首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Haobugao Zn–Fe deposit is a typical skarn deposit located in the southern part of the Great Xing’an Range that hosts polymetallic mineralization over a large region. The main ore minerals at the deposit include sphalerite, magnetite, galena, chalcopyrite and pyrite, and the main gangue minerals include andradite, grossular garnet, hedenbergite, diopside, ilvaite, calcite and quartz. There are broadly two mineralizing periods represented by the relatively older skarn and younger quartz–sulfide veins. In detail, there are five metallogenic stages consisting of an early skarn, late skarn, oxide, early quartz–sulfide, and late quartz–sulfide–calcite stages. Electron microprobe analyses show that the garnet at the deposit varies in composition from And97.95Gro0.41Pyr1.64 to And30.69Gro66.69Pyr2.63, and pyroxene is compositionally in the diopside–hedenbergite range (i.e. Di90.63Hd8.00Jo1.37–Hd88.98Di4.53Jo6.49). Petrographic observations and electron microprobe analyses indicate that the sphalerite has three generations ([Zn0.93Fe0.08]S–[Zn0.75Fe0.24]S). The Zn associated with the first generation sphalerite replaced Cu and Fe of early xenomorphic granular chalcopyrite (i.e. [Cu1.01Fe1.03]S2–[Cu0.99Fe0.99]S2), and part of the first generation sphalerite is coeval with late chalcopyrite (i.e. [Cu0.96Fe0.99Zn0.03]S2–[Cu1.00Fe1.03Zn0.01]S2). Magnetite has a noticeable negative Ce anomaly (δCe = ∼0.17 to 0.54), which might be a result of the oxidized ore-fluid. Thirty δ34SV-PDB analyses of sulfides from the ore range from −2.3 to −0.1‰ in value, which are indicative of a magmatic source. The δ13C‰ and δ18O‰ values for calcite from the ore formed at quartz–sulfide–calcite stage vary from −9.9 to −5.5‰ and from −4.2 to 1.1‰, respectively, contrasting with δ13C‰ (2.9–4.8‰) and δ18O‰ (9.8–13.9‰) values for calcite from marble. It is suggested that the ore-forming fluid associated with late stage of mineralization was predominantly magmatic in origin with some input of local meteoric water.Molybdenite from the Haobugao deposit defines an isochron age of 142 ± 1 Ma, which is interpreted as the mineralization age being synchronous, within error, with the zircon U–Pb ages of 140 ± 1, 141 ± 2, and 141 ± 1 Ma for granite at the deposit. These data and characteristics of lithology and mineralization further show that the Zn–Fe mineralization is temporally and spatially related to the emplacement of granite in an extensional tectonic setting during the Mesozoic.  相似文献   

2.
The Jinshajiang–Red River porphyry Cu (Mo–Au) metallogenic belt (JRMB) is the most important intracontinental porphyry Cu (Mo–Au) mineralizing zone in the Sanjiang region, southwest China. The belt contains a number of giant deposits, including Yulong (6.50 Mt Cu) and Beiya (315 t Au) in the northern and center parts, and several small deposits in the southern part (e.g., Tongchang, 0.03 Mt Cu + Mo; Chang'anchong, 0.04 Mt Cu + Mo; Habo, 0.57 Mt Cu + Mo; and Chang'an 31 t Au). In order to investigate the mechanisms controlling the variation in size of these deposits, the LA-ICP-MS zircon U–Pb dating, bulk-rock geochemistry, and zircon trace-element analyses have been performed on the mineralization-related porphyries from the Tongchang district. Zircon U–Pb dating yielded concordant ages of 34.2 ± 0.6 Ma (Tongchang), 33.7 ± 0.8 Ma (Chang’anchong), 35.7 ± 0.5 Ma (Habo) and 34.6 ± 1.2 Ma (Chang’an). These porphyries are peraluminous with relatively high potassium contents (K2O: 4.2–5.7 wt%), and show shoshonitic affinities. Bulk rock Fe2O3/FeO ratios vary from 0.51 to 0.97, typical of moderately oxidized to strongly oxidized magmas. Zircon Ce4+/Ce3+ values vary between 25.9 and 371.8 with a mean of 129.3. The log(ƒo2) values vary from −20.7 to −9.6, and plot within the range of FMQ (fayalite-magnetite-quartz oxygen buffer) to MH (magnetite- hematite oxygen buffer), indicating an oxidizing parental magma. The mineralized porphyries from the Yulong and Beiya deposits, which were previous considered to have formed under the same tectonic conditions as those in the Tongchang district, have higher mean zircon Ce4+/Ce3+ values of 249.4 and 399.5, suggesting that the oxygen fugacities of the porphyries in the Tongchang district is relatively lower. This might imply that oxygen fugacity is an important factor that led to the differentiation of deposit size in the JRMB, and that larger porphyry deposits are associated with more oxidized magmas.  相似文献   

3.
The Talvivaara deposit contains 1550 Mt of ore averaging 0.22% Ni, 0.13% Cu, 0.49% Zn and 0.02% Co. The precursors of the host rocks were deposited 2.1–1.9 Ga ago in a stratified marine basin. Fractured talc-carbonate rocks delineate the eastern border of the deposit and serpentinites and talc-carbonate rocks occur along the rift-related sequence to the north and south of Talvivaara. Characteristic features are high concentrations of organic carbon and sulphur with median values of 7.6% and 8.2%, respectively. Organic carbon is graphitic at present and a variety of sulphide textures occur, representing multiphase evolution during diagenesis, tectonic deformation and medium-grade regional metamorphism. The main sulphides of the Talvivaara ore are pyrrhotite, pyrite, sphalerite, chalcopyrite and pentlandite. Sulphides occur both as fine-grained disseminations and coarse grains or aggregates. Chalcopyrite mainly occurs in joint surfaces and quartz-sulphide veins and pentlandite occur as inclusions in pyrrhotite. Alabandite (MnS) occurs in black shales and black metacarbonate rocks. The early low-T sulphide minerals were overprinted by later stage processes. No framboidal pyrite is any longer present, but spheroidal pyrite with a grain size of < 0.01 mm and containing up to 0.7% Ni occurs. During the deposition of the organic-rich mud the anoxic/euxinic bottom waters were enriched in Ni+, Cu+ and Zn2 +. Sulphur isotope δ34S values indicate mixing of sulphur derived from different processes or fractionation by sulphate reduction in a restricted basin. Both thermochemical and bacterial sulphate reductions were important for the generation of reduced sulphur.  相似文献   

4.
Determining Ge isotopic compositions of sulfides is important to understand the ore-forming processes. Single step anion-exchange chromatography was previously used to recover Ge from silicates and lignites. We apply this procedure to recover Ge from sulfides before determining Ge isotopic compositions by hydride generation (HG)-MC-ICP-MS. Germanium is quantitatively recovered by the proposed sample preparation method. There are no obvious isotope biases for Ge-bearing solutions containing significant amounts of Cu, Sn, and W. However, δ74Ge values show obvious shifts if the solutions contain high Zn, Pb, and Sb, which is possibly attributed to suppression of germane formation that fractionates Ge isotopes. The long-term reproducibility for Ge standard solution is about ± 0.18‰ for δ74Ge. Spex and Merck standard solutions yield mean δ74Ge values of − 0.70 ± 0.19‰ and − 0.36 ± 0.08‰, respectively. The calculated δ74Ge value (− 5.13‰) of sphalerite standard based on doping experiments is indistinguishable from those of sphalerite without doping (− 5.05‰ and − 5.01‰). Sulfides from the Jinding, Shanshulin, and Tianqiao Pb–Zn deposits in SW China have δ74Ge values of − 4.94‰ to + 2.07‰. The paragenetic sequence of sulfides from the Shanshulin and Tianqiao Pb–Zn deposits is pyrite, sphalerite and galena from early to late. Sulfides from the same ore show a trend of δ74Gepyrite < δ74Gesphalerite < δ74Gegalena, which may be controlled by the kinetic or Rayleigh fractionation.  相似文献   

5.
A significant belt of carbonate-hosted Pb–Zn mineralization occurs in the Himalayan–Zagros collisional orogenic system. Three differing types of these Pb–Zn deposits within this belt have been identified based on variations in gangue mineral assemblages, leading to the classification of carbonate-, quartz- and fluorite-rich classes of Pb–Zn deposits. The third Pb–Zn mineralization (fluorite-rich) type is common in this orogenic system, but little research has been undertaken on it. Here, we focus on the Mohailaheng deposit, a large-sized fluorite-rich carbonate-hosted Pb–Zn deposit (> 100 Mt Pb + Zn ores with average grade of 2.18%–4.23%); the deposit is located in the Sanjiang Cenozoic thrust-fold belt, an important part of the Himalayan–Zagros collisional orogenic system and an area that formed during the early Tertiary India–Eurasia collision. The main orebodies in this deposit are stratabound and are hosted by Carboniferous limestones that are located along secondary faults associated with a regional thrust fault. The main assemblage is a sphalerite + galena + pyrite sulfide assemblage associated with a calcite + fluorite + barite + quartz + dolomite gangue assemblage. Detailed field and experimental work indicates that the deposit formed during three distinct phases of hydrothermal activity. Studies on fluid inclusion and stable isotopes of gangue minerals indicate that two dominant distinct fluids involving the deposit formation. They include (1) a low-temperature (130–140 °C), high-salinity (23–24 wt.% NaCl equivalent) basinal brine containing Na+–K+–Mg2 +–Ca2 +–Cl ions and abnormally high SO42  concentrations, which probably derived from Tertiary basins in the regional district, and (2) a low- to moderate-temperature (170–180 °C) and moderate- to high-salinity (19–20 wt.% NaCl equivalent) metamorphic fluid containing Na+–K+–Mg2 +–Cl–SO42  ions and abnormally high F and organic matter concentrations, that probably formed during regional metamorphism. Some evaporated seawaters and meteoric fluids were also identified in mixtures with these two dominant fluids. The Pb–Zn mineralization at Mohailaheng formed during three distinct stages, consistent with the regional tectonic history. The first stage involved the formation of favorable lithological and structural traps at Mohailaheng during regional thrusting, leading to the migration of compressed metamorphic waters at depth along a detachment zone, sequestering metals from sediments within the region. Basinal brines at the surface also began to infiltrate down along the secondary faults, dissolving gypsum from the underlying sediments. The second stage was associated with the cessation of thrusting and the onset of strike-slip movements along these thrust faults. Metamorphic fluids containing high concentrations of halogen ions, organic gases, and metals ascended into the structural traps at Mohailaheng along the reactivated thrust faults, causing fluorite, calcite, and some sulfide precipitation. Then, basinal brines rich in SO42  quickly descended into the structural traps along the reactivated faults, causing reduction of SO42  by organic matter, and producing significant amounts of H2S. The reduced sulfur then reacted with the metals in the fluids, causing significant sulfide precipitation. The third stage was associated with metal-depleted fluids, which only resulted in the precipitation of calcite from the diluted basinal brines. Combining these findings with research results on other fluorite-rich carbonate-hosted Pb–Zn deposits in the Himalayan–Zagros orogenic system suggests that this type of carbonate-hosted Pb–Zn deposits can also be classified as Mississippi Valley-type (MVT) deposits, and that the origin of the fluorite in these deposits may be related to multiple hydrothermal fluids involved in the mineralization evolution.  相似文献   

6.
The Hattu schist belt is located in the western part of the Archaean Karelian domain of the Fennoscandian Shield. The orogenic gold deposits with Au–Bi–Te geochemical signatures are hosted by NE–SW, N–S and NW–SE oriented shear zones that deform 2.76–2.73 Ga volcanic and sedimentary sequences, as well as 2.75–2.72 Ga tonalite–granodiorite intrusions and diverse felsic porphyry dykes. Mo–W mineralization is also present in some tonalite intrusions, both separate from, and associated with Au mineralization. Somewhat younger, unmineralized leucogranite intrusions (2.70 Ga) also intrude the belt. Lower amphibolite facies peak metamorphism at 3–5 kbar pressures and at 500–600 °C temperatures affected the belt at around 2.70 Ga and post-date hydrothermal alteration and ore formation. In this study, we investigated the potential influence of magmatic-hydrothermal processes on the formation of orogenic gold deposits on the basis of multiple stable isotope (B, S, Cu) studies of tourmaline and sulphide minerals by application of in situ SIMS and LA ICP MS analytical techniques.Crystal chemistry of tourmaline from a Mo–W mineralization hosted by a tonalite intrusion in the Hattu schist belt is characterized by Fe3 +–Al3 +-substitution indicating relatively oxidizing conditions of hydrothermal processes. The range of δ11B data for this kind of tourmaline is from − 17.2‰ to − 12.2‰. The hydrothermal tourmaline from felsic porphyry dyke swith gold mineralization has similar crystal chemistry (e.g. dravite–povondraite compositional trend with Fe3 +–Al3 + substitution) and δ11B values between − 19.0‰ and − 9.6‰. The uvite–foitite compositional trend and δ11B ‰ values between − 24.1% and − 13.6% characterize metasomatic–hydrothermal tourmaline from the metasediment-hosted gold deposits. Composition of hydrothermal vein-filling and disseminated tourmaline from the gold-bearing shear zones in metavolcanic rocks is transitional between the felsic intrusion and metasedimentary rock hosted hydrothermal tourmaline but the range of average boron isotope data is essentially identical with that of the metasediment-hosted tourmaline. Rock-forming (magmatic) tourmaline from leucogranite has δ11B values between − 14.5‰ and − 10.8‰ and the major element composition is similar to that of the metasediment-hosted tourmaline.The range of δ34SVCDT values measured in pyrite, chalcopyrite and pyrrhotite is from − 9.1 to + 8.5‰, which falls within the typical range of sulphur isotope data for Archaean orogenic gold deposits. In the Hattu schist belt, positive δ34SVCDT values characterize metasediment-hosted gold ores with sulphide parageneses dominated by pyrrhotite and arsenopyrite. The δ34SVCDT values are both positive and negative in ore mineral parageneses within felsic intrusive rocks in which variable amounts of pyrrhotite are associated with pyrite. Purely negative values were only recorded from the pyrite-dominated gold mineralization within metavolcanic units. Therefore the shift of δ34SVCDT values to the negative values reflects precipitation of sulphide minerals from relatively oxidizing fluids. The range of measured δ65CuNBS978 values from chalcopyrite is from − 1.11 to 1.19‰. Positive values are common for mineralization in felsic intrusive rocks and negative values are more typical for deposits confined to metasedimentary rocks. Positive and negative δ65CuNBS978 values occur in the ores hosted by metavolcanic rocks. There is no correlation between sulphur and copper isotope data obtained in the same chalcopyrite grains.Evaluation of sulphur and boron isotope data together and comparisons with other Archaean orogenic gold provinces supports the hypothesis that the metasedimentary rocks were the major sources of sulphur and boron in the orogenic gold deposits in the Hattu schist belt. Variations in major element and boron isotope compositions in tourmaline, as well as in the δ34SVCDT values in sulphide minerals are attributed to localized involvement of magmatic fluids in the hydrothermal processes. The results of copper isotope studies indicate that local sources of copper in orogenic gold deposits may potentially be recognized if the original, distinct signatures of the sources have not been homogenized by widespread interaction of fluids with a large variety of rocks and provided that local chemical variations have been too small to trigger changes in the oxidation state of copper during hydrothermal processes.  相似文献   

7.
(Ni-Sb)-bearing Cu-arsenides are rare minerals within the Mlakva and Kram mining sectors (Boranja ore field) one of the less-known Serbian Cu deposits. (Ni-Sb)-bearing Cu-arsenides were collected from the Mlakva skarn-replacement Cu(Ag,Bi)-FeS polymetallic deposit. The identified phases include β-domeykite, Ni-bearing koutekite and (Ni-Sb)-bearing α-domeykite. (Ni-Sb)-bearing Cu-arsenides are associated with nickeline, arsenical breithauptite, chalcocite, native Ag, native Pb and litharge. Pyrrhotite, pyrite, chalcopyrite, cubanite, bismuthinite, molybdenite, sphalerite, galena, Pb(Cu)-Bi sulfosalts and native Bi, as well as minor magnetite, scheelite and powellite are associated with the sulfide paragenesis. The electron microprobe analyses of the (Ni-Sb)-bearing Cu-arsenides yielded the following average formulae: (Cu2.73,Ni0.17,Fe0.03,Ag0.01) 2.94(As0.98,Sb0.05,S0.02) 1.06–β-domeykite (simplified formula (Cu2.7,Ni0.2) 2.9As1.1); (Cu3.40,Ni1.40,Fe0.11) 4.91(As1.94,Sb0.13,S0.02) 2.08–Ni-bearing koutekite (simplified formula (Cu3.4Ni1.5) 4.9As2.1); and Cu1.97(Ni0.98,Fe0.03) 1.01(As0.81,Sb0.22) 1.03–(Ni–Sb)-bearing α-domeykite (simplified formula Cu2NiAs). The Rietveld refinement yielded the following unit-cell parameters for β-domeykite and Ni–bearing koutekite: a = 7.1331(4); c = 7.3042(5) Å; V = 321.86(2) Å3, and a = 5.922(4); b = 11.447(9); c = 5.480(4) Å; V = 371.48(5) Å3, respectively. Ore geology, paragenetic assemblages and genesis of the Mlakva deposit are discussed in detail and the Cu-As-Ni-Sb-Pb mineralization has been compared with similar well-known global deposits.  相似文献   

8.
The chemistry of garnet can provide clues to the formation of skarn deposits. The chemical analyses of garnets from the Astamal Fe-LREE distal skarn deposit were completed using an electron probe micro-analyzer. The three types of garnet were identified in the Astamal skarn are: (I) euhedral coarse-grained isotropic garnets (10–30 mm across), which are strongly altered to epidote, calcite and quartz in their rim and core, with intense pervasive retrograde alteration and little variation in the overall composition (Adr94.3–84.4 Grs8.5–2.7 Alm1.9–0.2) (garnet I); (II) anhedral to subhedral brecciated isotropic garnets (5–10 mm across) with minor alteration, a narrow compositional range along the growth lines (Adr82–65.4 Grs21.9–11.7 Alm11.1–2.4) and relatively high Cu (up to 1997 ppm) and Ni (up to 1283 ppm) (garnet II); and (III) subhedral coarser grained garnets (> 30 mm across) with moderate alteration, weak diffusion and irregular zoning of discrete grossular-almandine-rich domains (Adr84.2–48.8 Grs32.4–7.6 Alm19.9–3.5) (garnet III). In the third type, the almandine content increases with increasing grossular/andradite ratio and increasing substitutions of Al for Fe3 +.Almost all three garnet types have been replaced by fine-grained, dark-brown allanite that is typically disseminated and has the same relief as andradite. The Cu content increases while Ni content decreases slightly towards the rim of garnet II and garnet III. Copper in garnet II is positively correlated with increasing almandine content and decreasing andradite content, indicating that the almandine structure, containing relatively more Fe2 +, is more suitable than andradite and grossular to host divalent cations such as Cu2 +. Nickel in garnet II is positively correlated with increasing andradite content, total Fe, and decreasing almandine content. This is because Ni2 + substitutes for Fe3 + in the Y (octahedral) position. There are unusual discrete grossular-almandine rich domains within andraditic garnet III, indicating the low diffusivity of Ca compared to Fe at high temperatures.  相似文献   

9.
The western Tianshan metallogenic belt is one of the most significant polymetallic iron metallogenic belts in China. Important advances have been achieved recently in iron exploration in the Awulale Mountain in western Tianshan, China. These newly-discovered iron deposits are mainly hosted in the basic-medium andesitic lavas and volcaniclastics, often comprising a number of high-grade ores. Magnetite is predominated in ore mineral assemblages, and pyrite, chalcopyrite, pyrrhotite or sphalerite increase in certain deposits. Wallrock alterations are intensively developed, exemplified as sodic–calcic and potassic alterations which display in different patterns as country rocks and ore-controlled structures vary. Skarn assemblages are commonly developed in ore districts like Beizhan, Dunde and Chagangnuoer, and pyroxene + albite + K-feldspar  epidote + actinolite alterations are dominated around ore bodies in Zhibo deposit, whereas the Shikebutai deposit develops alteration assemblages comprising of jasper, barite, sericite, and chlorite. Thus, iron deposits can be divided into three types including volcanic-sedimentary type, volcanic magmatic-hydrothermal type and iron skarn type. Our preliminary interpretation about the tectonic background of this iron mineralization in this area is in the late stage of a collisional–accretional orogenic belt around Carboniferous, with some extrusional–extensional tectonic transition locally. Iron mineralization is likely to have a close genetic relationship with volcanic–subvolcanic activity, syn- or slightly post- the volcanism which took place besides continental arc. Volcanic eruption contributes to majority of mineralizing iron, with minor extracted from hydrothermal replacement from wall rocks.  相似文献   

10.
The Jinding Zn–Pb deposit located in the Mesozoic-Cenozoic Lanping Basin of southwest China has ore reserves of ∼ 220 Mt with an average grade of 6.1% Zn and 1.3% Pb. The mineralization is hosted by sandstone in the Early Cretaceous Jingxing Formation and limestone breccia in the Paleocene Yunlong Formation. Mineralization in both types of host rocks is characterized by a paragenetic sequence beginning with marcasite–sphalerite (Stage 1) followed by pyrite–marcasite–sphalerite–galena (Stage 2), and then galena–sphalerite–pyrite–sulfate–carbonate (Stage 3). Pyrite from these stages have different δ33S compositions with pyrite from Stage 1 averaging − 9.6‰, Stage 2 averaging − 8.9‰, and Stage 3 averaging + 0.3‰. Sphalerite hosted by the sandstone has similar δ66Zn values ranging from 0.10 to 0.30‰ in all stages of the mineralization, but sphalerite samples from the limestone breccia-hosted ore show variable δ66Zn values between − 0.03 and 0.20‰. Our data on sphalerite precipitated during the earlier stages of mineralization has a constant δ66Zn value and cogenetic pyrite displays a very light sulfur isotope signature, which we believe to reflect a sulfur source that formed during bacterial sulfate reduction (BSR). The Stage 3 sphalerite and pyrite precipitated from a late influx of metal-rich basinal brine, which had a relatively constant variable δ66Zn isotopic composition due to open system isotope fractionation, and a near zero δ33S composition due to the influence of abiotic thermochemical sulfate reduction from observed sulfates in the host rock.  相似文献   

11.
The Weilasituo and Bairendaba Zn–Pb–Ag–Cu–(Sn–W) sulphide deposits are located in the southern part of Great Xing'an Range of Inner Mongolia in China. The deposits are located at shallow depths in the newly discovered Weilasituo porphyry hosting Sn–W–Rb mineralization. The mineralization at Weilasituo and Bairendaba consist of zoned massive sulphide veins within fractures cutting the Xilinhot Metamorphic Complex and quartz diorite. The Weilasituo deposit gradually zones from the Cu-rich Zn–Cu sulphide mineralization in the west to Zn-rich Zn–Cu sulphide mineralization in the east. The Bairendaba deposit has a Cu-bearing and Zn-rich core through a transitional zone devoid of copper to an outer zone of Zn–Pb–Ag mineralization. Three main veins contain more than 50 wt.% of the contained metal in the two deposits with their metal ratios displaying a systematic and gradual increase in Zn/Cu, Pb/Zn and Ag/Zn ratios from the western part of Weilasituo to the eastern part of Bairendaba.Three stages of vein-type mineralization are recognized. Early, sub-economic mineralization consists of a variable proportion of euhedral arsenopyrite, pyrite, quartz, and rare wolframite, scheelite, cassiterite, magnetite and cobaltite. This was succeeded by main stage mineralization with economic concentration of zoned Cu, Zn, Pb and Ag sulphide minerals along strike within the veins. The zones consist of the assemblages: (1) pyrrhotite–Fe-rich sphalerite–chalcopyrite(–quartz–fluorite) at west Weilasituo; (2) pyrrhotite–Fe-rich sphalerite–chalcopyrite(–galena–tetrahedrite–quartz–fluorite) at east Weilasituo; (3) pyrrhotite–Fe-rich sphalerite–chalcopyrite(–galena–tetrahedrite–quartz–fluorite) in the centre of Bairendaba; (4) pyrrhotite–Fe-rich sphalerite–galena(–chalcopyrite–tetrahedrite–quartz–fluorite) in the transition zone of Bairendaba; and (5) pyrrhotite–Fe-rich sphalerite–galena–tetrahedrite(–chalcopyrite–falkmanite–argentite–pyrargyrite–quartz–fluorite) in the outer zone at Bairendaba. Post-main ore stage is devoid of sulphides and characterized overprinting of fluorite, sericite, chlorite, illite, kaolinite and calcite.Zircon SHRIMP U–Pb dating, Zircon LA–ICP–MS U–Pb dating, molybdenite Re–Os isochron dating, and muscovite Ar–Ar dating indicate the Beidashan granitic batholith was intruded at 140 ± 3 Ma (MSWD = 3.3), the porphyritic monzogranite from marginal facies of the Beidashan batholith was intruded at 139 ± 2 Ma (MSWD = 0.75), the mineralized quartz porphyry was intruded at 135 ± 2 Ma (MSWD = 0.91), the greisen mineralization occurred at 135 ± 11 Ma (MSWD = 7.2), and the post-main ore stage muscovite deposited at 129.5 ± 0.9 Ma. The new geochronology data show the porphyry Sn–W–Rb and vein-type sulphide mineralization are contemporaneous with granitic magmatism in the region.The metal zonation at the Weilasituo and Bairendaba deposits is a result of progressive metal deposition. This was during the evolution of a metal-bearing fluid along the strike of the veins and during the main stage of ore formation at the upper part of the deep-seated porphyry Sn–W–Rb system. This progressive zonation indicates that the deposits represent end-numbers formed from one ore-forming fluid, which moved from west to east from the porphyry. The metal zonation patterns of the major veins are consistent with metal-bearing fluid entering the system with the precipitation of chalcopyrite proximally and sphalerite, galena and Ag-bearing minerals more distally. We show that the mechanism of metal deposition is therefore controlled by thermodynamic conditions resulting in the progressive separation of sulphides from the metal-bearing fluid. The temperature gradient between the inflow zone and the outflow zone appears to be one of the key parameters controlling the formation of the metal zonation pattern. The sulphide precipitation sequence is consistent with a low fS2 and low fO2 state of the acidic metal-bearing fluid. The metal zonation pattern provides helpful clues from which it is possible to establish the nature of fluid migration and metal deposition models to locate a possible porphyry mineralization at depth in the Great Xing'an Range, which is consistent with the geology of the newly discovered porphyry Sn–W–Rb system.  相似文献   

12.
The skarn type copper deposits are widespread in the Jiurui district in the Middle-Lower Yangtze River metallogenic belt. This paper reports a detailed study on mineral chemistry, and H, O, S and Pb isotopic compositions on skarn silicate and sulfide minerals in the three major skarn dominant deposits (Wushan, Dongleiwan and Dengjiashan). The Wushan skarn deposit is characterized with prograde garnet-dominated and clinopyroxene limited skarns with average andradite content of 83% and hedenbergite content of 10%, whereas the Dongleiwan and Dengjiashan deposits are featured with retrograde skarn alteration with abundant hydrous minerals such as epidote and chlorite. The garnet and clinopyroxene compositions show 59% andradite and 15% hedenbergite for the Dongleiwan skarns, and 43% and 22% for the Dengjiashan skarns respectively. The pistacite components (Ps value) defined as Fe3 +/(Fe3 ++ Al) and Fe3 +/Fe2 + value of epidote are 0.12 and 1.63 for the Wushan skarns, 0.30 and 32.73 for the Dongleiwan skarns, and 0.17 and 42.85 for the Dengjiashan skarns. It is suggested that the prograde skarn mineralization in the three deposits was all formed in a relatively oxidizing environment, with the Wushan showing the highest oxidation potential and the Dengjiashan having the least oxidation potential. However, in the retrograde skarns, the Dongleiwan and Dengjiashan deposits show higher oxidation potential than that of Wushan. The three deposits show similar sulfur isotopic compositions of − 2.9 to + 1.4‰ and similar lead isotopic compositions with 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb ratios of 17.900 to 18.205, 15.538 to 15.649 and 38.170 to 39.025, respectively. All the three deposits should have similar magmatic origin for the ore-forming materials based on their S and Pb isotopes. The oxygen isotopic compositions of the prograde and retrograde fluids in the three deposits show some differences, with δ18OFluid values of + 8.13‰ and + 7.81‰ for the Wushan, + 6.47‰ and + 2.33‰ for the Dongleiwan, and + 8.27‰ and + 4.43‰ for the Dengjiashan. But the hydrogen isotopic compositions are similar for the prograde (− 65 to − 31‰) and retrograde (− 64 to − 33‰) fluids. Therefore, the fluid origins and evolution may be different in each deposit. The hydrothermal fluids for the prograde skarns in all three deposits were likely derived from magmatic–hydrothermal sources, but the Dongleiwan and Dengjiashan show a higher proportion of meteoric water input in the retrograde stage. Considering the similar average prograde temperatures (574 to 560 °C) as calculated from coexisting garnet–clinopyroxene pairs, and similar retrograde temperatures (281 to 246 °C) as calculated from chlorite chemistry for the three deposits, we suggest that the trigger for deposition of sulfide ores in the Wushan garnet-dominated skarn deposit was mainly caused by system cooling with temperature drop along with magmatic intrusion and crystallization process. The Dongleiwan and Dengjiashan skarn deposits constitute a well developed retrograde skarn system with abundant epidote, chlorite, quartz and calcite, which probably caused by fluid mixing of high-temperature saline magmatic–hydrothermal fluids with cooler, oxidizing and dilute meteoric water.  相似文献   

13.
Copper and iron skarn deposits are economically important types of skarn deposits throughout the world, especially in China, but the differences between Cu and Fe skarn deposits are poorly constrained. The Edong ore district in southeastern Hubei Province, Middle–Lower Yangtze River metallogenic belt, China, contains numerous Fe and Cu–Fe skarn deposits. In this contribution, variations in skarn mineralogy, mineralization-related intrusions and sulfur isotope values between these Cu–Fe and Fe skarn deposits are discussed.The garnets and pyroxenes of the Cu–Fe and Fe skarn deposits in the Edong ore district share similar compositions, i.e., dominantly andradite (Ad29–100Gr0–68) and diopside (Di54–100Hd0–38), respectively. This feature indicates that the mineral compositions of skarn silicate mineral assemblages were not the critical controlling factors for variations between the Cu–Fe and Fe skarn deposits. Intrusions associated with skarn Fe deposits in the Edong ore district differ from those Cu–Fe skarn deposits in petrology, geochemistry and Sr–Nd isotope. Intrusions associated with Fe deposits have large variations in their (La/Yb)N ratios (3.84–24.6) and Eu anomalies (δEu = 0.32–1.65), and have relatively low Sr/Y ratios (4.2–44.0) and high Yb contents (1.20–11.8 ppm), as well as radiogenic Sr–Nd isotopes (εNd(t) =  12.5 to − 9.2) and (87Sr/86Sr)i = 0.7067 to 0.7086. In contrast, intrusions associated with Cu–Fe deposits are characterized by relatively high Sr/Y (35.0–81.3) and (La/Yb)N (15.0–31.6) ratios, low Yb contents (1.00–1.62 ppm) without obvious Eu anomalies (δEu = 0.67–0.97), as well as (87Sr/86Sr)i = 0.7055 to 0.7068 and εNd(t) =  7.9 to − 3.4. Geochemical evidence indicates a greater contribution from the crust in intrusions associated with Fe skarn deposits than in intrusions associated with Cu–Fe skarn deposits. In the Edong ore district, the sulfides and sulfates in the Cu–Fe skarn deposits have sulfur isotope signatures that differ from those of Fe skarn deposits. The Cu–Fe skarn deposits have a narrow range of δ34S values from − 6.2‰ to + 8.7‰ in sulfides, and + 13.2‰ to + 15.2‰ in anhydrite, while the Fe skarn deposits have a wide range of δ34S values from + 10.3‰ to + 20.0‰ in pyrite and + 18.9‰ to + 30.8‰ in anhydrite. Sulfur isotope data for anhydrite and sedimentary country rocks suggest that the formation of skarns in the Edong district involved the interaction between magmatic fluids and variable amounts of evaporites in host rocks.  相似文献   

14.
The Huijiabao gold district is one of the major producers for Carlin-type gold deposits in southwestern Guizhou Province, China, including Taipingdong, Zimudang, Shuiyindong, Bojitian and other gold deposits/occurrences. Petrographic observation, microthermometric study and Laser Raman spectroscopy were carried out on the fluid inclusions within representative minerals in various mineralization stages from these four gold deposits. Five types of fluid inclusions have been recognized in hydrothermal minerals of different ore-forming stages: aqueous inclusions, CO2 inclusions, CO2–H2O inclusions, hydrocarbon inclusions, and hydrocarbon–H2O inclusions. The ore-forming fluids are characterized by a H2O + CO2 + CH4 ± N2 system with medium to low temperature and low salinity. From early mineralization stage to later ones, the compositions of the ore-forming fluids experienced an evolution of H2O + NaCl  H2O + NaCl + CO2 + CH4 ± N2  H2O + NaCl ± CH4 ± CO2 with a slight decrease in homogenization temperature and salinity. The δ18O values of the main-stage quartz vary from 15.2‰ to 24.1‰, while the δDH2O and calculated δ18OH2O values of the ore-forming fluids range from −56.9 to −116.3‰ and from 2.12‰ to 12.7‰, respectively. The δ13CPDB and δ18OSMOW values of hydrothermal calcite change in the range of −9.1‰ to −0.5‰ and 11.1–23.2‰, respectively. Stable isotopic characteristics indicate that the ore-forming fluid was mainly composed of ore- and hydrocarbon-bearing basinal fluid. The dynamic fractionation of the sulfur in the diagenetic pyrite is controlled by bacterial reduction of marine sulfates. The hydrothermal sulfides and the diagenetic pyrite from the host rocks are very similar in their sulfur isotopic composition, suggesting that the sulfur in the ore-forming fluids was mainly derived from dissolution of diagenetic pyrite. The study of fluid inclusions indicates that immiscibility of H2O–NaCl–CO2 fluids took place during the main mineralization stage and caused the precipitation and enrichment of gold.  相似文献   

15.
Although Zn–Pb deposits are one of the most important Cd reservoirs in the earth, few studies have focused on the Cd isotopic fractionation in Zn–Pb hydrothermal systems. This study investigates the causes and consequences of cadmium and sulfur isotope fractionation in a large hydrothermal system at the Tianbaoshan Zn–Pb–Cd deposit from the Sichuan–Yunnan–Guizhou (SYG) metallogenic province, SW China. Moderate variations in Cd and S isotope compositions have been measured in sphalerite cover a distance of about 78 m. Sphalerite has δ114/110Cd values ranging from 0.01 to 0.57‰, and sulfides (sphalerite, galena and chalcopyrite) have δ34SCDT values ranging from 0.2 to 5.0‰. Although δ34SCDT and δ114/110Cd values in sphalerites have no regular spatial variations, the δ34SCDT values in galena and calculated ore-forming fluid temperatures decreased from 2.1 to 0.2‰ and from about 290 to 130 °C, respectively, from the bottom to the top of the deposit. Heavy Cd isotopes are enriched in early precipitated sphalerite in contrast to previous studies. We suggest that Cd isotopic compositions in ore-forming fluids are heterogeneous, which result in heavy Cd isotope enrichment in early precipitated sphalerite. In comparison with other Zn–Pb deposits in the SYG area, the Tianbaoshan deposit has moderate Cd contents and small isotope fractionation, suggesting differences in origin to other Zn–Pb deposits in the SYG province.In the Tianbaoshan deposit, the calculated δ34S∑S-fluids value is 4.2‰, which is not only higher than the mantle-derived magmatic sulfur (0 ± 3‰), but also quite lower than those of Ediacaran marine sulfates (about 30 to 35‰). Thus, we suggest that reduced sulfur of ore-forming fluids in the deposit was mainly derived from the leaching of the basement, which contains large amount of volcanic or intrusive rocks. Based upon a combination of Cd and S isotopic systems, the Tianbaoshan deposit has different geochemical characteristics from typical Zn–Pb deposits (e.g., the Huize deposit) in SYG area, indicating the unique origin of this deposit.  相似文献   

16.
Hydrothermal vein-type deposits of the Kabadüz region (Ordu, NE-Turkey) are located in Upper Cretaceous andesitic–basaltic rocks and were formed in fault zones along NW–SE direction lines, with thicknesses varying between a few centimetres up to 2 m. The primary mineral paragenesis of the many different ore veins consists of pyrite, chalcopyrite, sphalerite, galena and tetrahedrite–tennantite, with quartz and lesser amounts of calcite and barite as gangue minerals. Electron microprobe analyses indicate that the sphalerite and tetrahedrite–tennantite have low Fe contents, with values less than 3.37 wt.% and 1.56 wt.%, respectively. The very low Ni and Co contents of the pyrites (< 0.04 wt.%) and the Zn/Cd ratio of the sphalerite (~ avg. 100) indicate that the hydrothermal solutions were related to felsic magmatic activity. The homogenisation temperatures and calculated salinity data vary between 180–436 °C and 0.4–14.7 NaCl % eq., respectively. A well-defined negative correlation between the Th and the salinity data suggests that meteoric water was involved in the hydrothermal solutions. Based on the measured first melting temperatures, CaCl2, MgCl2, NaCl and KCl were dominant in the fluid inclusions. The δ34S compositions of the pyrite, chalcopyrite, sphalerite, and galena mineral separates of the investigated ore veins were measured at between 2.14 and − 1.47‰, and the oxygen and hydrogen isotope compositions varied between 7.8–8.5‰ and − 40 − 57‰, respectively. Based on the sulphur, oxygen and hydrogen isotope compositions, magmatic sources were confirmed for the hydrothermal solutions. Taking into account all of the above data and the granitic intrusions around the area, we concluded that younger granitic intrusions were responsible for the ore mineralisation around the Kabadüz region.  相似文献   

17.
The Anle Zn–Pb deposit, hosted by Upper Cambrian dolostone, is located in the southern Songpan–Ganzi Block in southwest China. In this deposit, ore bodies occur as stratiform lenses and consist of galena, sphalerite and pyrite as ore minerals, and quartz, dolomite and calcite as gangue minerals. The mineralization shows mainly vein, banded and brecciated structures. Four ore bodies have been found in the Anle deposit, with a combined 2.0 million tonnes (Mt) of sulfide ores at average grades of 1.64 wt.% Pb, 6.64 wt.% Zn and 45 g/t Ag. Brown, brownish-yellow and yellow sphalerite samples have δ66Zn values ranging from + 0.08 to + 0.10‰ (average + 0.09‰, n = 3), + 0.12 to + 0.38‰ (average + 0.24‰, n = 8) and + 0.40 to + 0.50‰ (average + 0.46‰, n = 3), respectively. We interpret the progressively heavier Zn isotopes from brown to yellow sphalerite as being led by kinetic Raleigh fractional crystallization. Calcite samples have δ13CPDB and δ18OSMOW values ranging from − 4.8 to − 0.2‰ (average − 1.7‰, n = 7) and + 17.9 to + 21.4‰ (average + 19.6‰, n = 7), respectively. Whole-rock δ13CPDB and δ18OSMOW values of the Cambrian ore-hosting dolostone range from + 0.1 to + 1.1‰ (average + 0.6‰, n = 3) and + 23.2 to + 24.1‰ (average + 23.6‰, n = 3), respectively. This suggests that carbon in the ore-forming fluids was provided by the host dolostone through carbonate dissolution. δ34SCDT values of sulfide samples range between − 1.3‰ and + 17.8‰ with an average value of + 6.3‰ (n = 25), lower than evaporites (such as barite + 19.8‰) in the overlaying Lower Ordovician sedimentary strata. The data suggest that sulfur in the hydrothermal fluids were derived from evaporites by thermo-chemical sulfate reduction (TSR). 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb ratios for sulfide minerals range from 17.63 to 17.86, 15.58 to 15.69 and 37.62 to 37.95, respectively. The data are similar to those of the age-corrected Cambrian ore-hosting dolostone (206Pb/204Pb = 17.70–17.98, 207Pb/204Pb = 15.58–15.65 and 208Pb/204Pb = 37.67–38.06), but lower than those of age-corrected Ordovician sandstone and slate (206Pb/204Pb = 18.54–19.58, 207Pb/204Pb = 15.73–15.81 and 208Pb/204Pb = 38.44–39.60). This indicates that ore Pb was most likely to be derived from the Cambrian ore-hosting dolostone. Therefore, our new geological and isotopic evidence suggests that the Anle Zn–Pb deposit is best classified to be an epigenetic carbonate-hosted Mississippi Valley-type (MVT) deposit.  相似文献   

18.
Modern massive sulfide deposits are known to occur in diverse tectonic settings and it is generally expected that hydrothermal deposits of similar geological settings shall have more or less similar mineralogical and geochemical signatures. However, the Mount Jourdanne sulfide deposits along the super-slow spreading Southwest Indian Ridge deviate from this common concept. These sulfide precipitates are Zn-rich (up to 35 wt.%) and are characterized by high concentrations of Pb (≤ 3.5 wt.%), As (≤ 1.1 wt.%), Ag (≤ 0.12 wt.%), Au (≤ 11 ppm), Sb (≤ 967 ppm), and Cd (≤ 0.2 wt.%) which are unusual for a modern sediment-free mid-oceanic ridge system. Therefore, we have reinvestigated the sulfide samples collected during the INDOYO cruise in 1998, in order to explain their unusual mineralogy and geochemical composition. The sulfide samples are polymetallic and are classified as: a) chimneys, b) mounds, and c) hydrothermal breccias. The chimneys are small tube-like symmetrical bodies (30–40 cm high; ~ 10 cm diameter) and consist mainly of sphalerite and less chalcopyrite, set in a matrix of late amorphous silica. The inner wall shows a late-stage colloform sphalerite containing co-precipitates of galena and/or Pb–As sulfosalts. In contrast, the mound samples are dominated either by Fe-sulfides (pyrite) or by a mixture of pyrite and chalcopyrite with less sphalerite, pyrrhotite, amorphous silica and barite. Both, the chimney and mound samples, are characterized by layering and mineral zonation. The hydrothermal breccias are highly altered and mineralogically heterogeneous. They consist of silicified basaltic material that are impregnated with sulfides and contain cm-sized chimney fragments within a matrix of low-temperature minerals such as sphalerite and pyrite. The latter fragments mainly consist of chalcopyrite with isocubanite lamellae. In addition, these breccias contain late-stage realgar, boulangerite, galena, Pb–As sulfosalts and barite that are mostly confined to vugs or fractures. At least five mineralogical associations are distinguished that indicate different thermal episodes ranging from black smoker mineralization conditions to cessation of the hydrothermal activity. Based on the mineralogical associations and established literature in this regard, it is inferred that the mineralization at Mt. Jourdanne occurred mainly in three temperature domains. Above 300 °C, the chalcopyrite (with isocubanite)–pyrrhotite association formed whereas the sphalerite dominated assemblage with much less chalcopyrite and pyrite formed around and below 300 °C. The late-stage mineralization (below 200 °C) contains colloform sphalerite, galena, Pb–As sulfosalts, realgar and barite. The unusual mineralogy and trace element chemistry for this modern VHMS deposit could be explained assuming hydrothermal leaching of some felsic differentiates underneath the basaltic cover and subsequent zone refining processes.  相似文献   

19.
The northeastern Gangdese Pb–Zn–Ag–Fe–Mo–W polymetallic belt (NGPB), characterized by skarn and porphyry deposits, is one of the most important metallogenic belts in the Himalaya–Tibetan continental orogenic system. This belt extends for nearly four hundred kilometers along the Luobadui–Milashan Fault in the central Lhasa subterrane, and contains more than 10 large ore deposits with high potential for development. Three major types of mineralization system have been identified: skarn Fe systems, skarn/breccia Pb–Zn–Ag systems, and porphyry/skarn Mo–Cu–W systems. In this study, we conducted a whole-rock geochemical, U–Pb zircon geochronological, and in situ zircon Hf isotopic study of ore-forming rocks in the NGPB, specifically the Jiangga, Jiaduopule, and Rema skarn Fe deposits, and the Yaguila Pb–Zn–Ag deposit. Although some of these deposits (porphyry Mo systems) formed during the post-collisional stage (21–14 Ma), the majority (these three systems) developed during the main (‘soft collision’) stage of the India–Asia continental collision (65–50 Ma). The skarn Fe deposits are commonly associated with granodiorites, monzogranites, and granites, and formed between 65 and 50 Ma. The ore-forming intrusions of the Pb–Zn–Ag deposits are characterized by granite, quartz porphyry, and granite porphyry, which developed in the interval of 65–55 Ma. The ore-forming porphyries in the Sharang Mo deposit, formed at 53 Ma. The rocks from Fe deposits are metaluminous, and have relatively lower SiO2, and higher CaO, MgO, FeO contents than the intrusions associated with Mo and Pb–Zn–Ag mineralization, while the Pb–Zn–Ag deposits are peraluminous, and have high SiO2 and high total alkali concentrations. They all exhibit moderately fractionated REE patterns characterized by lower contents of heavy REE relative to light REE, and they are enriched in large-ion lithophile elements and relatively depleted in high-field-strength elements. Ore-forming granites from Fe deposits display 87Sr/86Sr(i) = 0.7054–0.7074 and εNd(t) =  4.7 to + 1.3, whereas rocks from the Yaguila Pb–Zn–Ag deposit have 87Sr/86Sr(i) = 0.7266–0.7281 and εNd(t) =  13.5 to − 13.3. In situ Lu–Hf isotopic analyses of zircons from Fe deposits show that εHf(t) values range from − 7.3 to + 6.6, with TDM(Hf)C model ages of 712 to 1589 Ma, and Yaguila Pb–Zn–Ag deposit has εHf(t) values from − 13.9 to − 1.3 with TDM(Hf)C model ages of 1216 to 2016 Ma. Combined with existing data from the Sharang Mo deposit, we conclude that the ore-forming intrusions associated with the skarn Fe and porphyry Mo deposits were derived from partial melting of metasomatized lithospheric mantle and rejuvenated lower crust beneath the central Lhasa subterrane, respectively. Melting of the ancient continental material was critical for the development of the Pb–Zn–Ag system. Therefore, it is likely that the source rocks play an important role in determining the metal endowment of intrusions formed during the initial stage of the India–Asia continental collision.  相似文献   

20.
The Urals is a complex fold belt, which underwent long geological evolution. The formation of most gold deposits in the Urals is related to the collision stage. In this paper, we review some relatively small listvenite-related gold deposits, which are confined to the large Main Uralian fault zone and some smaller faults within the Magnitogorsk zone. The Mechnikovskoe, Altyn-Tash, and Ganeevskoe deposits are studied in detail in this contribution. They comprise the ore clusters along with other numerous small gold deposits, and constituted the sources for the gold placers exploited in historical time. The gold is hosted by metasomatites (listvenites, beresites) and quartz veins with economic gold grades (up to 20 g/t Au). Listvenites are developed after serpentinites and composed of quartz, fuchsite, and carbonates (magnesite, dolomite) ± albite. Volcanic and volcanoclastic rocks are altered to beresites, consisting of sericite, carbonates (dolomite, ankerite), quartz and albite. Pyrite and chalcopyrite are major ore minerals associated with gold; pyrrhotite, Ni sulfides, galena, sphalerite, arsenopyrite and Au-Ag tellurides are subordinate and rare. Gold in these deposits is mostly high-fineness (>900‰). The lower fineness (∼800‰) is typical of gold in assemblage with polymetallic sulfides and tellurides. The ores have been formed from the NaCl–CO2–H2O ± CH4 fluids of low (∼2 wt% NaCl-equiv.) to moderate (8–16 wt% NaCl-equiv.) salinity at temperatures of 210–330 °C. The oxygen isotopic composition of quartz (δ18O) varies from 14.7 to 15.4‰ (Mechnikovskoe deposit), 13.2 to 13.6‰ (Altyn-Tash deposit) and 12.0 to 12.7‰ (Ganeevskoe deposit). The oxygen isotopic composition of albite from altered rocks of the Ganeevskoe deposit is 10.1‰. The calculated δ18OH2O values of the fluid in equilibrium with quartz are in a range of 5.7–6.3, 4.2–4.6 and 6.3–6.7‰ respectively, and most likely indicate a magmatic fluid source.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号