首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
The Anita Peridotite, in southwestern New Zealand, is a ∼1 × 20 km ultramafic massif that was rapidly extruded from beneath a Cretaceous arc within the 4 km wide mylonitic Anita Shear Zone. The peridotitic body contains a spectacular array of textures that preserve evidence for changing temperature, stress, and deformation mechanisms during the exhumation process. Olivine and orthopyroxene microstructures and lattice-preferred orientations (LPO) record a three-phase deformation history. Dislocation glide on the C- and E-type slip systems is recorded by coarse pre-mylonitised olivine grains, and occurred under hydrous conditions at T ∼650 °C, stress ∼200–700 MPa and strain rate ∼10−15 s−1, probably within hydrated sub-arc mantle lithosphere. Rare protomylonite pods record deformation by dislocation creep in porphyroclasts and dislocation-accommodated grain boundary sliding in the matrix on {0kl}[100] in olivine and (100)[001] in orthopyroxene, under conditions of T ∼730–770 °C, stress ∼52–700 MPa and strain rate ∼10−15 s−1. The massif, however, is dominated by mylonite and ultramylonite that wrap the protomylonite pods, comprising mostly fine-grained olivine neoblasts that lack internal distortions and have uniform LPOs. These textures indicate deformation occurred by grain-size sensitive (GSS) creep at T ∼650 °C, stress ∼69–137 MPa and strain rate ∼10−15 s−1, and thus during conditions of cooling and decreasing stress. GSS creep became more dominant with time, as the proportion of randomly-oriented neoblasts increased and formed interlinked networks that accommodated much of the strain. Grain boundary pinning allowed GSS creep to be maintained in polyphase regions, following mixing of olivine and orthopyroxene, which may have occurred by grain boundary transport in a fluid phase during a “creep cavitation” process. The results indicate that the Anita Peridotite recrystallised and underwent rheological weakening at a constant strain rate, with strain distributed across the entire section. This widespread deformation caused rapid exhumation of the peridotite from the lithospheric mantle into the overlying arc crust. The massif therefore records multiple overprinting phases of deformation under mantle and crustal conditions associated with the rapid exhumation of a large orogenic peridotite.  相似文献   

2.
The Eclogite Zone, of the Tauern Window is an exhumed subduction channel comprising eclogites with different grades of retrogression in a matrix of high-pressure metasediments. The rocks were exposed to 600 °C and 20–25 kbars, and then retrogressed during their exhumation, first under blueschist facies and later under amphibolite facies metamorphism. To gain insights into the deformation within the subduction channel during subduction and exhumation, both fresh and retrogressed eclogites, as well as the surrounding metasediments were investigated with respect to their deformation microstructures and crystallographic preferred orientations (CPOs). Pristine and retrogressed eclogites show grain boundary migration and subgrain rotation recrystallization microstructures in omphacite. A misorientation axes analysis reveals the activity of complementary deformation mechanisms including grain boundary sliding and dislocation creep. The omphacite CPOs of the eclogites correspond to dominant SL-fabrics characteristic of plane strain deformation, though there are local variations towards flattening or constriction within the paleosubduction channel. The glaucophane CPOs in retrogressed eclogites match those of omphacite, suggesting that a constant strain geometry persisted during exhumation at blueschist facies conditions. Plastic deformation of the host high-pressure metasediments outlasted that of the eclogites, as indicated by white mica fabrics and quartz CPO. The latter is consistently asymmetric, pointing to the operation of non-coaxial deformation. The microstructures and CPO data indicate a continuous plastic deformation cycle with eclogite and blueschist facies metamorphism related to subduction and exhumation of the different rock units.  相似文献   

3.
Grain boundaries influence many physical and chemical properties of crystalline materials. Here, we perform molecular dynamics simulations to study the structure of a series of [100] symmetric tilt grain boundaries in Mg2SiO4 forsterite. The present results show that grain boundary energies depend significantly on misorientation angle. For small misorientation angles (up to 22°), grain boundary structures consist of an array of partial edge dislocations with Burgers vector $\frac{1}{2}[001]$ associated with stacking faults and their energies can be readily fit with a model which adds the Peach-Koehler equation to the Read-Shockley dislocation model for grain boundaries. The core radius of partial dislocations and the spacing between the partials derived from grain boundary energies show that the transition from low- to high-angle grain boundaries occurs for a misorientation angle between 22° and 32°. For high misorientation angles (32.1° and 60.8°), the cores of dislocations overlap and form repeated structural units. Finally, we use a low energy atomic configuration obtained by molecular dynamics for the misorientation of 12.18° as input to simulate a high-resolution transmission electron microscopy (HRTEM) image. The simulated image is in good agreement with an observed HRTEM image, which indicates the power of the present approach to predict realistic atomic structures of grain boundaries in complex silicates.  相似文献   

4.
Dolomitic marble on the island of Naxos was deformed at variable temperatures ranging from 390 °C to >700 °C. Microstructural investigations indicate two end-member of deformation mechanisms: (1) Diffusion creep processes associated with small grain sizes and weak or no CPO (crystallographic preferred orientation), whereas (2) dislocation creep processes are related with larger grain sizes and strong CPO. The change between these mechanisms depends on grain size and temperature. Therefore, sample with dislocation and diffusion creep microstructures and CPO occur at intermediate temperatures in relative pure dolomite samples. The measured dolomite grain size ranges from 3 to 940 μm. Grain sizes at Tmax >450 °C show an Arrhenius type evolution reflecting the stabilized grain size in deformed and relative pure dolomite. The stabilized grain size is five times smaller than that of calcite at the same temperature and shows the same Arrhenius-type evolution. In addition, the effect of second phase particle influences the grain size evolution, comparable with calcite. Calcite/dolomite mixtures are also characterized by the same difference in grain size, but recrystallization mechanism including chemical recrystallization induced by deformation may contribute to apparent non-temperature equilibrated Mg-content in calcite.  相似文献   

5.
The trace-element composition of rutile is commonly used to constrain PTt conditions for a wide range of metamorphic systems. However, recent studies have demonstrated the redistribution of trace elements in rutile via high-diffusivity pathways and dislocation-impurity associations related to the formation and evolution of microstructures. Here, we investigate trace-element migration in low-angle boundaries formed by dislocation creep in rutile within an omphacite vein of the Lago di Cignana unit (Western Alps, Italy). Zr-in-rutile thermometry and inclusions of quartz in rutile and of coesite in omphacite constrain the conditions of rutile deformation to around the prograde boundary from high pressure to ultra-high pressure (~2.7 GPa) at temperatures of 500–565°C. Crystal-plastic deformation of a large rutile grain results in low-angle boundaries that generate a total misorientation of ~25°. Dislocations constituting one of these low-angle boundaries are enriched in common and uncommon trace elements, including Fe and Ca, providing evidence for the diffusion and trapping of trace elements along the dislocation cores. The role of dislocation microstructures as fast-diffusion pathways must be evaluated when applying high-resolution analytical procedures as compositional disturbances might lead to erroneous interpretations for Ca and Fe. In contrast, our results indicate a trapping mechanism for Zr.  相似文献   

6.
The electron backscattering diffraction technique (EBSD) was used to analyze bulging recrystallization microstructures from naturally and experimentally deformed quartz aggregates, both of which are characterized by porphyroclasts with finely serrated grain boundaries and grain boundary bulges set in a matrix of very fine recrystallized grains. For the Tonale mylonites we investigated, a temperature range of 300–380 °C, 0.25 GPa confining pressure, a flow stress range of ~ 0.1–0.2 GPa, and a strain rate of ~ 10− 13 s− 1 were estimated. Experimental samples of Black Hills quartzite were analyzed, which had been deformed in axial compression at 700 °C, 1.2–1.5 GPa confining pressure, a flow stress of ~ 0.3–0.4 GPa, a strain rate of ~ 10− 6 s− 1, and to 44% to 73% axial shortening. Using orientation imaging we investigated the dynamic recrystallization microstructures and discuss which processes may contribute to their development. Our results suggest that several deformation processes are important for the dismantling of the porphyroclasts and the formation of recrystallized grains. Grain boundary bulges are not only formed by local grain boundary migration, but they also display a lattice misorientation indicative of subgrain rotation. Dynamic recrystallization affects especially the rims of host porphyroclasts with a hard orientation, i.e. with an orientation unsuitable for easy basal slip. In addition, Dauphiné twins within porphyroclasts are preferred sites for recrystallization. We interpret large misorientation angles in the experimental samples, which increase with increasing strain, as formed by the activity of fluid-assisted grain boundary sliding.  相似文献   

7.
A population of oscillatory zoned, igneous zircon grains in a Javanese andesite contains fluid and mineral inclusions (up to 10 μm across) trapped during zircon growth. Orientation contrast imaging and orientation mapping by electron backscatter diffraction reveal that crystal-plastic deformation overprints growth zoning and has localized around 1–10 μm pores and inclusions. Cumulative crystallographic misorientation of up to 25° around pores and inclusions in zircon is predominantly accommodated by low-angle (<5°) orientation boundaries, with few free dislocations in subgrain interiors. Low-angle boundaries are curved, with multiple orientation segments at the sub-micrometer scale. Misorientation axes associated with the most common boundaries align with the zircon c-axis and are consistent with dislocation creep dominated by <100>(010) slip. A distinctly different population of sub-micron pores is present along subgrain boundaries and their triple junctions. These are interpreted to have formed as a geometric consequence of dislocation interaction during crystal-plasticity. Dislocation creep microstructures are spatially related to differences in cathodoluminescence spectra that indicate variations in the abundance of CL-active rare earth elements. The extent of the modification suggests deformation-related fast-pathway diffusion distances that are over five orders of magnitude greater than expected for volume diffusion. This enhanced diffusion is interpreted to represent a combination of fast-diffusion pathways associated with creep cavitation, dislocations and along low-angle boundaries. These new data indicate that ductile deformation localised around inclusions can provide fast pathways for geochemical exchange. These pathways may provide links to the zircon grain boundary, thus negating the widely held assumption that inclusions in fracture-free zircon are geochemically armoured once they are physically enclosed.  相似文献   

8.
Tectonic pseudotachylytes, i.e. quenched friction-induced silicate melts, record coseismic slip along faults and are mainly reported from the brittle crust in association with cataclasites. In this study, we document the occurrence of recrystallization of quartz to ultrafine-grained (grain size 1–2 μm) aggregates along microshear zones (50–150 μm thick) in the host rock adjacent to pseudotachylytes from two different faults within quartzite (Schneeberg Normal Fault Zone, Eastern Alps), and tonalite (Adamello fault, Southern Alps) in the brittle crust. The transition from the host quartz to microshear zone interior includes: (i) formation of high dislocation densities; (ii) fine (0.3–0.5 μm) polygonization to subgrains defined by disordered to well-ordered dislocation walls; (iii) development of a mosaic aggregate of dislocation-free new grains. The crystallographic preferred orientation (CPO) of quartz towards the microshear zone shows a progressive misorientation from the host grain, by subgrain rotation recrystallization, to a nearly random CPO possibly related to grain boundary sliding. These ultrafine aggregates appear to be typically associated with pseudotachylytes in nature. We refer the crystal plastic deformation of quartz accompanied by dramatic grain size refinement to the coseismic stages of fault slip due to high differential stress and temperature transients induced by frictional heating. Microshear zones localized on precursory fractures developed during the stages of earthquake rupture propagation and the very initial stages of fault slip. Thermal models indicate that the process of recrystallization, including recovery processes, occurred in a time lapse of a few tens of seconds.  相似文献   

9.
In an extensional shear zone in the Talea Ori, Crete, quartz veins occur in high-pressure low-temperature metamorphic sediments at sites of dilation along shear band boundaries, kink band boundaries and boudin necks. Bent elongate grains grown epitactically from the host rock with abundant fluid inclusion trails parallel to the vein wall indicate vein formation by crack-seal increments during dissolutionprecipitation creep of the host rock. The presence of sutured high-angle grain boundaries and subgrains shows that temperatures were sufficiently high for recovery and strain-induced grain boundary migration, i.e. higher than 300 -350℃, close to peak metamorphic conditions. The generally low amount of strain accumulated by dislocation creep in quartz of the host rock and most veins indicates low bulk stress conditions of a few tens of MPa on a long term. The time scale of stress-loading to cause cyclic cracking and sealing is assumed to be lower than the Maxwell relaxation time of the metasediments undergoing dissolution-precipitation creep at high strain rates(10-10 s-1 to 10-9 s-1), which is on the order of hundred years. In contrast, some veins discordant or concordant to the foliation show heterogeneous quartz microstructures with micro-shear zones, sub-basal deformation lamellae, shortwavelength undulatory extinction and recrystallized grains restricted to high strain zones. These microstructures indicate dislocation glide-controlled crystal-plastic deformation(low-temperature plasticity) at transient high stresses of a few hundred MPa with subsequent recovery and strain-induced grain boundary migration at relaxing stresses and temperatures of at least 300 -350℃. High differential stresses in rocks at greenschist-facies conditions that relieve stress by creep on the long term, requires fast stress-loading rates, presumably by seismic activity in the overlying upper crust. The time scale for stress loading is controlled by the duration of the slip event along a fault, i.e. a few seconds to minutes.This study demonstrates that microstructures can distinguish between deformation at internal low stress-loading rates(to tens of MPa on a time scale of hundred years) and high(coseismic) stress-loading rates to a few hundred MPa on a time scale of minutes.  相似文献   

10.
Post-deformational annealing of calcite rocks   总被引:3,自引:3,他引:3  
The evolution of microstructure and crystallographic preferred orientation (CPO) during post-deformational annealing was studied on three calcite rock types differing in purity and grain size: Carrara marble (98% calcite, mean grain size of 115 μm), Solnhofen limestone (96%, 5 μm) and synthetic calcite aggregates (99%, 7 μm). Samples were first deformed in torsion at 727 °C at a shear strain rate of 3 × 10 4 s 1 to a shear strain of 5 and subsequently heat-treated at 727 °C for various durations between 0 and 24 h. Microstructures and CPOs were analysed by optical microscopy, image analysis and electron backscatter diffraction (EBSD).All rock types deformed in the dislocation creep field at the same applied conditions, but their microstructures and CPOs after deformation and after annealing differed depending on starting grain size and material composition. In Carrara marble and in the synthetic calcite aggregate, a strong CPO developed during deformation accompanied by dynamic recrystallisation with significant changes in grain size. During annealing, widespread grain growth and subtle changes of CPO occurred, and equilibrated foam microstructures were approached after long annealing times. The CPO is the only feature in annealed samples indicating an earlier deformation phase, although it is not always identical to the CPO formed during deformation. In the more impure Solnhofen limestone, secondary phases on grain boundaries suppressed grain boundary mobility and prevented both the formation of a recrystallisation CPO during deformation and grain size modification during deformation and annealing.  相似文献   

11.
To understand the preservation of coesite inclusions in ultrahigh‐pressure (UHP) metamorphic rocks, an integrated petrological, Raman spectroscopic and focussed ion beam (FIB) system–transmission electron microscope (TEM) study was performed on a UHP kyanite eclogite from the Sulu belt in eastern China. Coesite grains have been observed only as rare inclusions in kyanite from the outer segment of garnet and in the matrix. Raman mapping analysis shows that a coesite inclusion in kyanite from the garnet rim records an anisotropic residual stress and retains a maximum residual pressure of ~0.35 GPa. TEM observations show quartz is absent from the coesite inclusion–host kyanite grain boundaries. Numerous dislocations and sub‐grain boundaries are present in the kyanite, but dislocations are not confirmed in the coesite. In particular, dislocations concentrate in the kyanite adjacent to the boundary with the coesite inclusion, and they form a dislocation concentration zone with a dislocation density of ~109 cm?2. A high‐resolution TEM image and a fast Fourier transform‐filtered image reveal that a tiny dislocation in the dislocation concentration zone is composed of multiple edge dislocations. The estimated dislocation density in most of the kyanite away from the coesite inclusion–host kyanite grain boundaries is ~108 cm?2, being lower than that in kyanite adjacent to the coesite. In the case of a coesite inclusion in a matrix kyanite, using Raman and TEM analyses, we could not identify any quartz at the grain boundaries. Dislocations are not observed in the coesite, but numerous dislocations and stacking faults are developed in the kyanite. The estimated overall dislocation density in the coesite‐bearing matrix kyanite is ~108 cm?2, but a high dislocation density region of ~109 cm?2 is also present near the coesite inclusion–host kyanite grain boundaries. Inclusion and matrix kyanite grains with no coesite have dislocation densities of ≤108 cm?2. Dislocation density is generally reduced during an annealing process, but our results show that not all dislocations in the kyanite have recovered uniformly during exhumation of the UHP rocks. Hence, one of the key factors acting as a buffer to inhibit the coesite to quartz transformation is the mechanical interaction between the host and the inclusion that lead to the formation of dislocations in the kyanite. The kyanite acts as an excellent pressure container that can preserve coesite during the decompression of rocks from UHP conditions. The search for and study of inclusions in kyanite may be a more suitable approach for tracing the spatial distribution of UHP metamorphic rocks.  相似文献   

12.
We use quantitative microstructural analysis including misorientation analysis based on electron backscatter diffraction (EBSD) data to investigate deformation mechanisms of naturally deformed plagioclase in an amphibolite gabbro mylonite. The sample is from lower oceanic crust exposed near the Southwest Indian Ridge, and it has a high ratio of recrystallized matrix grains to porphyroclasts. Microstructures preserved in porphyroclasts suggest that early deformation was achieved principally by dislocation creep with subgrain rotation recrystallization; recrystallized grain (average diameter ∼8 μm) microstructures indicate that subsequent grain boundary sliding (GBS) was active in the continued deformation of the recrystallized matrix. The recrystallized matrix shows four-grain junctions, randomized misorientation axes, and a shift towards higher angles for neighbor-pair misorientations, all indicative of GBS. The matrix grains also exhibit a shape preferred orientation, a weak lattice preferred orientation consistent with slip on multiple slip systems, and intragrain microstructures indicative of dislocation movement. The combination of these microstructures suggest deformation by dislocation-accommodated GBS (DisGBS). Strain localization within the recrystallized matrix was promoted by a transition from grain size insensitive dislocation creep to grain size sensitive GBS, and sustained by the maintenance of a small grain size during superplasticity.  相似文献   

13.
The rates of grain growth of stoichiometric dolomite [CaMg(CO3)2] and magnesite (MgCO3) have been measured at temperatures T of 700–800°C at a confining pressure P c of 300 MPa, and compared with growth rates of calcite (CaCO3). Dry, fine-grained aggregates of the three carbonates were synthesized from high purity powders by hot isostatic pressing (HIP); initial mean grain sizes of HIP-synthesized carbonates were 1.4, 1.1, and 17 μm, respectively, for CaMg(CO3)2, MgCO3, and CaCO3, with porosities of 2, 28, and 0.04% by volume. Grain sizes of all carbonates coarsened during subsequent isostatic annealing, with mean values reaching 3.9, 5.1, and 27 μm for CaMg(CO3)2, MgCO3, and CaCO3, respectively, in 1 week. Grain growth of dolomite is much slower than the growth rates of magnesite or calcite; assuming normal grain growth and n = 3 for all three carbonates, the rate constant K for dolomite (≃5 × 10−5 μm3/s) at T = 800°C is less than that for magnesite by a factor of ~30 and less than that for calcite by three orders of magnitude. Variations in carbonate grain growth may be affected by differences in cation composition and densities of pores at grain boundaries that decrease grain boundary mobility. However, rates of coarsening correlate best with the extent of solid solution; K is the largest for calcite with extensive Mg substitution for Ca, while K is the smallest for dolomite with negligible solid solution. Secondary phases may nucleate at advancing dolomite grain boundaries, with implications for deformation processes, rheology, and reaction kinetics of carbonates.  相似文献   

14.
We describe the structure, microstructures, texture and paleopiezometry of quartz-rich phyllites and marbles along N-trending Moutsounas shear zone at the eastern margin of the Naxos metamorphic core complex (MCC). Fabrics consistently indicate a top-to-the-NNE non-coaxial shear and formed during the main stage of updoming and exhumation between ca. 14 and 11 Ma of the Naxos MCC. The main stage of exhumation postdates the deposition of overlying Miocene sedimentary successions and predates the overlying Upper Miocene/Pliocene conglomerates. Detailed microstructural and textural analysis reveals that the movement along the Moutsounas shear zone is associated with a retrograde greenschist to subgreenschist facies overprint of the early higher-temperature rocks. Paleopiezometry on recrystallized quartz and calcite yields differential stresses of 20–77 MPa and a strain rate of 10−15–10−13 s−1 at 350 °C for quartz and ca. 300 °C for calcite. Chlorite geothermometry of the shear zone yields two temperature regimes, 300–360 °C, and 200–250 °C. The lower temperature group is interpreted to result from late-stage hydrothermal overprint.  相似文献   

15.
A detailed structural and microstructural analysis of the Miocene Raft River detachment shear zone (NW Utah) provides insight into the thermomechanical evolution of the continental crust during extension associated with the exhumation of metamorphic core complexes. Combined microstructural, electron backscattered diffraction, strain, and vorticity analysis of the very well exposed quartzite mylonite show an increase in intensity of the rock fabrics from west to east, along the transport direction, compatible with observed finite strain markers and a model of ``necking'' of the shear zone. Microstructural evidence (quartz microstructures and deformation lamellae) suggests that the detachment shear zone evolved at its peak strength, close to the dislocation creep/exponential creep transition, where meteoric fluids played an important role on strain hardening, embrittlement, and eventually seismic failure.Empirically calibrated paleopiezometers based on quartz recrystallized grain size and deformation lamellae spacing show very similar results, indicate that the shear zone developed under stress ranging from 40 MPa to 60 MPa. Using a quartzite dislocation creep flow law we further estimate that the detachment shear zone quartzite mylonite developed at a strain rates between 10−12 and 10−14 s−1. We suggest that a compressed geothermal gradient across this detachment, which was produced by a combination of ductile shearing, heat advection, and cooling by meteoric fluids, may have triggered mechanical instabilities and strongly influenced the rheology of the detachment shear zone.  相似文献   

16.
In pelitic schists composed mainly of quartz and albite grains, the morphology of intergranular pores, which were filled with water, was studied by transmission electron microscopy (TEM). Although some pores are defined by crystallographic planes (F-face), most of their form has an ideal shape determined by interface tensions between grains and fluid. High-resolution TEM observations demonstrate that pore-free regions at grain boundaries are tight even at the nanometer scale, showing that the wetting angle is larger than 0° in this rock. The pore distribution in two-grain junctions can be compared to a "necklace microstructure" developed by instability of a fluid film along the boundary induced by microcracking. Wetting angles for pores located at grain edges of quartz and albite decrease in the order albite/albite, quartz/quartz, and quartz/albite. The quartz/quartz wetting angle in a calcite-free sample is smaller than that in a calcite-containing sample. This angle also changes due to grain misorientation. Our results confirm that solid-solid and solid-fluid interfacial energies control the geometry of intergranular fluid in natural rocks.  相似文献   

17.
Recrystallization of perthites in granulite facies (T = 700–730 °C, P = 0.65–0.8 GPa) shear zones in mangerite-charnockite rocks from Lofoten (Norway) is localized along intracrystalline bands parallel to fractures. Fracturing preferentially occurred along the cleavage planes (010) and (001). EBSD analysis of perthite porphyroclasts indicates a very low degree of internal misorientation (within 5°) and the lack of recovery features. Recrystallized grains show coarsening with increasing width of the bands, and chemical changes with respect to the host grains. Crystallographic orientation of the new grains does not show a host-control relation to the parent perthite grains. In summary, the microstructure and CPO data consistently indicate intragranular recrystallization by nucleation and growth from fractured grains. Perthite porphyroclasts are surrounded by a matrix of recrystallized plagioclase + K-feldspar ± amphibole ± biotite. There is extensive evidence of syndeformational nucleation of new phases and of phase boundary migration in the matrix, with plagioclase grains forming bulges and protrusions towards K-feldspar. The spatial distribution of K-feldspar and plagioclase in the recrystallized matrix is characterized by the predominance of phase boundaries over grain boundaries. All these observations are consistent with diffusion creep as the dominant deformation mechanism in the matrix, associated with grain boundary sliding. Accordingly, recrystallized plagioclase and K-feldspar show a very weak crystallographic preferred orientation, which is interpreted in terms of oriented growth during diffusion creep. Fracturing of perthites promoted extensive grain size reduction, recrystallization, fluid infiltration, and operation of grain-size sensitive creep, resulting in strain localization.  相似文献   

18.
The microstructures of two contrasting garnet grains are mapped using automated electron backscatter diffraction. In both cases there is a very strong crystallographic preferred orientation, with measurements clustered round a single dominant orientation. Each garnet grain is divided into domains with similar orientations, limited by boundaries with misorientations of 2° or more. In both samples most of misorientation angles measured across orientation domain boundaries are significantly lower than those measured between random pairs of orientation domains. One sample is a deformed garnet that shows considerable distortion within the domains. Lines of orientation measurements within domains and across domain boundaries show small circle dispersions around rational crystallographic axes. The domain boundaries are likely to be subgrain boundaries formed by dislocation creep and recovery. The second sample is a porphyroblast in which the domains have no internal distortion and the orientation domain boundaries have random misorientation axes. These boundaries probably formed by coalescence of originally separate garnets. We suggest that misorientations across these boundaries were reduced by physical relative rotations driven by boundary energy. The data illustrate the potential of orientation maps and misorientation analysis in microstructural studies of any crystalline material.  相似文献   

19.
Shear and extensional veins formed during the reactivation of the Magdala shear system at Stawell in western Victoria, Australia, contribute to the formation of the auriferous Central and Basalt Contact lodes. Within this shear system is a range of fault rocks accompanied by steep-dipping (>65°) quartz-rich laminated shear veins and relatively flat-lying extensional veins. Both vein sets appear to have been a primary source for the host rock permeability during fluid flow in a regime of significant deviatoric stresses. The macro- and microstructures suggest that the dilatancy, that produced mineralized veins, formed under conditions of overpressure generated by fluid infiltration late in a tectonic regime. A new microfabric analysis technique is used to investigate the quartz-rich veins, which allows rapid integration of the microstructure with the crystallographic preferred orientations (CPOs). Both the shear and extensional quartz veins have a random CPO with ∼120° dihedral angles between the quartz–quartz grains, which is typical of a metamorphic equilibrium microfabric. The microstructures indicate that the quartz has undergone extensive grain adjustment in the solid-state, with grain shape and size affected by interfacial solution (pressure solution) effects. These features are consistent with inferences from experimental rock deformation studies, where grain boundary migration is enhanced in a water-rich environment. The onset of solution-transfer processes (pressure solution) developed as the quartz microfabric stabilized and continued to modify the CPO and microstructure significantly. It is concluded that grain growth and pressure solution are coupled diffusive mass transfer processes, related to fluctuations in pore fluid pressures in a region undergoing deformation at near lithostatic pressures.  相似文献   

20.
The microstructure of a quartzite experimentally deformed and partially recrystallised at 900 °C, 1.2 GPa confining pressure and strain rate 10−6/s was investigated using orientation contrast and electron backscatter diffraction (EBSD). Boundaries between misoriented domains (grains or subgrains) were determined by image analysis of orientation contrast images. In each domain, EBSD measurements gave the complete quartz lattice orientation and enabled calculation of misorientation angles across every domain boundary. Results are analysed in terms of the boundary density, which for any range of misorientations is the boundary length for that range divided by image area. This allows a more direct comparison of misorientation statistics between different parts of a sample than does a treatment in terms of boundary number.The strain in the quartzite sample is heterogeneous. A 100×150 μm low-strain partially recrystallised subarea C was compared with a high-strain completely recrystallised subarea E. The density of high-angle (>10°) boundaries in E is roughly double that in C, reflecting the greater degree of recrystallisation. Low-angle boundaries in C and E are produced by subgrain rotation. In the low-angle range 0–10° boundary densities in both C and E show an exponential decrease with increasing misorientation. The densities scale with exp(−θ/λ) where λ is approximately 2° in C and 1° in E; in other words, E has a comparative dearth of boundaries in the 8–10° range. We explain this dearth in terms of mobile high-angle boundaries sweeping through and consuming low-angle boundaries as the latter increase misorientation through time. In E, the density of high-angle boundaries is larger than in C, so this sweeping would have been more efficient and could explain the relative paucity of 8–10° boundaries.The boundary density can be generalised to a directional property that gives the degree of anisotropy of the boundary network and its preferred orientation. Despite the imposed strain, the analysed samples show that boundaries are not, on average, strongly aligned. This is a function of the strong sinuosity of high-angle boundaries, caused by grain boundary migration. Low-angle boundaries might be expected, on average, to be aligned in relation to imposed strain but this is not found.Boundary densities and their generalisation in terms of directional properties provide objective measures of microstructure. In this study the patterns they show are interpreted in terms of combined subgrain rotation and migration recrystallisation, but it may be that other microstructural processes give distinctive patterns when analysed in this fashion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号