首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
A. I. Shapiro 《Astrophysics》2002,45(2):215-222
A model problem in the theory of line formation in an optically thick, purely scattering, stellar atmosphere is considered. The integral equation of radiation transfer at line frequencies is solved numerically for a two-level atom in the approximation of complete frequency redistribution in scattering. The numerical results are compared with those calculated from equations of the asymptotic theory. On the basis of the asymptotic theory, the positions of intensity maxima in a line are found for different absorption profiles.  相似文献   

2.
Radiation interacts with matter via exchange of energy and momentum. When matter is moving with a relativistic velocity or when the background space–time is strongly curved, rigorous relativistic treatment of hydrodynamics and radiative transfer is required. Here, we derive fully general relativistic radiation hydrodynamic equations from a covariant tensor formalism. The equations can be applied to any three-dimensional problems and are rather straightforward to understand compared to the comoving frame-based equations. The current approach is applicable to any space–time or coordinates, but in this work we specifically choose the Schwarzschild space–time to show explicitly how the hydrodynamic and the radiation moment equations are derived. Some important aspects of relativistic radiation hydrodynamics and the difficulty with the radiation moment formalism are discussed as well.  相似文献   

3.
The limiting polarization of a resonance line is examined for standard radiative transfer of polarized radiation in a semi-infinite scattering atmosphere with complete frequency redistribution. Two families of profiles of the line absorption coefficient, which are generalizations of Lorentz and Doppler profiles, are examined. It is shown that for both families this parameter approaches the Sobolev-Chandrasekhar limit when the fraction of absorption within the frequency interval (expressed in appropriate units) from −1 to 1 relative to the total absorption in the line approaches unity.  相似文献   

4.
In this paper we develop a new exact method combined with finite Laplace transform and theory of linear singular operators to obtain a solution of transport equation in finite plane-parallel steady-state scattering atmosphere both for angular distribution of radiation from the bounding faces of the atmosphere and for intensity of radiation at any depth of the atmosphere. The emergent intensity of radiation from the bounding faces are determined from simultaneous linear integral equations of the emergent intensity of radiation in terms ofX andY equations of Chandrasekhar. The intensity of radiation at any optical depth for a positive and negative direction parameter is derived by inversion of the Laplace transform in terms of intergrals of the emergent intensity of radiation. A new expression of theX andY equation is also derived for easy numerical computation. This is a new and exact method applicable to all problems in finite plane parallel steady scattering atmosphere.  相似文献   

5.
In the first of the series of papers by Ivanov et al. it was shown that the model problem of the transfer of polarized radiation as a result of resonance scattering from two-level atoms in a homogeneous plane atmosphere in the absence of LTE comes down, in the approximation of complete frequency redistribution, to the solution of an integral matrix equation of the Wiener-Hopf type for a (2 × 2) matrix source function S(τ). In the second paper in this series, devoted to the vector Milne problem, complete asymptotic expansions of the matrix I(z) [which is essentially a Laplace transform of the matrix S(τ)] for the case of a Doppler profile of the coefficient of absorption, and the coefficients of asymptotic expansions of S(τ) (τ » 1) are expressed in terms of coefficients of the expansions of I(z). We show that asymptotic expansions of S(τ) can be found directly from an integral matrix equation of the Wiener-Hopf type for S(τ). We give new recursive equations for the coefficients of these expansions, as well as a new derivation of asymptotic expansions of the matrix I, including its second column, which was considered only briefly by Ivanov et al.  相似文献   

6.
A unifying theoretical approach is presented to derive from the general principles of Quantum Electrodynamics both the radiative transfer equations for polarized radiation and the statistical equilibrium equations for an atomic system interacting with a polarized radiation field. The radiation field is described by means of Stokes parameters while the atomic system is described in terms of its density-matrix operator. The non-diagonal terms of the density matrix are fully accounted for so that this formalism can be suitably employed to describe a wide variety of physical phenomena like resonance scattering, the Hanle effect and the Zeeman effect, either in optically thin or optically thick atmospheres, together with all the possible intermediate situations.The general formulae derived in the first sections of the paper are subsequently particularized introducing the dipole approximation in the relevant matrix elements describing the interaction between the atomic system and the radiation field. The final equations assume a quite compact expression by the introduction of suitable spherical tensors connected with the components of the polarization unit vectors associated with each direction of the radiation field. The general expressions and the main properties of these tensors are discussed in the Appendix.  相似文献   

7.
A new method is presented for calculating spectral line radiation transport in a homogeneous circular cylinder with infinitely long axis for isotropic scattering with complete frequency redistribution or no change in frequency. In addition to the cylinder, scattering in a layer symmetric about its midpoint and in a sphere are also studied. Equations are derived which are satisfied by the resolvent of the fundamental integral equation describing these cases of scattering. By applying a Hankel transform over a finite interval, the resolvent is expressed in terms of an auxiliary function. An equation is derived for this auxiliary function which is easily soluble by iteration, with the speed of its convergence increasing with growth in the radius of the scattering region.Translated from Astrofizika, Vol. 37, No. 1, pp. 111–127, January–March, 1994.This study was carried out with financial support from the Russian Fund for Fundamental Studies (project 93-02-2957).  相似文献   

8.
本文在Thorne工作的基础上讨论了吸积盘中黑洞的有关参量的演化,以及由Schwarzschild黑洞吸积盘向Kerr黑洞吸积盘演化过程中对吸积盘辐射通量的影响,最后针对几个典型的辐射过程,分别讨论了黑洞吸积盘在牛顿框架中的温度分布方程与广义相对论的温度分布方程的热不稳定性,并给出此类问题的热不稳定性的判据。  相似文献   

9.
We extend to study Hawking radiation via tunneling in conformal gravity. We adopt Parikh-Wilczek’s semi-classical tunneling method and the method of complex-path integral to investigate Hawking radiation from new rotating AdS black holes in conformal gravity. In this paper, the research on Hawking radiation from the rotating black holes is done in a general system, not limited in dragging coordinate systems any longer. Moreover, there existed some shortcomings in the previous derivation of geodesic equations. Different from the massless case, they used a different approach to derive the geodesic equation of the massive particles. Even the treatment was inconsistent with the variation principle of action. To remedy the shortcoming, we improve treatment to deduce the geodesic equations of massive and massless particles in a unified and self-consistent way. In addition, we also recover the Hawking temperature resorting to the complex-path integral method.  相似文献   

10.
In this paper we consider the time-dependent diffuse reflection and transmission problems for a homogeneous anisotropically-scattering atmosphere of finite optical depth and solve it by the principle of invariance. Also we consider the time-dependent diffuse reflection and transmission of parallel rays by a slab consisting of two anisotropic homogeneous layers, whose scattering and transmission properties are known. It is shown how to express the time-dependent reflected and transmitted intensities in terms of their components. In a manner similar to that given by Tsujita (1968), we assumed that the upward-directed intensities of radiation at the boundary of the two layers are expressed by the sum of products of some auxiliary functions depending on only one argument. Then, after some analytical manipulations, three groups of systems of simultaneous integral equations governing the auxiliary functions are obtained.  相似文献   

11.
A restricted three-body problem for a dust particle, in presence of a spherical cometary nucleus in an eccentric (elliptic, parabolic or hyperbolic) orbit about the Sun, is considered. The force of radiation pressure and the Poynting– Robertson effect are taken into account. The differential equations of the particle’s non-inertial spatial motion are investigated both analytically and numerically. With the help of a complex representation, a new single equation of the motion is obtained. Conversion of the equations of motion system into a single equation allows the derivation of simple expressions similar to the integral of energy and integrals of areas. The derived expressions are named quasiintegrals. Relative values of terms of the energy quasiintegral for a smallest, largest, and a mean comet are calculated. We have found that in a number of cases the quasiintegrals are related to the regular integrals of motion, and discuss how the quasiintegrals may be applied to find some significant constraints on the motion of a body of infinitesimal mass.  相似文献   

12.
It is shown, that the potential obtained from Joukovsky's formula, corresponding to a given family of orbits is a general solution of Szebehely's equation. Then it is shown how a general solution of Szebehely's equation can be obtained from its particular solution. This method is applied to several examples. Potentials generating families of concentric elliptic orbits and families of orbits of conic sections are determined. Finally, the inverse Keplerian problem is solved using Szebehely's equation in polar coordinates.  相似文献   

13.
This paper deals with the second-order tensor virial equations for the linear oscillations of a gaseous mass in the presence of a magnetic field. It is shown that the commonly used linearized versions of the tensor virial equations are restricted integral equations that incorporate the linearized equation of motion but not the boundary condition. These restricted equations only allow trial functions that fulfil the boundary condition and are of limited practical value.The unrestricted variational principle for the linear oscillations of a magnetic configuration is used to derive a more general formulation of the second-order tensor virial equations so that the linear trial function i =X ij x j can be used to study the oscillations of a configuration with a magnetic field that extends in the exterior vacuum. The unrestricted virial equations have been applied to Ferraro's model and approximate results for the eigenfrequencies and eigenfunctions have been obtained for nine oscillation modes.  相似文献   

14.
In this paper we address comments made in a recent paper by Hubený and Heinzel (1986). By use of an identity which they report, the photon redistribution function appropriate for scattering transitions between two radiation broadened atomic levels is derived using the simpler Voigt functions. The behaviour of the redistribution function relative to complete redistribution is then examined. It is important to note that the conclusions originally arrived at by McKenna (1984a) are reinforced by this examination. In particular, for most scattering angles, there exists a significant cohrently scattered component of the redistribution function, and the deviations from complete redistribution are large over most outgoing frequencies for a given incoming frequency.  相似文献   

15.
In radiative transfer, the intensities of radiation from the bounding faces of a scattering atmosphere of finite optical thickness can be expressed in terms of Chandrasekhar’s X- and Y-functions. The nonlinear nonhomogeneous coupled integral equations which the X- and Y-functions satisfy in the real plane are meromorphically extended to the complex plane to frame linear nonhomogeneous coupled singular integral equations. These singular integral equations are then transformed into nonhomogeneous Riemann–Hilbert problems using Plemelj’s formulae. Solutions of those Riemann–Hilbert problems are obtained using the theory of linear singular integral equations. New forms of linear nonhomogeneous decoupled expressions are derived for X- and Y-functions in the complex plane and real plane. Solutions of these two expressions are obtained in terms of one known N-function and two new unknown functions N 1- and N 2- in the complex plane for both nonconservative and conservative cases. The N 1- and N 2-functions are expressed in terms of the known N-function using the theory of contour integration. The unknown constants are derived from the solutions of Fredholm integral equations of the second kind uniquely using the new linear decoupled constraints. The expressions for the H-function for a semi-infinite atmosphere are obtained as a limiting case.  相似文献   

16.
Multiple resonance scattering of spectral line radiation is examined in atmospheres with uniformly distributed sources of unpolarized radiation. It is assumed that the profile of the absorption coefficient is lorentzian and that scattering involves complete frequency redistribution. The polarization characteristics of the emerging radiation are determined by iterative solution of a nonlinear Ambartsumyan-Chandrasekhar matrix integral equation. In particular, it is found that for pure scattering the maximum polarization at the limb of the disk is 5.421%. The polarization characteristics of the emerging radiation are compared for three different absorption profiles: Lorentz, Doppler, and rectangular (monochromatic radiation). __________ Translated from Astrofizika, Vol. 50, No. 2, pp. 199–217 (May 2007).  相似文献   

17.
We present a method for computing the spectrum of the integral equation for radiation transfer in a cylinder. This method, as in the previous articles in this series, is based on a Hankel transformation applied to the equation. Calculating the spectrum then reduces to solving the equation for the auxiliary function for each eigenvalue separately. The corresponding eigenfunction is then found by an additional integration. We find asymptotic expressions for the eigenvalues and the eigenfunctions for a cylinder with a large optical radius when there is scattering in a spectral line, with complete redistribution over frequency when the absorption coefficient obeys a power law. We also derive equations determining the quantities entering into these expressions. For the simplest kernel of the equation all quantities can be expressed in terms of Bessel functions and roots of a transcendental equation.Translated from Astrofizika, Vol. 38, No. 1, pp. 75–88, January–March, 1995.  相似文献   

18.
This paper calls into question the validity of the well-known formulae for the perturbations in the Keplerian elements, over one revolution of an orbit, for the motion of a drag-perturbed artificial satellite. These formulae are derived from Gauss's form of the planetary equations, by averaging over a single revolution of the orbit, and using the eccentric anomaly as the independent variable.It is shown that for light balloon-type satellites in near-circular orbits neither the eccentric anomaly nor the true longitude is a suitable choice of independent variable for the averaging procedure. Under these circumstances, it would seem that simple formulae for the variations in the elements cannot be derived from Gauss's equations.  相似文献   

19.
In this article, we present the Lie transformation algorithm for autonomous Birkhoff systems. Here, we are referring to Hamiltonian systems that obey a symplectic structure of the general form. The Birkhoff equations are derived from the linear first-order Pfaff–Birkhoff variational principle, which is more general than the Hamilton principle. The use of 1-form in formulating the equations of motion in dynamics makes the Birkhoff method more universal and flexible. Birkhoff’s equations have a tensorial character, so their form is independent of the coordinate system used. Two examples of normalization in the restricted three-body problem are given to illustrate the application of the algorithm in perturbation theory. The efficiency of this algorithm for problems of asymptotic integration in dynamics is discussed for the case where there is a need to use non-canonical variables in phase space.  相似文献   

20.
The inference of relativistic electron spectra from spectral measurement of inverse Compton radiation is discussed for the case where the background photon spectrum is a Planck function. The problem is formulated in terms of an integral transform that relates the measured spectrum to the unknown electron distribution. A general inversion formula is used to provide a quantitative assessment of the information content of the spectral data. It is shown that the observations must generally be augmented by additional information if anything other than a rudimentary two or three parameter model of the source function is to be derived. It is also pointed out that since a similar equation governs the continuum spectra emitted by a distribution of black-body radiators, the analysis is relevant to the problem of stellar population synthesis from galactic spectra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号