首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The Anarak mining area in Iran is identified as one of the best known examples of mineralization located at the intersection of two important crustal-scale lineaments, which are the E_W striking Great Kavir fault and the NW–SE trending Urumieh-Dokhtar Magmatic Belt. The objective of this research is to investigate the role of the lineaments and their subsidiaries at Anarak area in the genesis of mineral deposits. Lineaments are long-lived features which control or affect ancient as well as young crustal sequences. Lineaments are also deep-seated, because they commonly control the emplacement of deep crustal or mantle-derived magmas. Metallogenic areas of up to ~ 1000 km2 might be observed in areas where broad structural zones intersect, because they can facilitate the localization of magmatic or hydrothermal centers. The two lineaments that intersect in the Anarak area were both very active during mineralization. Therefore, it is likely that pull-apart basins or other dilatational sites at the intersection point were not preserved for substantial lengths of time, and single large magma conduits would have been divided into smaller conduits for magma penetration and hydrothermal circulation. The presence of these small conduits in addition to a small magma input could produce conditions for the circulation of mainly meteoric waters, in which the magmatism has acted as a heat source for the mineralization system. This phenomenon has led to the generation of a metallogenic area with several similar small deposits within a circular area of radius ~ 30 km centered at the intersection point. The two most famous deposits in this area are Talmessi and Meskani in which mineralization had occurred in two separate stages: first stage — fissure-filling copper sulfide mineralization associated with Eocene magmatism (veins, veinlets, and stockworks). The second is an overprinting stage which occurred after a fairly long interval which involves the formation of Ni–Co arsenides and U oxide minerals.  相似文献   

2.
Lineament extraction and analysis is one of the routine work in mapping medium and large areas using remote sensing data, most of which are satellite images. Landsat Enhanced Thematic Mapper (ETM) of 945×1 232 pixels subscene acquired on 21 March 2000 covering the northwestern part of Yunnan Province has been digitally processed using ER Mapper software. This article aims to produce lineament density map that predicts favorable zones for hydrothermal mineral occurrences and quantify spatial associations between the known hydrothermal mineral deposits. In the process of lineament extraction a number of image processing techniques were applied. The extracted lineaments were imported into MapGIS software and a suitable grid of 100 m×100 m was chosen. The Kriging method was used to create the lineament density map of the area. The results show that remote sensing data could be useful to extract the lineaments in the area. These lineaments are closely correlated with the faults obtained through other geological investigation methods. On comparing with field data the lineament-density map identifies two important high prospective zones, where large-scale deposits are already existing. In addition the map highlights unrecognized target areas that require follow up investigation.  相似文献   

3.
There has recently been a rapid growth in the amount and quality of digital geological and geophysical data for the majority of the Australian continent. Coupled with an increase in computational power and the rising importance of computational methods, there are new possibilities for a large scale, low expenditure digital exploration of mineral deposits. Here we use a multivariate analysis of geophysical datasets to develop a methodology that utilises machine learning algorithms to build and train two-class classifiers for provincial-scale, greenfield mineral exploration. We use iron ore in Western Australia as a case study, and our selected classifier, a mixture of a Gaussian classifier with reject option, successfully identifies 88% of iron ore locations, and 92% of non-iron ore locations. Parameter optimisation allows the user to choose the suite of variables or parameters, such as classifier and degree of dimensionality reduction, that provide the best classification result. We use randomised hold-out to ensure the generalisation of our classifier, and test it against known ground-truth information to demonstrate its ability to detect iron ore and non-iron ore locations. Our classification strategy is based on the heterogeneous nature of the data, where a well-defined target “iron-ore” class is to be separated from a poorly defined non-target class. We apply a classifier with reject option to known data to create a discriminant function that best separates sampled data, while simultaneously “protecting” against new unseen data by “closing” the domain in feature space occupied by the target class. This shows a substantial 4% improvement in classification performance. Our predictive confidence maps successfully identify known areas of iron ore deposits through the Yilgarn Craton, an area that is not heavily sampled in training, as well as suggesting areas for further exploration throughout the Yilgarn Craton. These areas tend to be more concentrated in the north and west of the Yilgarn Craton, such as around the Twin Peaks mine (~ 27°S, 116°E) and a series of lineaments running east–west at ~ 25°S. Within the Pilbara Craton, potential areas for further expansion occur throughout the Marble Bar vicinity between the existing Spinifex Ridge and Abydos mines (21°S, 119–121°E), as well as small, isolated areas north of the Hamersley Group at ~ 21.5°S, ~ 118°E. We also test the usefulness of radiometric data for province-scale iron ore exploration, while our selected classifier makes no use of the radiometric data, we demonstrate that there is no performance penalty from including redundant data and features, suggesting that where possible all potentially pertinent data should be included within a data-driven analysis. This methodology lends itself to large scale, reconnaissance mineral explorations, and, through varying the datasets used and the commodity being targeted, predictive confidence maps for a wide range of minerals can be produced.  相似文献   

4.
The Niassa Gold Belt, in northernmost Mozambique, is hosted in the Txitonga Group, a Neoproterozoic rift sequence overlying Paleoproterozoic crust of the Congo–Tanzania Craton and deformed during the Pan-African Orogeny. The Txitonga Group is made up of greenschist-facies greywacke and schist and is characterized by bimodal, mainly mafic, magmatism. A zircon U–Pb age for a felsic volcanite dates deposition of the sequence at 714 ± 17 Ma. Gold is mined artisanally from alluvial deposits and primary chalcopyrite-pyrite-bearing quartz veins containing up to 19 ppm Au have been analyzed. In the Cagurué and M’Papa gold fields, dominantly N–S trending quartz veins, hosted in metagabbro and schist, are regarded as tension gashes related to regional strike-slip NE–SW-trending Pan-African shear zones. These gold deposits have been classified as mesozonal and metamorphic in origin. Re–Os isotopic data on sulfides suggest two periods of gold deposition for the Cagurué Gold Field. A coarse-crystalline pyrite–chalcopyrite assemblage yields an imprecise Pan-African age of 483 ± 72 Ma, dating deposition of the quartz veins. Remobilization of early-formed sulfides, particularly chalcopyrite, took place at 112 ± 14 Ma, during Lower Cretaceous Gondwana dispersal. The ~483 Ma assemblage yields a chondritic initial 187Os/188Os ratio of 0.123 ± 0.058. This implies a juvenile source for the ore fluids, possibly involving the hosting Neoproterozoic metagabbro. The Niassa Gold Belt is situated at the eastern end of a SW–NE trending continental-scale lineament defined by the Mwembeshi Shear Zone and the southern end of a NW–SE trending lineament defined by the Rukwa Shear Zone. We offer a review of gold deposits in Zambia and Tanzania associated with these polyphase lineaments and speculate on their interrelation.  相似文献   

5.
A set of sketch maps has been compiled including a structural map for the Uchur-Maya depression, maps of the fractures based on the data derived from the digital elevation model processed using the modulus of the topographic gradient for discriminating the fault boundaries, and maps of the lineament distribution and the density of the elementary linear structures. On these sketch maps, the location of the ore deposits and the occurrences of various metals are plotted within the bounds of the Uchur-Maya depression with the defining structural and lithological factors that control the ore occurrences. The locations of the ore objects relative to the differently oriented faults and the lineament network based on the data of the digital elevation model’s processing and the density of the linear structures have been analyzed. The most important lithological factors that control the ore deposits are the pre-Mesoproterozoic structural-stratigraphic unconformity zones, the contact zones between the Mesoproterozoic formations with their contrasting physical and chemical properties, and the high-porosity (cavernous) dolomite member in the Yudomian Group of the Vendian.  相似文献   

6.
The Zhongtiao Mountain is located in the southern part of the North China Craton. The area experienced multi-stage tectono-magmatic events during the Precambrian, including Neoarchean-Early Paleoproterozoic (2550–2350 Ma) crustal growth, Paleoproterozoic (2350–1850 Ma) rifting–subduction–accretion–collision, and Early Mesoproterozoic (1800–1750 Ma) extension. The geological events contributed to a major copper mineral system in the region. Here we evaluate the processes of the mineral system, such as the source of metals, migration pathways, the formation of trap zones, and the deposition of metal in an attempt to establish a mineral accumulation evaluation model for regional ore prospecting. A three-step process has been proposed in this study as follows. (i) Determining the spatial and temporal distribution of the essential elements and processes of the mineral system to understand the most critical ore-controlling factors. (ii) Translating the ore-forming processes into mappable features and quantitative extraction of the information on mineralization using Geographic Information System (GIS) technology to establish a mineral accumulation evaluation model. They were treated as evidence layers for weight-of-evidence (WofE) analysis. (iii) Utilizing the weighted values of the evidence layers to create a posterior probability map. Based on the posterior probabilities, four mineral accumulation horizons were finally delineated for the Zhongtiao Mountain, which are considered to provide important guidelines for further ore exploration and study.  相似文献   

7.
Remote sensing, evaluation of digital elevation models (DEM), geographic information systems (GIS) and fieldwork techniques were combined to study the groundwater conditions in Eritrea. Remote sensing data were interpreted to produce lithological and lineament maps. DEM was used for lineament and geomorphologic mapping. Field studies permitted the study of structures and correlated them with lineament interpretations. Hydrogeological setting of springs and wells were investigated in the field, from well logs and pumping test data. All thematic layers were integrated and analysed in a GIS. Results show that groundwater occurrence is controlled by lithology, structures and landforms. Highest yields occur in basaltic rocks and are due to primary and secondary porosities. High yielding wells and springs are often related to large lineaments, lineament intersections and corresponding structural features. In metamorphic and igneous intrusive rocks with rugged landforms, groundwater occurs mainly in drainage channels with valley fill deposits. Zones of very good groundwater potential are characteristic for basaltic layers overlying lateritized crystalline rocks, flat topography with dense lineaments and structurally controlled drainage channels with valley fill deposits. The overall results demonstrate that the use of remote sensing and GIS provide potentially powerful tools to study groundwater resources and design a suitable exploration plan.An erratum to this article can be found at  相似文献   

8.
Gravity models of the crust and upper mantle to a depth of 100 km are analyzed to study structural relationships of tectonic and tectonophysical media of different rigidities with the distribution of shallow ore deposits above the Aldan-Zeya plume. The spatial correlation of ore clusters and districts with high crustal viscosity inhomoheneities at depths of 10, 20, and 35 km shows distinct stepwise behavior. On the other hand, media of decreased viscosity are observed in the lower crust (at depths of 25–30 km), subcrustal (40–50 km) layers, and asthenosphere (at a depth below 70 km). They are related to chambers of the complete or partial melting (heat sources) of magmatic and ore occurrences near the Earth’s surface. Lateral metallogenic zoning in the spatial distribution of the ore deposits is due to the spread and redistribution of magmas and ore-forming fluids, shielded by rigid plates in the lower crust. A naturally determined series of ore parageneses is observed from center to flanks of the plume: Au, Mo  Au, Ag, Pb, Zn  Au, Pb, Zn  Au, W  Au, Sb  W, Sn  Sn. The mutual position of the tectonomagmatic structures of different ranks within the plume head obeys hierarchical and fractal laws.  相似文献   

9.
Analysis and integration of geological/metallogenic data and digitally processed gravimetric/aeromagnetic data to the oriental Saharan Atlas domain were carried out to understand the spatial distribution and structural control on Pb-Zn (Ba) deposits of the oriental Saharan Atlas. The use of this combined technique suggests that most of mineral deposits appear to be regionally controlled by structural trends (subparallel NE-SW-trending) along margins of subsiding sedimentary basins. Mineralization occurs along or near major NE-SW-trending faults, locally intersected by NW-SE-trending faults. In addition, mineral deposits are usually either inside anticlinal hinge zones (example, Merouana, Ichmoul and Ain Mimoum ore deposits) or on the flanks of anticlinal structures (example, Ain Bougda ore deposit). In “diapiric zone”, mineral deposits are generally located on diapiric structures borders (peridiapiric concentrations), related to NE-SW/NE-SW and E-W-trending faults. Other mineral concentrations occurs along the margins of tectonic troughs zones (example, Morsott trough) resulting probably by NW-SE-trending deep faults movement. In summary, our research suggested that regional parameters, such as NE-SW/NW-SE-trending lineaments, intersections of these lineament zones and margins of subsiding sedimentary basins/diapiric structures, serve as significant indicators and provides a valuable framework for guiding the early stages of Pb-Zn (Ba) mineral exploration; other considerations must then be applied in this region, like integration of surficial geochemical anomalies that allows better delineation of targets for further mineral exploration.  相似文献   

10.
The origin of bedded iron-ore deposits developed in greenstone belt-hosted (Algoma-type) banded iron formations of the Archean Pilbara Craton has largely been overlooked during the last three decades. Two of the key problems in studying these deposits are a lack of information about the structural and stratigraphic setting of the ore bodies and an absence of geochronological data from the ores. In this paper, we present geological maps for nearly a dozen former mines in the Shay Gap and Goldsworthy belts on the northeastern margin of the craton, and the first U-Pb geochronology for xenotime intergrown with hematite ore. Iron-ore mineralisation in the studied deposits is controlled by a combination of steeply dipping NE- and SE-trending faults and associated dolerite dykes. Simultaneous dextral oblique-slip movement on SE-trending faults and sinistral normal oblique-slip movement on NE-trending faults during initial ore formation are probably related to E–W extension. Uranium–lead dating of xenotime from the ores using the sensitive high-resolution ion microprobe (SHRIMP) suggests that iron mineralisation was the cumulative result of several Proterozoic hydrothermal events: the first at c. 2250 Ma, followed by others at c. 2180 Ma, c. 1670 Ma and c. 1000 Ma. The cause of the first growth event is not clear but the other age peaks coincide with well-documented episodes of orogenic activity at 2210–2145 Ma, 1680–1620 Ma and 1030–950 Ma along the southern margin of the Pilbara Craton and the Capricorn Orogen farther south. These results suggest that high-grade hematite deposits are a product of protracted episodic reactivation of a structural architecture that developed during the Mesoarchean. The development of hematite mineralisation along major structures in Mesoarchean BIFs after 2250 Ma implies that fluid infiltration and oxidative alteration commenced within 100 myr of the start of the Great Oxidation Event at c. 2350 Ma.  相似文献   

11.
Remote sensing, evaluation of digital elevation models (DEM), geographic information systems (GIS) and fieldwork techniques were combined to study the groundwater conditions in Eritrea. Remote sensing data were interpreted to produce lithological and lineament maps. DEM was used for lineament and geomorphologic mapping. Field studies permitted the study of structures and correlated them with lineament interpretations. Hydrogeological setting of springs and wells were investigated in the field, from well logs and pumping test data. All thematic layers were integrated and analysed in a GIS. Results show that groundwater occurrence is controlled by lithology, structures and landforms. Highest yields occur in basaltic rocks and are due to primary and secondary porosities. High yielding wells and springs are often related to large lineaments, lineament intersections and corresponding structural features. In metamorphic and igneous intrusive rocks with rugged landforms, groundwater occurs mainly in drainage channels with valley fill deposits. Zones of very good groundwater potential are characteristic for basaltic layers overlying lateritized crystalline rocks, flat topography with dense lineaments and structurally controlled drainage channels with valley fill deposits. The overall results demonstrate that the use of remote sensing and GIS provide potentially powerful tools to study groundwater resources and design a suitable exploration plan.The online version of the original article can be found at  相似文献   

12.
The Cenozoic Urumieh–Dokhtar Magmatic Belt (UDMB) of Iran is a major host to porphyry Cu ± Mo ± Au deposits (PCDs). Most known PCDs in the UDMB occur in the southern section of the belt, also known as the Kerman Copper Belt (KCB). Three major clusters of PCDs are distinguished in the KCB and include the Miduk, Sarcheshmeh and Daraloo clusters. The Daraloo and Sarmeshk deposits occur in a northwest–southeast-trending fault zone that is characterized by the presence of a narrow zone of alteration–mineralization that contains a series of Oligocene granitoids and Miocene porphyritic tonalite–granodiorite plutons that cut Eocene andesitic lava flows and pyroclastic rocks. Here we use various techniques, including different ratio images, minimum noise fraction, pixel purity index, and matched filter processing to process ASTER data (14 bands) and generate maps that portray the distribution of hydrothermal minerals (e.g., sericite, kaolinite, chlorite, epidote and carbonate) related to PCD alteration zones. In order to validate the ASTER data, follow-up ground proofing and related mineralogical work was done which, in all cases, proved to be positive. The results of this work have identified the regional distribution of hypogene alteration zones (i.e., phyllic, argillic, propylitic and silicic), in addition to areas of secondary Fe-oxide formation, which are coincident with known sites of PCDs. The regional distribution and extent of the alteration zones identified also highlighted the role of regional structures in focusing the mineralizing/altering fluids. These results demonstrate very convincingly that ASTER imagery that uses the appropriate techniques is reliable and robust in mapping out the extent of hydrothermal alteration and lithological units, and can be used for targeting hydrothermal ore deposits, particularly porphyry copper deposits where the alteration footprint is sizeable.  相似文献   

13.
The Goushti iron deposit from Dehbid area located in the Sanandaj-Sirjan metamorphic Belt (SSB), SW Iran is hosted by the Early Mesozoic silicified dolomite. Mineralized zones are lithostructurally controlled and oriented NW-SE parallel to the Zagros Orogenic Belt (ZOB). Magnetite, the major ore mineral, occurs as open space fillings and is accompanied by the secondary mineral phases hematite, goethite and martite. Gangue minerals mainly include quartz, dolomite and K-feldspar are associated with minor hydrosilicates. Calc-silicates such as wollastonite and diopside, minerals typical of skarns, are virtually absent from the ore zones. Fe2O3 content in the mineralized zones varies in the range of 38–75 wt%. The concentrations of Au, Cu, P, Ti, Cr and V as well as Co/Ni, Cr/V, (LREE)/(HREE), Eu/Sm and La/Lu values and Eu-Ce anomalies of the studied ores indicate that the Goushti deposit is a hydrothermal magnetite type. The subvolcanic rhyolite and basalt in this area are regarded as the source of iron and heat in the mineralizing system. The fluid inclusion data showed that magnetite deposited from the ore-bearing fluid with salinities 1–7 wt% NaCl equivalent at temperatures of 130–200 °C. A decrease in temperature and pressure, supplemented by fluid mixing, is the major controlling factor in iron oxide precipitation. The field relationships and mineralogical–geochemical characteristics of iron ores indicate that the Goushti hydrothermal deposit could not be classified as a member of the IOCG (Iron Oxide-Copper-Gold) deposits.  相似文献   

14.
The Birgilda–Tomino ore cluster in the East Uralian zone, South Urals, Russia, hosts a variety of Late Paleozoic porphyry copper deposits (Birgilda, Tomino, Kalinovskoe, etc.), high- and low sulfidation epithermal deposits (Bereznyakovskoe, Michurino), and skarn-related base metal mineralization (Biksizak) in carbonate rocks. The deposits are related to quartz diorite and andesite porphyry intrusions of the K–Na calc-alkaline series, associated to a subduction-related volcanic arc. We report microprobe analyses of ore minerals (tetrahedrite–tennantite, sphalerite, Bi tellurides and sulfosalts, Au and Ag tellurides), as well as fluid inclusion data and mineral geothermometry. On the basis of these data we propose that the Birgilda–Tomino ore cluster represents a porphyry–epithermal continuum, with a vertical extent of about 2–3 km, controlled by temperature decreases and fS2 and fTe2 increase from deeper to shallow levels.  相似文献   

15.
Spectral analysis of the digital data of the Bouguer anomaly of North India including Ganga basin suggest a four layer model with approximate depths of 140, 38, 16 and 7 km. They apparently represent lithosphere–asthenosphere boundary (LAB), Moho, lower crust, and maximum depth to the basement in foredeeps, respectively. The Airy’s root model of Moho from the topographic data and modeling of Bouguer anomaly constrained from the available seismic information suggest changes in the lithospheric and crustal thicknesses from ∼126–134 and ∼32–35 km under the Central Ganga basin to ∼132 and ∼38 km towards the south and 163 and ∼40 km towards the north, respectively. It has clearly brought out the lithospheric flexure and related crustal bulge under the Ganga basin due to the Himalaya. Airy’s root model and modeling along a profile (SE–NW) across the Indus basin and the Western Fold Belt (WFB), (Sibi Syntaxis, Pakistan) also suggest similar crustal bulge related to lithospheric flexure due to the WFB with crustal thickness of 33 km in the central part and 38 and 56 km towards the SE and the NW, respectively. It has also shown the high density lower crust and Bela ophiolite along the Chamman fault. The two flexures interact along the Western Syntaxis and Hazara seismic zone where several large/great earthquakes including 2005 Kashmir earthquake was reported.The residual Bouguer anomaly maps of the Indus and the Ganga basins have delineated several basement ridges whose interaction with the Himalaya and the WFB, respectively have caused seismic activity including some large/great earthquakes. Some significant ridges across the Indus basin are (i) Delhi–Lahore–Sargodha, (ii) Jaisalmer–Sibi Syntaxis which is highly seismogenic. and (iii) Kachchh–Karachi arc–Kirthar thrust leading to Sibi Syntaxis. Most of the basement ridges of the Ganga basin are oriented NE–SW that are as follows (i) Jaisalmer–Ganganagar and Jodhpur–Chandigarh ridges across the Ganga basin intersect Himalaya in the Kangra reentrant where the great Kangra earthquake of 1905 was located. (ii) The Aravalli Delhi Mobile Belt (ADMB) and its margin faults extend to the Western Himalayan front via Delhi where it interacts with the Delhi–Lahore ridge and further north with the Himalayan front causing seismic activity. (iii) The Shahjahanpur and Faizabad ridges strike the Himalayan front in Central Nepal that do not show any enhanced seismicity which may be due to their being parts of the Bundelkhand craton as simple basement highs. (iv) The west and the east Patna faults are parts of transcontinental lineaments, such as Narmada–Son lineament. (v) The Munghyr–Saharsa ridge is fault controlled and interacts with the Himalayan front in the Eastern Nepal where Bihar–Nepal earthquakes of 1934 has been reported. Some of these faults/lineaments of the Indian continent find reflection in seismogenic lineaments of Himalaya like Everest, Arun, Kanchenjunga lineaments. A set of NW–SE oriented gravity highs along the Himalayan front and the Ganga and the Indus basins represents the folding of the basement due to compression as anticlines caused by collision of the Indian and the Asian plates. This study has also delineated several depressions like Saharanpur, Patna, and Purnia depressions.  相似文献   

16.
Three-dimensional (3D) district-scale geoscience information for the Luanchuan Mo district was integrated for understanding the development of its regional geology and ore-forming processes and for decision-making about potential targets for mineral exploration. The methodology and datasets used were: (1) construction of an initial geological model (25 km × 20 km × 2.5 km) using 1:10,000 scale geological map, nine geological cross-sections and gravity and magnetic data; (2) construction of three large-scale Mo deposits model (5 km × 4 km × 2.5 km) using 1:2000 scale geological and topographic maps, 288 boreholes (total core length of 158,700 m), and 32 1:2000 scale cross-sections; (3) 3D inversion of 1:25,000 scale gravity and magnetic data for identification metallogenic anomaly zones which are associated with Jurassic intrusions; (4) extraction of ore-controlling formation and sequence of the Luanchuan Group using the large-scale 3D models of Mo deposits and results of analysis of lithogeochemical samples from outcrops and borehole cores; (5) identification of ore-forming and ore-controlling faults using the large-scale 3D model of Mo deposits and mineralized Jurassic granite porphyry stocks; (6) boost weights-of-evidence and concentration–volume (C–V) fractal analyses to integrate metallogenic information and to identify and classify potential Mo targets. Four classes of exploration targets were identified using C–V modeling and 3D known orebodies model: the first and second class targets are mainly located in three large magma-skarn type deposit camps, occupying ~ 1.4 km3 with total estimated reserve of ~ 2.3 Mt; the third class targets, which are mainly located in Huangbeiling and Yuku deposit camps comprising concealed magma-skarn type deposits, occupy ~ 2.8 km3 and represent a new target exploration zone in the Luanchuan district; the fourth class targets, which are located in the Huoshenmiao, Majuan, and Daping zones, occupy ~ 15 km3 and represent potential mineral resources with likely similar orebody features as the Yuku deposit.  相似文献   

17.
The Southern Granulite Terrain (SGT) is composed of high-grade granulite domain occurring to the south of Dharwar Craton (DC). The structural units of SGT show a marked change in the structural trend from the dominant north–south in DC to east–west trend in SGT and primarily consist of different crustal blocks divided by major shear zones. The Bouguer anomaly map prepared based on nearly 3900 gravity observations shows that the anomalies are predominantly negative and vary between −125 mGal and +22 mGal. The trends of the anomalies follow structural grain of the terrain and exhibit considerable variations within the charnockite bodies. Two-dimensional wavelength filtering as well as Zero Free-air based (ZFb) analysis of the Geoid-Corrected Bouguer Anomaly map of the region is found to be very useful in preparing regional gravity anomaly map and inversion of this map gave rise to crustal thicknesses of 37–44 km in the SGT. Crustal density structure along four regional gravity profiles cutting across major shear zones, lineaments, plateaus and other important geological structures bring out the following structural information. The Bavali Shear Zone extending at least up to 10 km depth is manifested as a plane separating two contrasting upper crustal blocks on both sides and the gravity high north of it reveals the presence of a high density mass at the base of the crust below Coorg. The steepness of the Moyar and Bhavani shears on either side of Nilgiri plateau indicates uplift of the plateau due to block faulting with a high density mass at the crustal base. The Bhavani Shear Zone is manifested as a steep southerly dipping plane extending to deeper levels along which alkaline and granite rocks intruded into the top crustal layer. The gravity high over Palghat gap is due to the upwarping of Moho by 1–2 km with the presence of a high density mass at intermediate crustal levels. The gravity low in Periyar plateau is due to the granite emplacement, mid-crustal interface and the thicker crust. The feeble gravity signature across the Achankovil shear characterized by sharp velocity contrast indicates that the shear is not a superficial structure but a crustal scale zone of deformation reaching up to mid-crustal level.  相似文献   

18.
Magnetite is a common mineral in many ore deposits and their host rocks, and contains a wide range of trace elements (e.g., Ti, V, Mg, Cr, Mn, Ca, Al, Ni, Ga, Sn) that can be used for deposit type fingerprinting. In this study, we present new magnetite geochemical data for the Longqiao Fe deposit (Luzong ore district) and Tieshan Fe–(Cu) deposit (Edong ore district), which are important magmatic-hydrothermal deposits in eastern China.Textural features, mineral assemblages and paragenesis of the Longqiao and Tieshan ore samples have suggested the presence of two main mineralization periods (sedimentary and hydrothermal) at Longqiao, among which the hydrothermal period comprises four stages (skarn, magnetite, sulfide and carbonate); whilst the Tieshan Fe–(Cu) deposit comprises four mineralization stages (skarn, magnetite, quartz-sulfide and carbonate).Magnetite from the Longqiao and Tieshan deposits has different geochemistry, and can be clearly discriminated by the Sn vs. Ga, Ni vs. Cr, Ga vs. Al, Ni vs. Al, V vs. Ti, and Al vs. Mg diagrams. Such difference may be applied to distinguish other typical skarn (Tieshan) and multi-origin hydrothermal (Longqiao) deposits in the MLYRB. The fluid–rock interactions, influence of the co-crystallizing minerals and other physicochemical parameters, such as temperature and fO2, may have altogether controlled the magnetite trace element contents of both deposits. The Tieshan deposit may have had higher degree of fO2, but lower fluid–rock interactions and ore-forming temperature than the Longqiao deposit. The TiO2–Al2O3–(MgO + MnO) and (Ca + Al + Mn) vs. (Ti + V) magnetite discrimination diagrams show that the Longqiao Fe deposit has both sedimentary and hydrothermal features, whereas the Tieshan Fe–(Cu) deposit is skarn-type and was likely formed via hydrothermal metasomatism, consistent with the ore characteristics observed.  相似文献   

19.
The Dabu Cu-Mo porphyry deposit is situated in the southern part of the Lhasa terrane within the post-collisional Gangdese porphyry copper belt (GPCB). It is one of several deposits that include the Qulong and Zhunuo porphyry deposits. The processes responsible for ore formation in the Dabu deposit can be divided into three stages of veining: stage I, quartz–K-feldspar (biotite) ± chalcopyrite ± pyrite, stage II, quartz–molybdenite ± pyrite ± chalcopyrite, and stage III, quartz–pyrite ± molybdenite. Three types of fluid inclusions (FIs) are present: liquid-rich two-phase (L-type), vapor-rich two-phase (V-type), and solid bearing multi-phase (S-type) inclusions. The homogenization temperatures for the FIs from stages I to III are in the ranges of 272–475 °C, 244–486 °C, and 299–399 °C, and their salinities vary from 2.1 to 49.1, 1.1 to 55.8, and 2.9 to 18.0 wt% NaCl equiv., respectively. The coexistence of S-type, V-type and L-type FIs in quartz of stage I and II with similar homogenization temperatures but contrasting salinities, indicate that fluid boiling is the major factor controlling metal precipitation in the Dabu deposit. The ore-forming fluids of this deposit are characterized by high temperature and high salinity, and they belong to a H2O–NaCl magmatic–hydrothermal system. The H–O–S–Pb isotopic compositions indicate that the ore metals and fluids came primarily from a magmatic source linked to Miocene intrusions characterized by high Sr/Y ratios, similar to other porphyry deposits in the GPCB. The fluids forming the Dabu deposit were rich in Na and Cl, derived from metamorphic dehydration of subducted oceanic slab through which NaCl-brine or seawater had percolated. The inheritance of ancient subduction-associated arc chemistry, without shallow level crustal assimilation and/or input of the meteoric water, was responsible for the generation of fertile magma, as well as CO2-poor and halite-bearing FIs associated with post-collisional porphyry deposits. The estimated mineralization depths of Qulong, Dabu and Zhunuo deposits are 1.6–4.3 km, 0.5–3.4 km and 0.2–3.0 km, respectively, displaying a gradual decrease from eastern to western Gangdese. Deep ore-forming processes accounted for the generation of giant-sized Qulong deposit, because the exsolution of aqueous fluids with large fraction of water and chlorine in deep or high pressure systems can extract more copper from melts than those formed in shallow systems. However, the formation of small-sized Dabu deposit can be explained by a single magmatic event without additional replenishment of S, metal, or thermal energy. In addition, the ore-forming conditions of porphyry Cu–Mo deposits in GPCB are comparable to those of porphyry Cu ± Au ± Mo deposits formed in oceanic subduction-related continental or island arcs, but differ from those of porphyry Mo deposit formed in the Dabie-Qinling collisional orogens. The depth of formation of the mineralization and features of primary magma source are two major controls on the metal types and ore-fluid compositions of these porphyry deposits.  相似文献   

20.
Copper and iron skarn deposits are economically important types of skarn deposits throughout the world, especially in China, but the differences between Cu and Fe skarn deposits are poorly constrained. The Edong ore district in southeastern Hubei Province, Middle–Lower Yangtze River metallogenic belt, China, contains numerous Fe and Cu–Fe skarn deposits. In this contribution, variations in skarn mineralogy, mineralization-related intrusions and sulfur isotope values between these Cu–Fe and Fe skarn deposits are discussed.The garnets and pyroxenes of the Cu–Fe and Fe skarn deposits in the Edong ore district share similar compositions, i.e., dominantly andradite (Ad29–100Gr0–68) and diopside (Di54–100Hd0–38), respectively. This feature indicates that the mineral compositions of skarn silicate mineral assemblages were not the critical controlling factors for variations between the Cu–Fe and Fe skarn deposits. Intrusions associated with skarn Fe deposits in the Edong ore district differ from those Cu–Fe skarn deposits in petrology, geochemistry and Sr–Nd isotope. Intrusions associated with Fe deposits have large variations in their (La/Yb)N ratios (3.84–24.6) and Eu anomalies (δEu = 0.32–1.65), and have relatively low Sr/Y ratios (4.2–44.0) and high Yb contents (1.20–11.8 ppm), as well as radiogenic Sr–Nd isotopes (εNd(t) =  12.5 to − 9.2) and (87Sr/86Sr)i = 0.7067 to 0.7086. In contrast, intrusions associated with Cu–Fe deposits are characterized by relatively high Sr/Y (35.0–81.3) and (La/Yb)N (15.0–31.6) ratios, low Yb contents (1.00–1.62 ppm) without obvious Eu anomalies (δEu = 0.67–0.97), as well as (87Sr/86Sr)i = 0.7055 to 0.7068 and εNd(t) =  7.9 to − 3.4. Geochemical evidence indicates a greater contribution from the crust in intrusions associated with Fe skarn deposits than in intrusions associated with Cu–Fe skarn deposits. In the Edong ore district, the sulfides and sulfates in the Cu–Fe skarn deposits have sulfur isotope signatures that differ from those of Fe skarn deposits. The Cu–Fe skarn deposits have a narrow range of δ34S values from − 6.2‰ to + 8.7‰ in sulfides, and + 13.2‰ to + 15.2‰ in anhydrite, while the Fe skarn deposits have a wide range of δ34S values from + 10.3‰ to + 20.0‰ in pyrite and + 18.9‰ to + 30.8‰ in anhydrite. Sulfur isotope data for anhydrite and sedimentary country rocks suggest that the formation of skarns in the Edong district involved the interaction between magmatic fluids and variable amounts of evaporites in host rocks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号