首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
李平恩  廖力  奉建州 《地球科学》2022,47(6):2149-2164
2019年6月17日四川长宁县发生6.0级地震,该次地震余震活动频度高、强度大,其中超过5.0级的强余震就有4次,具有不同于以往6.0级地震的独特特征.余震活动与震后区域应力变化密切相关,为研究它们之间的关系,考虑区域主要活动构造、地表起伏和深部反演结果,建立长宁地区岩石圈三维黏弹性有限元模型.采用数值方法重建基本符合研究区GPS观测和最大水平主压应力方向测量结果的现今构造背景应力场.进而依次模拟了长宁6.0级地震和5.0级以上强余震序列.通过计算库仑破裂应力变化研究了震后应力演化与余震分布,以及主震和5.0级强余震序列之间的关系.研究表明,长宁6.0级地震的发生可能与区域内非构造加载因素有关,余震活动明显受震后区域应力变化的控制.长宁地震后,于滩-长宁背斜在10 km深度应力得到充分释放,库仑破裂应力明显减小;而在3 km深度库仑破裂应力明显增加,应力水平仍然较高.   相似文献   

3.
朱航  闻学泽 《地球科学》2012,37(1):199-206
通过计算和研究1733-1850年期间发生在小江-则木河断裂带上的、由4次M≥7地震组成的大地震序列引起的库仑应力变化图像, 分析先发大地震破裂对后发大地震破裂的静态应力触发作用.结果表明, 在该序列中, 后发大地震破裂均发生在先发大地震破裂引起的库仑应力显著增加区内.其中, 1733年小江断裂带北段的73/4级大地震破裂和1833年中段的8级大地震破裂均引起则木河断裂带较显著的库仑应力正值变化, 亦即1850年则木河断裂带发生的71/2级大地震与前2次大地震破裂引起的应力触发作用有关; 1733年小江断裂带北段和中-南段的73/4级和1789年2次7级大地震均对该断裂带中段产生了十分显著的库仑应力触发作用, 与此相关的是1833年8级大地震的发生.因此, 认为小江断裂带各段之间以及该断裂带与则木河断裂带之间存在显著的力学上的相互作用.   相似文献   

4.
汶川地震的发生对周围断层稳定性影响的数值模拟   总被引:2,自引:0,他引:2       下载免费PDF全文
大地震发生后, 研究地震的发生对周围断层的影响尤为重要.利用川西-藏东地区三维粘弹性有限元模型,考虑地表高程和粘弹性松弛等因素的影响,研究主要断裂带库仑应力累积速率和汶川地震的发生对周围断层的影响.结果表明:(1)龙门山断裂带年累积速率为0.28×10-3~0.35×10-3 MPa/a,这种较小的累积速率与龙门山断裂带强震较长复发间隔一致;(2)汶川地震的发生除造成震源区应力减小外, 还造成断裂带北东段不同程度的应力增加, 这与震后余震的分布基本吻合;(3)鲜水河断裂北西段、东昆仑、龙日坝、岷江以及虎牙断裂库仑应力水平增加显著,且汶川地震对于玉树地震的发生有微弱的加载效应;(4)汶川地震的发生造成鲜水河断裂带强震复发间隔缩短约52~104 a,是值得关注的强震危险区.   相似文献   

5.
祁玉萍  龙锋  肖本夫  路茜  江鹏 《地球学报》2018,39(5):622-634
九寨沟余震序列的震源机制和构造应力场有助于认识本次地震的发震构造和孕震机理。本文基于四川区域地震台网的波形资料, 采用波形拟合(CAP)方法和P波初动+振幅比(HASH)方法反演得到2017年8月8日九寨沟7.0级地震序列中59次ML≥3.0地震的震源机制解, 并基于该结果采用阻尼线性逆推法(DRSSI), 计算研究区域的平均构造应力场, 给出该区域的应力场特征。结果显示, 利用CAP方法反演得到的本次主震的最佳双力偶机制解节面I: 走向248°/倾角86°/滑动角–169°, 节面II: 走向157°/倾角79°/滑动角–4°, 矩震级为Mw6.31, 矩心深度5 km, 属走滑型地震事件; 大部分余震的震源机制解错动类型与主震一致, 矩心深度集中在3~10 km; 应力场反演结果显示, 该区域周边的应力性质为走滑型, 最大主应力方向呈NWW–SEE向, 与该区域的应力场方向一致, 表明本次地震主要受区域应力的控制。结合该区域的地震地质构造等已有研究成果, 分析认为此次地震的发震断层为走向NW–SE、倾向SW的左旋走滑断裂——树正断裂, 巴颜喀拉块体向E-SE向的水平运动受到华南块体的强烈阻挡导致此次地震的发生, 汶川地震的发生对本次地震具有一定的促进作用。  相似文献   

6.
基于青藏高原及邻区的三维粘弹性有限元模型,讨论2008年于田MS7.3级地震与2014年于田MS7.3级地震之间的关系,并研究2014年于田MS7.3级地震的发生造成周围断层的库仑破裂应力变化。初步结果表明:1)2008年于田MS7.3级地震在2014年于田MS7.3级地震震中滑动方向上产生的库仑破裂应力变化高于地震触发的阈值0.01 MPa,存在明显的触发作用。在视摩擦系数分别取0.4和0.6时,震源区同震库仑破裂应力变化为0.0167 MPa和0.0170 MPa;而考虑粘弹性松弛作用时产生的库仑应力增加量分别为0.0187 MPa和0.0194 MPa。结合断裂带构造应力年累计速率的结果,2008年于田地震的发生造成2014年于田地震提前21.4~24.9 a;2)在较短的时间尺度内,对于距离相近的两次地震之间,同震产生的应力变化远大于粘弹性松弛效应产生的变化;3)2014年于田MS7.3级地震的发生造成阿尔金断裂中北段、玛尼—玉树断裂中段、东昆仑断裂西段、柴达木北缘断裂东段、西秦岭北缘断裂西段等不同程度的加载效应,地震危险性有所增强。其中阿尔金断裂中段库仑应力增加最为明显,最大达2.8×10–3 MPa;玛尼—玉树断裂中段次之,应力增加量最大达5.6×10–4 MPa;东昆仑断裂西段应力增加量最大达4.75×10–4 MPa。而玛尼—玉树断裂西段库仑破裂应力最大卸载量达3.6×10–3 MPa。  相似文献   

7.
基于区域地震台网的数字化波形资料,使用ISOLA方法对2019年5月18日吉林松原M5.1地震进行矩张量反演,研究地震的震源机制,并且收集了地震序列中ML2.5以上地震的震源机制解,采用FMSI(focal mechanism stress inversion)方法反演震中区构造应力场。结果显示:松原M5.1地震的矩震级为4.9,矩心深度为6 km,双力偶分量为91.5%,主压应力P轴方位角、倾角分别为76°和3°,主张应力T轴方位角、倾角分别为166°和16°,震源机制解显示典型的构造地震特征;震中区构造应力场理论应力轴σ1方位角、倾伏角分别为88.0°和0.9°,σ2方位角、倾伏角分别为178.2°和9.6°,σ3方位角、倾伏角分别为352.5°和80.4°,这一结果与区域构造应力场一致。推断认为区域构造应力场触发了2019年松原M5.1地震活动,地震震源机制解的北西向节面与震中区附近的第二松花江断裂现今活动性质完全一致,认为第二松花断裂可能是松原M5.1地震的发震断层。  相似文献   

8.
哀牢山—红河断裂带位于青藏高原东南缘, 由青藏高原延入南海, 是一条分割华南地块与印支地块的构造分界线, 在地貌上也是一条醒目的分界线。纵向上由4个北西向的长条状变质带组成(雪龙山、点苍山、哀牢山和Day Nui Con Voi变质带), 长约1 200 km。横向上分高级变质带和低级变质带, 二者之间为倾向北东的哀牢山逆冲断裂带, 其中高级变质带主要由元古界高级片麻岩、混合岩、淡色花岗岩脉以及S-L型糜棱岩组成, 低级变质带主要由古生界云母片岩、板岩、千枚岩和S型初糜棱岩组成, 夹杂着条带状基性岩与超基性岩。断裂带整体往南东方向逐渐变宽。西北段面理近直立, 线理近水平, 发育近直立的紧闭褶皱, 南东段较宽, 面理变平缓, 发育宽缓褶皱, 靠近北东侧面理倾向北东, 倾角较陡。中生代时期, 该断裂带是印支地块与杨子地块俯冲碰撞边界线, 也称为金沙江—哀牢山—松马缝合带。新生代以来, 受印度板块与欧亚板块持续挤压汇聚的影响, 青藏高原东南缘发生多期逃逸, 该断裂是藏东南地块挤出逃逸的边界, 协调着印支地块与杨子地块的相对运动。新生代早期印支地块向南东逃逸, 该断裂带作为逃逸块体的北边界表现为左旋走滑; 随着印度地块的持续向北推进, 新生代晚期华南地块(川滇地块)往南东逃逸, 该断裂带作为其南边界断裂表现为右旋走滑, 兼具正断分量。哀牢山—红河断裂带新生代两期次运动与印度板块东构造结的运动轨迹、青藏高原的隆升、逃逸时序、南海的扩张皆具有密切关系。对该断裂带转换时间和机制进行研究, 不仅有利于认识该断裂的演化历史, 而且有利于认识青藏高原的隆升、南海新生代构造演化历史。此外, 对该断裂新生代构造转换的研究有利于对构造逃逸模式、均匀变形模式、旋转模式以及下地壳流模式的检验。  相似文献   

9.
汶川"5.12"8.0级特大地震,造成重大人员伤亡和财产损失。地震对周围地区断层活动性的影响和余震发展方向是人们关心的一个问题。根据汶川地震同震静态位移我们计算了周围地区一些断层的库仑应力变化,并据此评价了震后周围地区断层和地震的活动性。计算结果表明,龙门山断裂带东北段,包括北川、青川、宁强等地,为库仑应力增强区,有利于地震的发生。较大的余震分布与库仑应力增强区有较好的对应关系。鲜水河断裂带主要为库仑应力下降区,只有一小段为增高区,鲜水河断裂带总体上不利于地震活动。成都地区的西北部库仑应力增强,东南部应力下降。库仑应力变化的研究对大震后地震趋势的分析有重要意义。  相似文献   

10.

大型-超大型金矿床具有群聚产出的空间分布规律,这种空间产出规律与断裂带的渗透性结构有关。通过应力转移模拟,计算库伦破裂应力(CFS)的变化值,获取断裂带渗透性结构可以为成矿流体通量及其中金属沉淀成矿概率提供半定量约束。胶西北焦家金矿田是我国第一个千吨级金矿田,其内金矿化严格受NE-NNE向的焦家断裂带构造控制,而其深部隐伏的近EW向基底构造带对成矿的贡献尚不明确。为此,我们根据地球物理资料解译的基底构造带空间形态,通过三维有限元模拟计算基底构造带对理想模型和焦家断裂带内库伦破裂应力变化的影响,探讨基底构造对矿床定位的控制机理。研究表明,EW向基底构造带对区域库伦破裂应力的变化有明显影响,模拟结果图像可视作该深度上NE-NNE向浅表断层和EW向基底构造带分别引起的库伦破裂应力变化之和。成矿深度上某一点因基底构造带活动引起的库伦破裂应力变化的值与基底构造带埋深与成矿深度间距的平方呈反比。当基底构造带和浅表断层运动方向指向同一象限时,基底构造带和浅表断层交汇部位的库伦破裂应力变化值相对减小;而基底构造带和浅表断层运动方向指向不同一象限时,基底构造带和浅表断层交汇部位的库伦破裂应力变化值相对增大。焦家金矿带内基底构造带在成矿期发生右行为主的走滑活动,滑动侧伏角不大于30°,滑动位移量略大于浅表的焦家断裂带。基底构造带在成矿期的再活动导致在其与浅表断裂交汇部位形成构造节点(如新城、焦家),引起该处断层破裂的传播受到阻滞,库伦破裂应力增大,而岩石破碎,有利于高渗透性的裂隙-网脉系统的发育和大型-超大型金矿床的产出;在远离焦家主断裂带的前孙家、洼孙家等部位,浅表断裂引起的库伦破裂应力变化不明显,而基底构造带引起的库伦破裂应力变化占主导,发育高渗透性裂隙-网脉系统的发育和中-小型金矿床(点)的产出。基底构造带的空间展布及其埋深与成矿深度的间距可作为评估区域成矿潜力的重要因素,EW向基底构造带与NE-NNE向浅表断层的交汇部位是重点靶区,且基底构造埋深与成矿深度的间距越小则发育金矿床的概率和规模越大。

  相似文献   

11.
利用2011年1—6月云南地区的连续波形资料,采用背景噪声和波形互相关方法分别反演该地区的速度结构以及2011年3月24日缅甸7.2级地震前后60d的速度变化图像。同时,根据云南地区中小地震计算缅甸地震前后应变能释放响应比空间分布,并利用缅甸地震的震源参数,计算了缅甸地震对云南地区主要断裂产生的库仑破裂应力影响。结果显示:(1)禄劝至华坪一带、永定至泸水区域和通海至建水地区震后波速增加,同时该地区地震活动增强,相应断裂上库仑破裂应力增加,说明缅甸地震对这些区域具有加速构造活动的正影响;(2)小江断裂带以东马龙至宣威地区和南汀河断裂带以南临沧至景洪地区震后波速降低,地震活动减弱,断裂上库仑破裂应力降低,说明缅甸地震对该区域具有减缓构造活动的负影响。  相似文献   

12.
沂沭断裂带及其近区的地震成因岩石新认识   总被引:6,自引:1,他引:6  
将沂沭断裂带及其附近地区的地震成因岩石划分为四种类型,它们是具有地震成因构造的震积岩、震断层构造岩、震火山岩及隐爆地震角砾岩.前两类是构造地震的记录,而后两类是火山地震及隐爆火山地震的记录.由于震断层构造岩沿长期活动性断层分布,大多遭受了若干期强地震活动的改造,所以不易确定其最初的形成时期.因此,笔者重点对分布于沂沭断裂地震带及附近的其它三类地震成因岩石(包括震积岩、震火山岩和隐爆地震角砾岩)作了研究,论述了三类地震成因岩石的特征、时空分布、反映的地震作用机理及意义.认为:地震成因岩石不仅是强地震事件和激烈构造活动的记录;而且,因为由强地震形成的不同等级断层和裂隙构成了一个高渗透性的能够沟通不同深度石油和成矿流体的网络,所以深入研究地震成因岩石有助于完善大断裂地震带及近区的石油聚集与成矿理论.  相似文献   

13.
杨文  刘杰  程佳 《地学前缘》2013,20(3):35-45
利用2011年1-6月云南地区的连续波形资料,采用背景噪声和波形互相关方法分别反演该地区的速度结构以及2011年3月24日缅甸7.2级地震前后60 d的速度变化图像。同时,根据云南地区中小地震计算缅甸地震前后应变能释放响应比空间分布,并利用缅甸地震的震源参数,计算了缅甸地震对云南地区主要断裂产生的库仑破裂应力影响。结果显示:(1) 禄劝至华坪一带、永定至泸水区域和通海至建水地区震后波速增加,同时该地区地震活动增强,相应断裂上库仑破裂应力增加,说明缅甸地震对这些区域具有加速构造活动的正影响;(2) 小江断裂带以东马龙至宣威地区和南汀河断裂带以南临沧至景洪地区震后波速降低,地震活动减弱,断裂上库仑破裂应力降低,说明缅甸地震对该区域具有减缓构造活动的负影响。  相似文献   

14.
据中国地震台网测定,2021年5月21日21时48分在云南省大理州漾濞县发生MS6.4地震,及时查明此次地震的发震构造及震源破裂特征,可为认识该区孕震条件和判别未来强震危险性提供关键依据。采用双差定位方法对漾濞地震序列进行重新定位,得到3863次地震事件的精确震源位置。结果显示:漾濞地震序列整体呈北西—南东向分布,长约25 km;整体走向135°;MS6.4主震震中位置为25.688°N,99.877°E;震源深度约9.6 km。综合地震序列深度剖面和震源机制解结果可知,发震断层应为北西走向、整体向西南方向陡倾的右旋走滑断层,倾角具有自北西向南东逐渐变缓的趋势。进一步分析地震序列的时空演化过程发现,该地震具有典型的"前震-主震-余震型"地震序列活动特点,其破裂过程主要包括3个阶段。破裂成核阶段:首先在发震断层10~12 km深度处相对脆弱部位产生小尺度破裂,之后失稳加速破裂,发生MS5.6地震;主震破裂阶段:在构造应力场持续加载和周围小尺度破裂的共同影响下,促使浅部较高强度断层闭锁区破裂,形成MS6.4主震;尾端拉张破裂阶段:主震破裂向东南扩展过程中,在东南端形成与之呈马尾状斜交的、具有正断性质的次级破裂,并产生MS5.2余震。而且此次地震还在源区北东侧触发了北北东向的左旋走滑破裂。综合分析认为,漾濞地震是兰坪-思茅地块内部北西向草坪断裂在近南北向区域应力挤压作用下发生右旋走滑运动的结果,具有明显的新生断裂特征。近年来兰坪-思茅地块内部一系列中强地震的发生表明,青藏高原物质向东南持续挤出的过程中,遇到该地块的阻挡,正在导致地块内部早期断层贯通形成新的活动断裂。因此,川滇地块西南边界带上或相邻地块内部老断层的复活和新生断裂的产生是区域中强地震危险性分析评价中值得关注的重要课题,同时建议需重视未来该区中强地震进一步向东南和向北的迁移或扩展的可能性。   相似文献   

15.
赵祎喆  吴忠良  蒋长胜  朱传镇 《地质学报》2008,82(12):1778-1787
2008年5月12日汶川8.0级地震前龙门山断裂被“忽视”的原因之一是地质学证据和GPS测量证据均显示龙门山断裂长期以来形变速率很低。问题是,构造地质的结果是对一个较长的时间尺度的,而GPS结果反映的是较短时间尺度上的、地表上的、水平方向的形变,因此有理由怀疑由此得到的结论能否反映现今龙门山断裂的深部形变的全貌。我们采用类似于Kostrov方法的思路,利用最近30 a的地震资料,试图研究龙门山断裂的深部形变,并与其相邻的断裂进行比较。利用ML2.5以上的微震资料,给出了沿龙门山断裂带的累积Benioff应变,并根据震级频度关系计算了a值的空间分布。作为对照,同时计算了龙门山断裂邻区沿鲜水河、安宁河、则木河断裂各区域内的累积Benioff应变和a值。结果表明,在与地质学证据不同的时间尺度上,在与GPS证据不同的时间尺度、不同的深度上,并且不仅考虑到水平形变,与周边的断裂带相比,龙门山断裂带其实并不是一个“安静的”断裂带。在更短的时间尺度上,可以回溯性地观察到微震活动的一些异常变化,但这些变化似乎很难用于该地震的预测。我们讨论了相关的观测资料分析对于汶川地震的成因的意义。  相似文献   

16.
2022年1月8日01时45分,青海省海北州门源县发生了Ms 6. 9级强烈地震,震中位于青藏高原东北缘海原断裂带中西段的冷龙岭断裂附近。震后的野外现场考察表明,这次地震在海拔3500~4100 m的高原北部祁连山区形成了一系列由张裂隙、张剪裂隙、剪切裂隙、挤压鼓包和裂陷等多类型破裂雁行状组合而成的同震地表变形带,表现为左旋走滑运动性质,总长约27 km。破裂带呈NWW—SEE走向,可分为南北两支,北支沿冷龙岭断裂西段分布,南支沿托莱山断裂东端分布,与北支间隔3 km呈左阶雁行排列。根据破裂带的走向变化和阶区特征,可将破裂带分为三段:西段、中段和东段,与地表同震位移分布特征较为吻合。西段为破裂带的南支,呈N93°E走向,长约4. 5 km,最大左行水平位错约85 cm;中段为北支破裂带西侧部分,主要呈N102°E走向,长约7. 5 km,最大左行水平位错约3. 7 m;东段为北支破裂带东侧部分,走向呈N110~120°E走向,长约15 km,最大左行水平位错约3. 0 m。门源地震震级与地表破裂带分布规模和变形强度的对比,表明本次地震的震源深度较浅,可能远小于10 km深。这次门源地震的发震断裂为海原断裂带呈挤压弯曲部分的冷龙岭断裂,具有花状构造特征。由于本次地震余震向SE方向扩展,表明具有应力向东迁移趋势,因此,冷龙岭断裂东侧处在海原断裂带上1920年海原大地震与2022年门源地震之间地震空区的金强河、毛毛山和老虎山断裂未来强震危险性升高,需要重点关注。  相似文献   

17.
论胶东地区中生代岩石圈减薄的证据及其动力学机制   总被引:29,自引:3,他引:29  
胶东地区可划分为两个大地构造单元:胶北断块和胶南造山带。前者为华北板块组成部 分,后者为华北和扬子板块的碰撞拼合带。五莲-青岛-海阳-牟平深断裂构成上述两个构造单 元的边界。本文从地质(陆壳隆升、构造岩浆活动与断陷盆地形成)和地球物理(重、磁异常与地震 测深)两个方面论述了胶东地区中生代经历了两个不同构造演化时期:前期(T3-J2)陆壳隆升和后 期(J-K)陆壳拉伸。我们认为,岩石圈减薄的动力学条件是与库拉-太平洋板块以不同边界类型 向欧亚大陆俯冲以及郯庐断裂以不同方式的强烈活动密切相关。在综合分析基础上建立了胶东地 区岩石圈减薄的动力学模式。  相似文献   

18.
合肥盆地伸展方向的演变及其动力学机制   总被引:13,自引:1,他引:13       下载免费PDF全文
本文通过白垩纪一古近纪期间合肥盆地沉积格局、断层活动性、同火山活动正断层、岩脉展布方位、盆缘断层运动学与断层擦痕应力场反演等多方面的综合分析,对伸展方向的演变进行了详细的研究.研究结果表明,早白垩世早一中期为NWW-SEE向拉伸.早白垩世晚期为NW-SE向拉伸,而晚白垩世至古近纪期间为近南北向拉伸.通过对比太平洋区大洋...  相似文献   

19.
2021年5月22日2时4分,青海省果洛藏族自治州玛多县发生了MS 7.4级强烈地震,震中位于巴颜喀拉地块北部边界东昆仑断裂带以南约70 km左右(34.59°N,98.34°E),震源深度17 km.震后的野外现场考察表明,这次地震在海拔4200~4600 m的高原面上形成了一系列由张裂隙、张剪裂隙、剪切裂隙、挤压鼓包和裂陷等多类型破裂雁行状组合而成的复杂同震地表变形带,总体表现为左行走滑运动性质,局部略带正断分量.该破裂带主要沿东昆仑断裂带南部的江错断裂分布,整体呈N105°E走向,全长约151 km.根据破裂带的走向变化和阶区特征,可将其分为四段:西段、中西段、中东段和东段.其中西段分叉为南、北两支,北支破裂走向N112°E,呈不连续分布,长约18 km,南支走向N94°E,呈连续性分布,长约25 km,最大左行位错约2.9 m;中西段全长约52 km,主要由约22 km长、呈N109°E走向的连续分布的地表破裂与稍北分布约30 km长、不连续分布的两支破裂组合而成,最大左行位错约1.9 m;中东段为总体呈N104°E走向的不连续地表破裂,全长约51 km,其中包含长约20 km的破裂空区;东段分叉为北、中、南三支,北支为走向N84°E、长约23 km的连续性破裂,最大左行位错约1.8 m,中间一支为N110°E走向、长约14 km的不连续破裂,南支则表现为零星破裂及系列滑塌,走向N120°E,长约6 km.这种两端发育较大规模分叉的"扫帚"状同震地表破裂在青藏高原已发生的走滑型地震中尚未报道过.这次地震的发震断裂为江错断裂,该断裂向西延伸可与2001年东昆仑MS 8.1地震的发震断层昆仑山口断裂相接,表明昆仑山口-江错断裂带与北部东昆仑断裂带中东部的托索湖-玛沁断裂挤压弯曲段共同构成了巴颜喀拉地块北部的宽阔边缘断裂带,并与南部的玉树-甘孜-鲜水河断裂带协同运动,共同调节着巴颜喀拉地块向东的运动和形变.由于东昆仑断裂带东部的玛沁—玛曲段是历史地震空区,因此可能是未来强震发生的区段.同时需要考虑到近20多年以来,巴颜喀拉地块周缘的强震活动具有跳跃性特征.因此,在未来的强震危险性评价中,应重点关注巴颜喀拉地块北边界带中东段玛沁—玛曲段和南部边界带鲜水河断裂带等的强震活动性及危险性.  相似文献   

20.
张致伟  周龙泉  程万正  阮祥  梁明剑 《地球科学》2015,40(10):1710-1722
为研究2013年4月20日芦山Mw6.6地震的发震构造及孕震机理, 基于4月20日—6月1日地震序列中114次M≥3.0余震震源机制解, 深入分析了余震震源机制及震源区应力场的时空分布特征, 获得的主要认识如下: (1)芦山M≥3.0余震以逆冲型为主, 走滑型次之, 正断型最少, 震源机制P轴方位一致性较好, 以近NWW-SEE为优势方向, 倾角分布在0~30°, 表明余震活动主要受龙门山断裂所在的区域应力场控制; (2)芦山余震区压应力S1方位存在明显的局部空间分区差异, 以主震震中为界, 余震区南边S1方向总体呈NWW方向, 而余震区北边S1方向表现出由NW经EW向NE的逆时针旋转, 可能反映了余震区北边发震断层错动以逆冲为主兼有一定的走滑分量; (3)压应力S1方位随时间的变化不明显, 呈近NWW方向, 但其倾角逐渐变水平, 应力张量方差逐渐变大, 震源机制错动类型始终以逆冲为主, 随时间变的相对紊乱, 反映了震源区应力场随时间的调整变化特性; (4)深度剖面结果显示压应力方位与发震断层走向的夹角在80°~120°, 即近乎垂直, 震源断层面向NW倾斜, 芦山余震活动受控于近垂直发震断裂的挤压作用, 属于典型的逆冲断层.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号