首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 109 毫秒
1.
马宗晋  李献智 《地震地质》1992,14(2):129-139
本文对中国大陆南北中轴地震带、天山地震带、山西地震带和燕山地震带等4条地震带内地震迁移现象进行了研究,证明了迁移的定向性,发现了迁移快波和慢波现象,求得迁移速度(V_M、V_m),提出了迁移的基础不是地震断裂的连续伸延,而是边界动力源脉动式推压引起的动力波的传播所决定的  相似文献   

2.
应用一种新思路、新方法研究兴都库什-贝加尔地震带内的地震迁移,结果表明,地震沿地震带由南西西向北东东方向定向迁移,平均迁移速度为每年129KM量级与中国大陆西部地震带(区)的地震迁移速度相当,研究结果为地震动力学和地震预报提供了一定的依据。  相似文献   

3.
应用一种新思路、新方法研究兴都库什-贝加尔地震带内的地震迁移,结果表明,地震沿地震带由南西西向北东东方向定向迁移,平均迁移速度为每年129km,量级与中国大陆西部地震带(区)的地震迁移速度相当.研究结果为地震动力学和地震预报提供了一定的依据.  相似文献   

4.
魏柏林 《华南地震》2000,20(3):45-51
东南沿海地震带可被划分为4条次级的NE向地震活动带,分别为滨海、汕头-惠来、河源-阳江和吴川-四会等地震带。分析了这些地震带上Ms≥4^3/4级地震的迁移方向和速率,发现地震沿带的主体NE方向作定向或往返迁移,但各带迁移路线和速率各异,这可能与断裂活动的均匀性、差异性和构造应力作用方式有关。  相似文献   

5.
青海及邻区强震迁移活动规律分析   总被引:2,自引:1,他引:2  
通过分析,研究了青海及邻区Ms 6.8强震在不同地震带之间的迁移规律;6级地震在各个地震带内部不同地段的迁移特征及不同时段。强震集聚区在各个地震带的相互迁移规律和循环特征。研究结果表明,强震存在北东方向的迁移规律。同一个地震带内存在沿规模宏大的主活动断裂自西向东或者由东向西的迁移规律。利用马尔科夫过程讨论了其迁移概率。  相似文献   

6.
以古地震、历史地震和现代地震作为时间域,以华北地区、山西地震带、河北平原地震带和郯庐地震带为单元,分析和研究了华北地区大地震复发周期和迁移特征。在此基础上,讨论了华北地区地震活动的动力学问题、块体框动、地震迁移和地震活动趋势。  相似文献   

7.
通过研究青藏高原地区地震的发震时间和空间分布规律,发现青藏高原西北地区70%的6级以上地震发生在青藏高原地震活动高潮时期,以青藏高原西北地区地震的发震时间为基准,以一年的时间窗口去检测南北地震带发生的地震,发现青藏高原西北地区与南北地震带中强震发震时间接近,具有很强的关联。青藏高原西北地区发生的地震与南北地震带南、北、中段的地震活动相关性各不相同,地震活动频次上呈现出与南北地震带北段相关性最弱,与南段相关性最强,但在震级上表现出与南北地震带北段和中段强震活动关系密切,与滇缅构造转换区的中震联系紧密,图像信息方法为两个地区地震活动相关性提供了证据。研究同时发现以海原地震为起始地震时南北地震带的强震具有由北向南往复迁移的特征,南北地震带中段和滇缅构造转换区的地震迁移次数更多,表明两个地区地震活动确实联系紧密。这项研究对于南北地震带的地震危险性评价和"源线模式"地震预测方法具有重要的意义。  相似文献   

8.
《地震地质》1994,16(2):127
对全球尺度的6条大地震带内1900~1990年中184次Ms≥73/4级地震进行了沿地震带方向定向迁移的分析,获得了全球统一的地震定向迁移规律,总体是由西向东,迁移速度由700km/a变为150km/a,此现象可以作多种暂态地球动力作用过程的推论,如以大西洋脊间歇式张裂引起上地幔软流物质自西向东运动,呈现纵波式的振荡传播;也可解释为非洲板块、阿拉伯板块和印度板块自西南向东北对欧亚地震带依次的推压引起向东的应变波的传播;太平洋脊两侧洋底板块向西北和东北两侧的斜向推压,可能是造成两侧地震带地震向北迁移的触发源  相似文献   

9.
华北地区主要地震带中强震潜在危险性估计   总被引:2,自引:0,他引:2  
从华北地区五条主要地震带上的中强地震资料人手,结合对各地震带上地震定向迁移规律已有认识,对各地震带带内未来5-20年内中强地震活动危险性及带内不同地段地震迁移概率进行了定量估计。震例检验结果表明,文中所用的对地震带发生中强地震的危险性计算、危险性排序和对各带带内地震迁移场所有概率估计方法具有较好的预测效果,预测结论可以作为未来华北地区中长期强震形势估计的参考依据。  相似文献   

10.
对全球尺度的6条大地震带内1900~1990年中184次Ms≥73/4级地震进行了沿地震带方向定向迁移的分析,获得了全球统一的地震定向迁移规律,总体是由西向东,迁移速度由700km/a变为150km/a,此现象可以作多种暂态地球动力作用过程的推论,如以大西洋脊间歇式张裂引起上地幔软流物质自西向东运动,呈现纵波式的振荡传播;也可解释为非洲板块、阿拉伯板块和印度板块自西南向东北对欧亚地震带依次的推压引起向东的应变波的传播;太平洋脊两侧洋底板块向西北和东北两侧的斜向推压,可能是造成两侧地震带地震向北迁移的触发源。  相似文献   

11.
用一种新思路、新方法研究了中国大陆东南沿海地震带地震的迁移,结果表明其具有由东向西定向迁移的规律,其各个迁移过程的迁移速度也相对稳定,平均值为42km/a,这为该带地震活动的动力源和目前可能的地震危险区提供了一定的依据。  相似文献   

12.
华北构造区主要地震带分段与强震活动div   总被引:4,自引:0,他引:4       下载免费PDF全文
在华北构造区划分出银川——河套地震带、汾渭地震带、河北平原地震带、东秦岭——大别地震带、郯庐地震带和长江下游——黄海地震带等6个地震带,并依据地震带构造特征和地震活动的差异性,将其中汾渭地震带划分为延庆——代县段、原平——襄汾段和侯马——渭河段;河北平原地震带划分为三河——涞水段、唐山——邢台段和安阳——成武段;郯庐地震带划分为开原——辽东湾段、渤海段、潍坊——嘉山段和嘉山——广济段;银川——河套地震带初步划分为银川段和河套段.同时,对河北平原地震带南界及其与东秦岭——大别地震带的关系,地震带不同区段存在的主震型和多震型特点,以及可能发生强震的危险区段进行了初步探讨.   相似文献   

13.
分析了大华北区历史地震活动分期与现代地震活动特点,讨论了大华北区及其相关区带不同地震活动幕地震空间活动特征。认为大华北地块区目前处在第四活动期的调整活动阶段,未来几年可能进入新的地震活跃幕,地震活动以5-6级地震为主,主要活动地区为燕渤带和鲁东—南黄海地块区。  相似文献   

14.
汤兰荣  高建华  曾新福 《地震》2015,35(3):86-92
本文对华东地区的地震成组和迁移特征进行了详细分析。 结果表明, 1700年以来华东地区可划分为四个地震活跃幕, 地震较完整的第二幕和第三幕内陆5级以上地震空间成组特征明显; 郯庐带以西(包括郯庐带)和郯庐带以东地区4级以上地震时序上具有成组发生的特点; 1900年以来郯庐带中南段5级以上地震具有自南向北定向迁移特征; 1993年以来华东内陆郯庐带及周边200 km范围内的ML4以上地震分三组活动且自西向东迁移。 该研究结果有助于华东地区今后的地震趋势分析。  相似文献   

15.
统计分析了中国大陆1900年以来所有发生在东北的5级以上的学震及其与中国大陆26个地震带6级以上(其中东部为5级以上)地震活动的相关性。结果表明7级以上深震有可能引发中国大陆地震活动进入应变能大释放阶段。其中与东北深震统计相关最高的地震带是:金沙江地震带、南天山地震带澜沧江-眉公河地震带以及巴颜喀拉山地震带;在中国东商地区相关性相对较高的地区是:郯城-营口地震带、长江下游-南黄海地震带以臁东南沿海  相似文献   

16.
On the basis of summarizing the circulation characteristics and mechanism of earthquakes with magnitude 7 or above in continental China, the spatial-temporal migration characteristics, mechanism and future development trend of earthquakes with magnitude above 7 in Tibetan block area are analyzed comprehensively. The results show that there are temporal clustering and spatial zoning of regional strong earthquakes and large earthquakes in continental China, and they show the characteristics of migration and circulation in time and space. In the past 100a, there are four major earthquake cluster areas that have migrated from west to east and from south to north, i.e. 1)Himalayan seismic belt and Tianshan-Baikal seismic belt; 2)Mid-north to north-south seismic belt in Tibetan block area; 3)North-south seismic belt-periphery of Assam cape; and 4)North China and Sichuan-Yunnan area. The cluster time of each area is about 20a, and a complete cycle time is about 80a. The temporal and spatial images of the migration and circulation of strong earthquakes are consistent with the motion velocity field images obtained through GPS observations in continental China. The mechanism is related to the latest tectonic activity in continental China, which is mainly affected by the continuous compression of the Indian plate to the north on the Eurasian plate, the rotation of the Tibetan plateau around the eastern Himalayan syntaxis, and the additional stress field caused by the change of the earth's rotation speed.
Since 1900AD, the Tibetan block area has experienced three periods of high tides of earthquake activity clusters(also known as earthquake series), among which the Haiyuan-Gulang earthquake series from 1920 to 1937 mainly occurred around the active block boundary structural belt on the periphery of the Tibetan block region, with the largest earthquake occurring on the large active fault zone in the northeastern boundary belt. The Chayu-Dangxiong earthquake series from 1947 to 1976 mainly occurred around the large-scale boundary active faults of Qiangtang block, Bayankala block and eastern Himalayan syntaxis within the Tibetan block area. In the 1995-present Kunlun-Wenchuan earthquake series, 8 earthquakes with MS7.0 or above have occurred on the boundary fault zones of the Bayankala block. Therefore, the Bayankala block has become the main area of large earthquake activity on the Tibetan plateau in the past 20a. The clustering characteristic of this kind of seismic activity shows that in a certain period of time, strong earthquake activity can occur on the boundary fault zone of the same block or closely related blocks driven by a unified dynamic mechanism, reflecting the overall movement characteristics of the block. The migration images of the main active areas of the three earthquake series reflect the current tectonic deformation process of the Tibetan block region, where the tectonic activity is gradually converging inward from the boundary tectonic belt around the block, and the compression uplift and extrusion to the south and east occurs in the plateau. This mechanism of gradual migration and repeated activities from the periphery to the middle can be explained by coupled block movement and continuous deformation model, which conforms to the dynamic model of the active tectonic block hypothesis.
A comprehensive analysis shows that the Kunlun-Wenchuan earthquake series, which has lasted for more than 20a, is likely to come to an end. In the next 20a, the main active area of the major earthquakes with magnitude 7 on the continental China may migrate to the peripheral boundary zone of the Tibetan block. The focus is on the eastern boundary structural zone, i.e. the generalized north-south seismic belt. At the same time, attention should be paid to the earthquake-prone favorable regions such as the seismic empty sections of the major active faults in the northern Qaidam block boundary zone and other regions. For the northern region of the Tibetan block, the areas where the earthquakes of magnitude 7 or above are most likely to occur in the future will be the boundary structural zones of Qaidam active tectonic block, including Qilian-Haiyuan fault zone, the northern margin fault zone of western Qinling, the eastern Kunlun fault zone and the Altyn Tagh fault zone, etc., as well as the empty zones or empty fault segments with long elapse time of paleo-earthquake or no large historical earthquake rupture in their structural transformation zones. In future work, in-depth research on the seismogenic tectonic environment in the above areas should be strengthened, including fracture geometry, physical properties of media, fracture activity behavior, earthquake recurrence rule, strain accumulation degree, etc., and then targeted strengthening tracking monitoring and earthquake disaster prevention should be carried out.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号