(II), Cd(II) and Cr(VI) using modified N. zanardini were observed to be 19.3, 16.75 and 15.75 mg/g, respectively, compared to 17.48, 14.18 and 11.85 mg/g for raw N. zanardini biomass. Also, adsorption of Pb(II), Cd(II) and Cr(VI) by the modified S. Marginatum was found to be 17.54, 15.62 and 14.77 mg/g, respectively, in comparison with that of the raw biomass which were 16.86, 12.9 and 11.2 mg/g. The obtained results of the equilibrium adsorption were studied through different isotherm models of Langmuir, Freundlich and Temkin, where the Langmuir model was observed to agree well with the results. Prevalent kinetic models including pseudo-second order and intra-particle diffusion were applied, and the pseudo-second order was found to describe the adsorption kinetics data adequately. Intra-particle model was also utilized in order to show penetration of metal ions, where it was realized that the biosorption took place in two or three steps including film diffusion, molecular diffusion and chemical reaction.  相似文献   

5.
Amorphous tin(VI) hydrogen phosphate (ATHP) was synthesized using the liquid phase precipitation method and served as an adsorbent to remove Pb(II), Cu(II), and Zn(II) from aqueous solutions. The ATHP was characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and nitrogen adsorption–desorption techniques. Adsorption properties were evaluated as a function of pH, reaction time, concentration of reactants, and salinity. Their equilibrium adsorption data were modeled using Freundlich, Langmuir, and Dubinin–Kaganer–Radushkevich isotherms, respectively. The results revealed that adsorption equilibrium reached within 180 min. ATHP indicated good adsorption even below the pHZPC, and best adsorption at pH 5 for Pb(II) and Cu(II) and at pH 5.5 for Zn(II) was observed. Equilibrium data fitted better to the Langmuir model for Pb(II) and Cu(II) and fitted better to the Freundlich model for Zn(II). The saturated adsorption capacities deduced from the Langmuir model were 2.425, 1.801, and 0.600 mmol/g for Cu(II), Pb(II), and Zn(II), respectively, indicating an adsorption affinity order of Cu > Pb > Zn. There is a negative correlation between the concentration of NaCl and adsorption capacity of ATHP, yet ATHP still exhibited excellent adsorption having an adsorption capacity of 19.35, 15.16, 6.425 mg/g when the concentration of NaCl was 0.6 mol/L. The free energy (E) was 12.33, 10.70, and 14.74 kJ/mol for Pb(II), Cu(II), and Zn(II), respectively. An adsorption mechanism based on ion exchange between heavy metal ions and H+ in the ATHP is proposed. Furthermore, the used ATHP was regenerated by HCl solution and the adsorbent was used repeatedly.  相似文献   

6.
Granular activated carbon produced from palm kernel shell was used as adsorbent to remove copper, nickel and lead ions from a synthesized industrial wastewater.Laboratory experimental investigation was carried out to identify the effect of pH and contact time on adsorption of lead, copper and nickel from the mixed metals solution. Equilibrium adsorption experiments at ambient room temperature were carried out and fitted to Langmuir and Freundlich models. Results showed that pH 5 was the most suitable, while the maximum adsorbent capacity was at a dosage of 1 g/L, recording a sorption capacity of 1.337 mg/g for lead, 1.581 mg/g for copper and 0.130 mg/g for nickel. The percentage metal removal approached equilibrium within 30 min for lead, 75 min for copper and nickel, with lead recording 100 %, copper 97 % and nickel 55 % removal, having a trend of Pb2+ > Cu2+ > Ni2+. Langmuir model had higher R2 values of 0.977, 0.817 and 0.978 for copper, nickel and lead respectively, which fitted the equilibrium adsorption process more than Freundlich model for the three metals.  相似文献   

7.
In the present experimental study, solid waste was used as an adsorbent and the effectiveness of the adsorbent was increased by novel treatment methods. Red mud, acid-treated activated red mud and iron oxide-coated acid-treated activated red mud were used for the removal of lead (II). The structural and functional groups were identified to confirm the removal of lead (II) by powder X-ray diffraction and Fourier transform infrared spectroscopy analyses. The enhancement of surface area was confirmed by Brunauer–Emmett–Teller analysis. Batch adsorption experiment was also conducted, and various parameters such as the effect of adsorbent dosage, pH, contact time and initial ion concentration were analyzed and reported. Adsorption equilibrium data were investigated using Langmuir, Freundlich and Dubinin–Radushkevich isotherm models with three parameters, and the rate of reaction was examined through kinetic models. The results indicate that in particular a novel modified form of red mud, namely iron oxide-coated acid-treated activated red mud was well fitted in lead (II) removal compared with reported adsorbents. The Langmuir isotherm shows that the maximum adsorption of adsorbate per gram was greater than other adsorbents (27.02 mg/g). In Freundlich isotherm, the Freundlich constant n values lie between 1 and 10 indicate the favorable adsorption. The calculated n values for normal red mud, acid-treated activated red mud and iron oxide-coated acid-treated activated red mud were found to be 1.9, 2.1 and 2.0 respectively. The correlation coefficient value was higher and the rate of reaction follows the pseudo-second-order kinetic model.  相似文献   

8.
A novel polyurethane foam/organobentonite/iron oxide nanocomposite adsorbent was successfully prepared via in situ polymerization of toluene diisocyanate and polyol in presence of 5 wt% organobentonite/iron oxide. The obtained nanocomposite was characterized in detail, and the results revealed that the clay layers are exfoliated and/or intercalated in the polymer matrix forming a nanocomposite structure. The application of the prepared nanocomposite for adsorption of cadmium ions from aqueous solution was tested as a function of various experimental parameters using batch procedures. Adsorptive removal of Cd(II) onto the nanocomposite attained maximum at adsorbent content 1.5 g/L, pH 6, and the equilibrium was established within 60 min. Kinetic studies showed that the experimental data fit very well to pseudo-second-order model, and the adsorption process proceeds through three steps. It was found that external liquid film and intraparticle diffusion steps deeply affect the rate of Cd2+ ions adsorption onto the synthesized nanocomposite. Langmuir isotherm model fitted the adsorption data better than Freundlich with a maximum adsorption capacity (q m) for Cd(II) equal to 78 mg/g under the specified experimental conditions. The synthesized nanocomposite afforded effective extraction for Cd2+ ions from natural water samples and excellent reusability feature. This study declares the potential efficiency of a new clay/polymer nanocomposite as alternative for wastewater remediation.  相似文献   

9.
Adsorption of chromium and copper in aqueous solutions using tea residue   总被引:5,自引:3,他引:2  
In this study, adsorption of copper and chromium was investigated by residue of brewed tea (Tea Waste) from aqueous solutions at various values of pH. It was shown that adsorbent dose, copper and chromium ion concentrations in such solutions influence the degree of these heavy metal ions’ obviation. The adsorption level of the prepared solutions was measured by visible spectrophotometer. The tea residue adsorbed copper (II) and chromium (VI) ions at initial solution pH by 25 % and 3 %, respectively. During the experiments the peak adsorption occured in hydrated copper nitrate aqueous solution at pH range of 5–6. Likewise the maximum adsorption appeared in potassium chromate aqueous solution at pH range of 2–3. In addition, tea residue adsorbed about 60 mg/g of copper (II) ion at pH=5, while chromium adsorption was registered at about 19 mg/g at pH=2. The data obtained at the equilibrium state, was compared with Langmuir and Freundlich models. Results showed that regarding the kinetics of adsorption, the uptake of copper (II) and chromium (VI) ions by tea residue was comparatively faster, with the adsorption process exhaustion completed within the first 20 min of the experiments. Furthermore, results revealed that adsorption data concerning the kinetic phase is closely correlated with a pseudo-second order model with R2> 0.99 for copper (II) and chromium (VI) ions  相似文献   

10.
The most appropriate method in designing the adsorption systems and assessing the performance of the adsorption systems is to have an idea on adsorption isotherms. Comparison analysis of linear least square method and nonlinear method for estimating the isotherm parameters was made using the experimental equilibrium data of Zn(II) and Cu(II) onto kaolinite. Equilibrium data were fitted to Freundlich, Langmuir, and Redlich–Peterson isotherm equations. In order to confirm the best-fit isotherms for the adsorption system, the data set using the chi-square (χ 2), combined with the values of the determined coefficient (r 2) was analyzed. Nonlinear method was found to be a more appropriate method for estimating the isotherm parameters. The best fitting isotherm was the Langmuir and Redlich–Peterson isotherm. The Redlich–Peterson is a special case of Langmuir when the Redlich–Peterson isotherm constant g was unity. The sorption capacity of kaolinite to uptake metal ions in the increasing order was given by Cu (4.2721 mg/g)?<?Zn (4.6710 mg/g).  相似文献   

11.
The adsorption of methyl tert-butyl ether by granular activated carbon was investigated. The experimental data were analyzed using the Freundlich isotherm and the Langmuir isotherm. Although equilibrium data were found to follow Freundlich isotherm model, it were fitted better by the Langmuir model with a maximum adsorption capacity of 204.1 mg/g. The kinetic data obtained at different concentrations were analyzed to predict the constant rate of adsorption using three common kinetic models: pseudo-first-order, pseudo-second-order equation and intraparticle diffusion equation. The pseudo-second-order model was suitable for describing the adsorption kinetics for the removal of methyl tert-butyl ether from aqueous solution onto granular activated carbon. Both the Lagergren first-order rate constant k 1 and pseudo-second-order rate constant k 2 decrease with increasing initial concentrations of methyl tert-butyl ether and the intraparticle diffusion rate constant k p shows the reverse characteristic. Analysis of sorption data using a boyd plot confirmed that external mass transfer is the main rate-limiting step at the initial stage of adsorption. Results illustrate that granular activated carbon is an effective adsorbent for methyl tert-butyl ether and also provide specific guidance into adsorption of methyl tert-butyl ether on granular activated carbon in contaminated groundwater.  相似文献   

12.
Biosorption is an effective method to remove heavy metals from wastewater. In this work, the biosorption of Cd(II) onto Hydrilla verticillata was examined in aqueous solution with parameters of initial pH, adsorbent dosage, contact time, initial Cd(II) concentration, temperature, and co-existing ion. Linear Langmuir and Freundlich models were applied to describe the equilibrium isotherms, and both of the two models were fitted well. The monolayer adsorption capacity of Cd(II) was found to be 50 mg/g at pH 6 and 20°C. Dubinin–Radushkevich isotherm model was also applied to the equilibrium data. The mean free energy of adsorption (11.18 kJ/mol) indicated that the adsorption of Cd(II) onto H. verticillata might be carried out via chemical ion-exchange mechanism. Thermodynamic parameters, including free energy (∆G 0), enthalpy (∆H 0), and entropy (∆S 0) of adsorption, were also calculated. These results showed that the biosorption of Cd(II) onto H. verticillata was a feasible, spontaneous, and exothermic process in nature. Desorption experiments indicated that 0.01 mol/L EDTA and HNO3 were efficient desorbents for the recovery of Cd(II) from biomass. IR spectrum analysis suggested that amido, hydroxyl, C=O and C–O could combine strongly with Cd(II). EDX spectrum analysis suggested that an ion exchange mechanism might be involved.  相似文献   

13.
This paper presents the results of a study on Ni(II) removal from water by adsorption using abundant and low-cost volcanic rock grains: Scoria (VSco) and Pumice (VPum), which could be used as an alternative approach to remove potentially harmful metals from contaminated water. Basic process characteristics were determined under batch conditions. The maximum adsorption capacities for Ni(II) on VSco and VPum were found to be 980 and 1187 mg kg−1, respectively. These results were obtained at the optimized conditions of pH (5.0), temperature (24.9 °C), contact time (24 h), adsorbent/solution ratio (1:20), particle size (fine) and with the variation of initial concentrations between 0.5 and 50 mg L−1. Competitive adsorption of Ni(II), Cd(II) and Cu(II) on the adsorbents present in binary as well as ternary mixtures were also compared with the single metal solution. Thus, given that enough volcanic rock grains are provided, Ni(II) ions could be removed even from a metal ion bearing matrix. A number of available models like Lagergren pseudo-first order kinetics, second-order kinetics, intra-particle diffusion and liquid film diffusion were utilized to evaluate the kinetics and the mechanism of the sorption interactions. The results revealed that the pseudo-second order equation best described the kinetics mechanisms of Ni(II) adsorption although the removal process was found to be complex. Moreover, three adsorption models have been evaluated in order to attempt to fit the experimental data, namely the Langmuir, the Freundlich and the Redlich–Peterson isotherm models. It was found that the first two isotherms most closely described the adsorption parameters.  相似文献   

14.
The present article explores the ability of five different combinations of two adsorbents (Arachis hypogea shell powder and Eucalyptus cameldulensis saw dust) to remove Pb(II) from synthetic and lead acid batteries wastewater through batch and column mode. The effects of solution pH, adsorbent dose, initial Pb(II) concentration and contact time were investigated with synthetic solutions in batch mode. The Fourier transform infrared spectroscopy study revealed that carboxyl and hydroxyl functional groups were mostly responsible for the removal of Pb(II) ions from test solutions. The kinetic data were found to follow pseudo-second-order model with correlation coefficient of 0.99. Among Freundlich and Langmuir adsorption models, the Langmuir model provided the best fit to the equilibrium data with maximum adsorption capacity of 270.2 mg g?1. Column studies were carried out using lead battery wastewater at different flow rates and bed depths. Two kinetic models, viz. Thomas and Bed depth service time model, were applied to predict the breakthrough curves and breakthrough service time. The Pb(II) uptake capacity (q e = 540.41 mg g?1) was obtained using bed depth of 35 cm and a flow rate of 1.0 mL min?1 at 6.0 pH. The results from this study showed that adsorption capacity of agricultural residues in different combinations is much better than reported by other authors, authenticating that the prepared biosorbents have potential in remediation of Pb-contaminated waters.  相似文献   

15.
The sorption of lead (II) and cadmium (II) on seven shales belonging to the Proterozoic Vindhyan basin, central India, and a black cotton soil, Mumbai, India, was studied and compared with sorbent geochemistry. The sorption equilibrium studies were conducted under completely mixed conditions in batch reactors (pH=5.0 and ionic strength= 0.01 M) at room temperature. The Freundlich model provided better fits to the experimental data compared to Langmuir model. High cadmium and lead sorption was observed for the calcareous shales with greater than 5% CaCO3. The Freundlich isotherm parameter relating to sorption capacity, i.e., KF, yielded a strong correlation with the calcium carbonate and calcium oxide content across the various geosorbents studied. The observed sorption pattern may be attributed to complex formation of CaCO3 with Pb2+ and Cd2+ leading to surface precipitation. Moreover, the Ca2+ present in the sorbents may also involve in ion exchange reaction with lead and cadmium.  相似文献   

16.
Beidellite, a low-cost, locally available and natural mineral was used as an adsorbent for the removal of lead and cadmium ions from aqueous solutions in batch experiments. The kinetics of adsorption process was tested for the pseudo first-order, pseudo second-order reaction and intra-particle diffusion models. The rate constants of adsorption for all these kinetic models were calculated. Comparison amongst the models showed that the sorption kinetics was best described by the pseudo second-order model. Langmuir and Freundlich isotherm models were applied to the experimental equilibrium data for different temperatures. The adsorption capacities (Q°) of beidellite for lead and cadmium ions were calculated from the Langmuir isotherm. It was found that adsorption capacity was in the range of 83.3–86.9 for lead and 42–45.6 mg/g for cadmium at different temperatures. Thermodynamic studies showed that the metal uptake reaction by beidellite was endothermic in nature. Binary metal adsorption studies were also conducted to investigate the interactions and competitive effects in binary adsorption process. Based on the optimum parameters found, beidellite can be used as adsorbent for metal removal processes.  相似文献   

17.
Peganum harmala seeds were assessed as biosorbent for removing Pb2+, Zn2+and Cd2+ ions from aqueous solutions. The effects of various parameters such as the aqueous solution pH, the contact time, the initial metal concentration and the amount of adsorbent in the process were investigated. The adsorption efficiencies increased with pH. It was found that about 95 % of lead, 75 % of zinc and 90 % of cadmium ions could be removed from 45 ml of aqueous solution containing 20 mg l?1 of each cation with 2 g of adsorbent at pH 4.5 after 15 min. The quantitative desorption of cadmium from adsorbent surface was achieved using 10 ml of a 0.5 M nitric acid solution. This condition was attained for lead and zinc ions with 10 ml of 1 M hydrochloric acid solution. Kinetic investigation of the process was performed by considering a pseudo-second-order model. This model predicts the chemisorption mechanism of the process. Langmuir, Freundlich, Temkin and Dubinin–Radushkevich models were tested for describing the equilibrium data. It was found that the Freundlich model describes the experimental data resulting from the adsorption of lead ions. However for cadmium and zinc ions, the adsorption equilibria were interpreted with the Langmuir model.  相似文献   

18.
Barium ion cross-linked alginate beads have shown great affinity to toxic hexavalent chromium ions in aqueous solution, in contrast to the traditionally used calcium alginate beads. Our adsorption experiments were carried out by the batch contact method. The optimal pH for removal was found to be pH 4. The equilibrium was established in 4 h, and the removal efficiency of chromium(VI) was found to be 95 %. The adsorption data were applied to Langmuir, Freundlich, Dubinin–Redushkevich (D–R), and Temkin isotherm equations. Both Langmuir and Freundlich isotherm constants indicated a favorable adsorption. The value of mean sorption energy calculated from D–R isoterm indicates that the adsorption is essentially physical. The high maximum chromium(VI) adsorption capacity was determined from the Langmuir isotherm as 36.5 mg/g dry alginate beads. The chromium(VI) adsorption data were analyzed using several kinetic models such as the pseudo-first-order, pseudo-second-order, intraparticle diffusion, and Elovich models, and the rate constants were quantified. Our study suggests that barium alginate beads can be used as cost-effective and efficient adsorbents for the removal of chromium(VI) from contaminated waters.  相似文献   

19.
The adsorption capacity of raw and sodium hydroxide-treated pine cone powder in the removal of methylene blue (MB) from aqueous solution was investigated in a batch system. It was found that the base modified pine cone exhibits large adsorption capacity compared with raw pine cone. The extent of adsorption capacity was increased with the increase in NaOH concentration. Overall, the extent of MB dye adsorption increased with increase in initial dye concentration, contact time, and solution pH but decreased with increase in salt concentration and temperature for both the systems. Surface characteristics of pine cone and base modified pine cone were investigated using Fourier transform infrared spectrophotometer and scanning electron microscope. Equilibrium data were best described by both Langmuir isotherm and Freundlich adsorption isotherm. The maximum monolayer adsorption capacity was found to be 129.87 mg g?1 at solution pH of 9.02 for an initial dye concentration of 10 ppm by raw pine cone. The base modified pine cone showed the higher monolayer adsorption capacity of 142.25 mg g?1 compared with raw pine cone biomass. The value of separation factor, R L, from Langmuir equation and Freundlich constant, n, both give an indication of favourable adsorption. The various kinetic models, such as pseudo-first-order model, pseudo-second-order model, intraparticle diffusion model, double-exponential model, and liquid film diffusion model, were used to describe the kinetic and mechanism of adsorption process. Overall, kinetic studies showed that the dye adsorption process followed pseudo-second-order kinetics based on other models. The different kinetic parameters, including rate constant, half-adsorption time and diffusion coefficient, were determined at different physicochemical conditions. A single-stage bath adsorber design for the MB adsorption onto pine cone and modified pine cone has been presented based on the Langmuir isotherm model equation. Thermodynamic parameters, such as standard Gibbs free energy (ΔG 0), standard enthalpy (ΔH 0) and standard entropy (ΔS 0), were also calculated.  相似文献   

20.
This paper reports the potential of chemically treated wood chips to remove copper (II) ions from aqueous solution a function of pH, adsorbent dose, initial copper (II) concentration and contact time by batch technique. The wood chips were treated with (a) boiling, (b) formaldehyde and (c) concentrated sulphuric acid and characterized by Fourier transform infrared spectroscopy, scanning electron microscopy and energy dispersive analysis X-ray. pH 5.0 was optimum with 86.1, 88.5 and 93.9 % copper (II) removal by boiled, formaldehyde-treated and concentrated sulphuric acid-treated wood chips, respectively, for dilute solutions at 20 g L?1 adsorbent dose. The experimental data were analysed using Freundlich, Langmuir, Dubinin–Radushkevich and Temkin isotherm models. It was found that Freundlich and Langmuir models fitted better the equilibrium adsorption data and the adsorption process followed pseudo-second-order reaction kinetics. The results showed that the copper (II) is considerably adsorbed on wood chips and it could be an economical option for the removal of copper from aqueous systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号