首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
A series of 149 measurements of the HCHO mixing ratio were made between 0 and 10 km altitude and 70° N to 60° S latitude during TROPOZ II. The data show a vertical decrease of the HCHO mixing ratio with altitude at all latitudes and a broad latitudinal maximum in the HCHO mixing ratio between 30° N and 30° S at all altitudes. The measured mixing ratios of HCHO are considerably higher than those expected from CH4 oxidation alone, but agree broadly with the average latitude by altitude distribution of HCHO derived by a 2D model including emissions of C1–C7 hydrocarbons. A number of the regional scale deviations of the measured HCHO distribution from the average modelled one can be explained in terms of the local wind field.  相似文献   

2.
A series of 72 measurements of the acetaldehyde (CH3CHO) mixing ratio were made in the lower troposphere during TROPOZ II. These measurements are the first ever made of the background level of this trace gas in the free troposphere. The data show a vertical decrease of the CH3CHO mixing ratio with increasing altitude and indicate higher CH3CHO concentrations in the Northern Hemisphere — in general agreement with a model-derived average CH3CHO distribution. Deviations of the observed CH3CHO mixing ratios from the modelled mean distribution are correlated with similar deviations in the corresponding HCHO mixing ratios.  相似文献   

3.
Results of more than 800 new measurements of methane (CH4) concentrations in the Southern Hemisphere troposphere (34–41° S, 130–150° E) are reported. These were obtained between September 1980 and March 1983 from the surface at Cape Grim, Tasmania, through the middle (3.5–5.5 km) to the upper troposphere (7–10 km). The concentration of CH4 increased throughout the entire troposphere over the measurement period, adding further support to the view that CH4 concentrations are currently increasing on a global scale. For data averaged vertically through the troposphere the rate of increase found was 20 ppbv/yr or 1.3%/yr at December 1981. In the surface CH4 data a seasonal cycle with a peak to peak amplitude of approximately 28 ppbv is seen, with the minimum concentration occurring in March and the maximum in September–October. A cycle with the same phase as that seen at the surface, but with a significantly decreased amplitude, is apparent in the mid troposphere but no cycle is detected in the upper tropospheric data. The phase and amplitude of the cycle are qualitatively in agreement with the concept that the major sink for methane is oxidation by hydroxyl radicals. Also presented is evidence of a positive vertical gradient in methane, with a suggestion that the magnitude of this gradient has changed over the period of measurements.  相似文献   

4.
Summary During the last phase of the Indian Middle Atmosphere Programme everyday launchings of high altitude balloons were carried out at three locations i.e. Trivandrum (8.5°N, 77.5°E), Hyderabad (17.2°N, 78.3°E) and Bhubaneshwar (21.3°N, 85.5°E) for measuring winds and temperature between 1 and 30 km altitude in a campaign mode from 23 January 1989 to 31 March 1989. The data thus obtained have been examined to determine the characteristics of tropical/equatorial waves. Spectral analysis of the time series (68 points) of both zonal and meridional wind components using Maximum Entropy Method (MEM) reveal the presence of waves with periods between 4–30 days.Strong oscillations centered around 5 days and 18 days seem to dominate in the upper troposphere and lower stratosphere at all the three stations. While 5 day wave has an amplitude of about 2 m/s, the 18 day wave has an amplitude between 8–10 m/s in the zonal and 5–6 m/s in meridional component around tropopause. Its amplitude is maximum over Hyderabad and decreases somewhat on either side i.e. over Trivandrum and Bhubaneshwar. Weekly rocket wind data from Balasore near Bhubaneshwar show that 18–20 day wave continues to propagate vertically in the altitude range of 30–60 km. Temperature data also exhibits similar oscillations with amplitude of about 1 K for 4–5 day wave and 2–3 K for 18 day wave maximising just above tropopause ( 18 km).It is found that some of the observed wave modes, particularly the 18 day wave have characteristics matching those of forced Rossby wave rather than Kelvin wave while the 5 day and 9 day waves have characteristics matching those of mixed Rossby-gravity waves. The latter may be generated due to convective forcing in the troposphere while the former may be penetrating from the midlatitudes.With 15 Figures  相似文献   

5.
Airborne measurements of acetone were performed overthe tropical rainforest in Surinam(2°–7° N, 54°–58° W, 0–12 kmaltitude) during the LBA-CLAIRE campaign in March1998, using a novel proton transfer reaction massspectrometer (PTR-MS) that enables the on-linemonitoring of volatile organic compounds (VOC) with ahigher proton affinity than water. The measuredacetone volume mixing ratios ranged from 0.1 nmol/molup to 8 nmol/mol with an overall average of 2.6nmol/mol and a standard deviation of 1.0 nmol/mol. Theobserved altitude profile and correlations with CO,acetonitrile, propane and wind direction are discussedwith respect to potential acetone sources. No linearcorrelation between acetone and CO mixing ratios wasobserved, at variance with results of previousmeasurement campaigns. The mean acetone/CO ratio(0.022) was substantially higher than typical valuesfound before. The abundance of acetone appears to beinfluenced, but not dominated, by biomass burning,thus suggesting large emissions of acetone and/oracetone precursors, such as possibly 2-propanol, fromliving plants or decaying litter in the rainforest.  相似文献   

6.
During aircraft flights in May 1981 from Munich (40°N) to north of the Spitsbergen Islands (82°N) and to Monrovia, Liberia (6°N), air samples were obtained in the altitude range of 8 to 11 km and during the ascents and descents near the airports. These samples have been analyzed for the trace gas mixing ratios of CH4, CO and N2O. The results of these analyses are presented and discussed.The results provide new evidence of tropospheric-stratospheric exchange events in the vicinity of the subpolar and subtropical tropopause foldings and possibly show a case of transport of CO-enriched air in the upper troposphere above the North Atlantic Ocean.  相似文献   

7.
The aim of the 222Rn measurements during the airborne campaign TROPOZ II, was first to help in the interpretation of the photochemical studies, and secondly to furnish a data set of 222Rn in the troposphere, for validation of atmospheric transport models. In this paper we present the 222Rn measurements, and their simulation with a 3-D atmospheric transport model based on observed winds. The 222Rn was measured using the active daughters deposit technique with isokinetic aerosol sampling. We have obtained 44 measurements distributed between 65° North and 55° South, from 1 to 11 km height. In 25% of cases, we found relatively high concentrations (> 300 mBq·scm) of 222Rn in the high troposphere (>8 km). The results of 3D simulations and the calculations of back-trajectories allow us to find the origins of the high 222Rn concentrations. The transport model reproduced most of the observed synoptic variations, but it overestimates the concentrations which implies a vertical transport of excessive velocity.  相似文献   

8.
Measurements of the sum of peroxy radicals [HO2 + RO2],NOx (NO + NO2) and NOy (the sum of oxidisednitrogen species) made at Mace Head, on the Atlantic coast of Ireland in summer 1996 and spring 1997 are presented. Together with a suite of ancillary measurements, including the photolysis frequencies of O3 O(1D)(j(O1D)) and NO2 (j(NO2)), the measured peroxy radicals are used to calculate meandailyozone tendency (defined as the difference of the in-situphotochemical ozone production and loss rates); these values are compared with values derived from the photochemical stationary state (PSS) expression. Although the correlation between the two sets of values is good, the PSS values are found to be significantly larger than those derived from the peroxy radical measurements, on average, in line with previous published work. Possible sources of error in these calculations are discussed in detail. The data are further divided up into five wind sectors, according to the instantaneous wind direction measured at the research station. Calculation of mean ozone tendencies by wind sector shows that ozone productivity was higher during spring (April–May) 1997 than during summer (July–August) 1996across all airmasses, suggesting that tropospheric photochemistry plays an important role in the widely-reported spring ozone maximum in the Northern Hemisphere. Ozone tendencies were close to zero for the relatively unpolluted south-west, west and north-west wind sectors in the summer campaign, whereas ozone productivity was greatest in the polluted south-east sector for both campaigns. Daytime weighted average ozone tendencies were +(0.3± 0.1) ppbv h–1 for summer 1996 and +(1.0± 0.5) ppbvh–1 for spring 1997. These figures reflect the higher mixing ratios of ozone precursors in spring overall, as well as the higher proportion of polluted air masses from the south-east arriving at the site during the spring campaign. The ozone compensation point, where photochemical ozone destruction and production processes are in balance, is calculated to be ca. 14 pptv NO for both campaigns.  相似文献   

9.
Quantitative infrared measurements of ethane (C2H6) in the upper troposphere and lower stratosphere are reported. The results have been obtained from the analysis of absorption features of the 9 band at 12.2 m, which have been identified in high-resolution ballon-borne and aircraft solar absorption spectra. The ballon-borne spectral data were recorded at sunset with the 0.02 cm-1 resolution University of Denver interferometer system from a float altitude of 33.5 km near Alamogordo, New Mexico, on 23 March 1981. The aircraft spectra were recorded at sunset in July 1978 with a 0.06 cm-1 resolution interferometer aboard a jet aircraft at 12 km altitude, near 35°N, 96°W. The balloon analysis indicates the C2H6 mixing ratio decreased from 3.5 ppbv near 8.8 km to 0.91 ppbv near 12.1 km. The results are consistent with the colum value obtained from the aircraft data.  相似文献   

10.
In part two of this series of papers on the IMS model, we present the chemistry reaction mechanism usedand compare modelled CH4, CO, and O3 witha dataset of annual surface measurements. The modelled monthly and 24-hour mean tropospheric OH concentrationsrange between 5–22 × 105 moleculescm–3, indicating an annualaveraged OH concentration of about 10 × 105 moleculescm–3. This valueis close to the estimated 9.7 ± 0.6 × 105 moleculescm–3 calculated fromthe reaction of CH3CCl3 with OH radicals.Comparison with CH4 generally shows good agreementbetween model and measurements, except for the site at Barrow where modelledwetland emission in the summer could be a factor 3 too high.For CO, the pronounced seasonality shown in the measurements is generally reproduced by the model; however, the modelled concentrations are lower thanthe measurements. This discrepancy may due to lower the CO emission,especially from biomass burning,used in the model compared with other studies.For O3, good agreement between the model and measurements is seenat locations which are away from industrial regions. The maximum discrepancies between modelled results and measurementsat tropical and remote marine sites is about 5–10 ppbv,while the discrepancies canexceed 30 ppbv in the industrial regions.Comparisons in rural areas at European and American continental sites arehighly influenced by the local photochemicalproduction, which is difficult to model with a coarse global CTM.The very large variations of O3 at these locations vary from about15–25 ppbv in Januaryto 55–65 ppbv in July–August. The observed annual O3amplitude isabout 40 ppbv compared with about 20 ppbv in the model. An overall comparison of modelled O3 with measurements shows thatthe O3seasonal surface cycle is generally governed bythe relative importance of two key mechanisms that drivea springtime ozone maximum and asummertime ozone maximum.  相似文献   

11.
Local ozone production and loss rates for the arctic free troposphere (58–85° N, 1–6 km, February–May) during the TroposphericOzone Production about the Spring Equinox (TOPSE) campaign were calculated using a constrained photochemical box model. Estimates were made to assess the importance of local photochemical ozone production relative to transport in accounting for the springtime maximum in arctic free tropospheric ozone. Ozone production and loss rates from our diel steady-state box model constrained by median observations were first compared to two point box models, one run to instantaneous steady-state and the other run to diel steady-state. A consistent picture of local ozone photochemistry was derived by all three box models suggesting that differences between the approaches were not critical. Our model-derived ozone production rates increased by a factor of 28 in the 1–3 km layer and a factor of 7 in the 3–6 kmlayer between February and May. The arctic ozone budget required net import of ozone into the arctic free troposphere throughout the campaign; however, the transport term exceeded the photochemical production only in the lower free troposphere (1–3 km) between February and March. Gross ozone production rates were calculated to increase linearly with NOx mixing ratiosup to 300 pptv in February and for NOx mixing ratios up to 500 pptv in May. These NOx limits are an order of magnitude higher thanmedian NOx levels observed, illustrating the strong dependence ofgross ozone production rates on NOx mixing ratios for the majority of theobservations. The threshold NOx mixing ratio needed for netpositive ozone production was also calculated to increase from NOx 10pptv in February to 25 pptv in May, suggesting that the NOx levels needed to sustain net ozone production are lower in winter than spring. This lower NOx threshold explains how wintertime photochemical ozone production can impact the build-up of ozone over winter and early spring. There is also an altitude dependence as the threshold NOx neededto produce net ozone shifts to higher values at lower altitudes. This partly explains the calculation of net ozone destruction for the 1–3 km layerand net ozone production for the 3–6 km layer throughout the campaign.  相似文献   

12.
The applicability of the tungsten oxide denuder tube technique for the measurement of ammonia in the rural troposphere was investigated. The technique is based on selective chemisorption of NH3 from a gas stream, thermal desorption, conversion to NO, and analysis by NO–O3 chemiluminescence. Nitric acid, which is also collected and desorbed as NO, was distinguished from NH3 by differences in desorption temperature. Substituted amines were also collected, but desorbed at a slightly lower temperature than NH3 in dry air. At high relative humidities, alkylamines may be hydrolyzed to NH3 on the denuder surface and hence detected as NH3. Overheating of the denuder tube during the temperature-programmed desorption was found to cause significant irreversible degradation of system performance.The technique was used to measure NH3 mixing ratios at two rural locations in the United States. At a mountain site in Colorado during the winter of 1984, the average NH3 mixing ratio was 0.20 ppbv (=0.08 ppbv). At an isolated coastal site in northern California during the spring of 1985, the average NH3 mixing ratio was 0.36 ppbv (=0.17 ppbv). Correlations of the latter measurements with wind direction and NO x level suggest that the NH3 mixing ratio in Pacific marine air at 40°N is <-0.25 ppbv.  相似文献   

13.
Vertical profiles of gaseous hydrogen chloride have been measured in the lower and middle troposphere. For sampling, denuder tubes coated with porous silica were used. Hydrogen chloride was determined by gas chromatography in combination with a derivatization method. The samples were collected over the Atlantic Ocean northwest of Norway in early September 1981 and over the Mediterranean Sea and north-eastern Spain in December 1981 at altitudes between 0.1 and 7 km. Above the 3 km altitude the mixing ratios are generally very low and relatively uniform with values of 50–100 ppt. Below 3 km, the variations of the HCl-mixing ratios are larger with maximum values of up to 500 ppt. The profiles are discussed with respect to the vertical and horizontal transport conditions and the possible sources and sinks of gaseous hydrogen chloride.  相似文献   

14.
Since 1978, a measuring station has been operated at Cape Point (34°21 S, 18°29 E). In this article, results of measurements of CO, CFCl3, CCl4, O3, N2O and CH4 are presented as monthly means and analyzed with respect to long-term trends and seasonal variations. For CO and CH4, very similar seasonal variations have been observed, indicating strong interrelations between these two gases. For CO and O3, no significant changes of the mean annual concentrations can be established for the observation periods of 10 and 5 years, respectively. The measurements yield a growth rate of 9.1 pptv yr-1 for CFCl3 (1980–1987) and 0.6 ppbv yr-1 for N2O (1983–1987). The concentration increases of CH4 (10.3 ppbv yr-1 for 1983–1987) and of CCl4 (2.1 pptv yr-1 for 1980–1988) are analyzed for temporal changes during the last years.Presented at the Second Conference on Baseline Observations in Atmospheric Chemistry (SABOAC II) in Melbourne, Australia, November 1988.  相似文献   

15.
Airborne measurements of stratospheric ozone and N2O from the SCIAMACHY (Scanning Imaging Absorption Spectrometer) Validation and Utilization Experiment (SCIA-VALUE) are presented. The campaign was conducted in September 2002 and February–March 2003. The Airborne Submillimeter Radiometer (ASUR) observed stratospheric constituents like O3 and N2O, among others, spanning a latitude from 5°S to 80°N during the survey. The tropical ozone source regions show high ozone volume mixing ratios (VMRs) of around 11 ppmv at 33 km altitude, and the altitude of the maximum VMR increases from the tropics to the Arctic. The N2O VMRs show the largest value of 325 ppbv in the lower stratosphere, indicating their tropospheric origin, and they decrease with increasing altitude and latitude due to photolysis. The sub-tropical and polar mixing barriers are well represented in the N2O measurements. The most striking seasonal difference found in the measurements is the large polar descent in February–March. The observed features are interpreted with the help of SLIMCAT and Bremen Chemical Transport Model (CTMB) simulations. The SLIMCAT simulations are in good agreement with the measured O3 and N2O values, where the differences are within 1 ppmv for O3 and 15 ppbv for N2O. However, the CTMB simulations underestimate the tropical middle stratospheric O3 (1–1.5 ppmv) and the tropical lower stratospheric N2O (15–30 ppbv) measurements. A detailed analysis with various measurements and model simulations suggests that the biases in the CTMB simulations are related to its parameterised chemistry schemes.  相似文献   

16.
A series of ozone transects measured each year from 1987 to 1990 over thewestern Pacific and eastern Indian oceans between mid-November andmid-Decembershows a prominent ozone maximum reaching 50–80 ppbv between 5 and 10 kmin the 20° S–40° S latitude band. This maximum contrasts with ozonemixing ratios lower than20 ppbv measured at the same altitudes in equatorial regions. Analyses witha globalchemical transport model suggest that these elevated ozone values are part ofa large-scale tropospheric ozone plume extending from Africa to the western Pacific acrosstheIndian ocean. These plumes occur several months after the peak in biomassburninginfluence and during a period of high lightning activity in the SouthernHemispheretropical belt. The composition and geographical extent of these plumes aresimilar to theozone layers previously encountered during the biomass burning season in thisregion.Our model results suggest that production of nitrogen oxides from lightningstrokes sustains the NOx (= NO+NO2) levels and the ozonephotochemical productionrequired in the upper troposphere to form these persistent elevated ozonelayers emanating from biomass burning regions.  相似文献   

17.
In summer, atmospheric ozone was measured from an aircraft platform simultaneously with nitric oxide (NO), oxides of nitrogen (NO y ), and water vapor over the Pacific Ocean in east Asia from 34° N to 19° N along the longitude of 138±3°E. NO y was measured with the aid of a ferrous sulfate converter. The altitude covered was from 0.5 to 5 km. A good correlation in the smoothed meridional distributions between ozone and NO y was seen. In particular, north of 25° N, ozone and NO y mixing ratios were considerably higher than those observed in tropical marine air south of 25° N. NO y and O3 reached a minimum of 50 pptv and 4 ppbv respectively in the boundary layer at a latitude of 20° N. The NO concentration between 2 and 5 km at the same latitude was 30 pptv. The profiles of ozone and water vapor mixing ratios were highly anti-correlated between 25° N and 20° N. In contrast, it was much poorer at the latitude of 33° N, suggesting a net photochemical production of ozone there.  相似文献   

18.
Airborne measurements of volatile organic compounds (VOC) were performed overthe tropical rainforest in Surinam (0–12 km altitude,2°–7° N, 54°–58° W) using the proton transferreaction mass spectrometry (PTR-MS) technique, which allows online monitoringof compounds like isoprene, its oxidation products methyl vinyl ketone,methacrolein, tentatively identified hydroxy-isoprene-hydroperoxides, andseveral other organic compounds. Isoprene volume mixing ratios (VMR) variedfrom below the detection limit at the highest altitudes to about 7 nmol/molin the planetary boundary layer shortly before sunset. Correlations betweenisoprene and its product compounds were made for different times of day andaltitudes, with the isoprene-hydroperoxides showing the highest correlation.Model calculated mixing ratios of the isoprene oxidation products using adetailed hydrocarbon oxidation mechanism, as well as the intercomparisonmeasurement with air samples collected during the flights in canisters andlater analysed with a GC-FID, showed good agreement with the PTR-MSmeasurements, in particular at the higher mixing ratios.Low OH concentrations in the range of 1–3 × 105molecules cm-3 averaged over 24 hours were calculated due to lossof OH and HO2 in the isoprene oxidation chain, thereby stronglyenhancing the lifetime of gases in the forest boundary layer.  相似文献   

19.
One hundred atmospheric samples were collected aboard the French Caravelle research aircraft, during the TROPOZ II experiment (January 1991). Tropospheric meridional distributions versus height were then derived from 70° N to 60° S and between 0.25 km and 11 km for methane, acetylene, ethane and propane. Areas of significant emissions were identified over northern latitudes with, for acetylene, maximum mixing ratios in the north (1.896 ppbv) more than 70 times higher than in background southern latitudes (0.025 ppbv). The influence of emissions from biomass burning was also obvious in the tropical boundary layer. Significant dynamic phenomena led to high mixing ratio zones above 8 or 10 km even for the most reactive hydrocarbons.For the first time, simultaneous assessment of global tropospheric contents of several light hydrocarbons was carried out. Using TROPOZ II data (January 1991) and STRATOZ III data (June 1984) collected by Rudolph (1988) during similar aircraft flights in 1988, the following tropospheric loads (in Tg-compound) were estimated, in January 1991 and June 1984, respectively: 1.1 and 0.4 for acetylene, 5.0 and 3.9 for ethane, 3.6 and 1.4 for propane and 3545 for methane in January only. According to our results, 40 to 65% of acetylene and alkanes are oxidized in the tropics. In addition, by computing the annual tropospheric sink of acetylene and alkanes, an evaluation of their annual global fluxes was performed. The figures are, in Tg-compound y-1 with an uncertainty of 80% to an order of magnitude, based on January and June data, respectively: 10 and 6.6 for acetylene, 16.3 and 17.6 for ethane and 52.3 and 26.5 for propane.  相似文献   

20.
Estimates of the Chemical Budget for Ozone at Waliguan Observatory   总被引:6,自引:0,他引:6  
Waliguan Observatory (WO) is an in-land Global Atmosphere Watch (GAW) baseline station on the Tibetan plateau. In addition to the routine GAW measurement program at WO, measurements of trace gases, especially ozone precursors, were made for some periods from 1994 to 1996. The ozone chemical budget at WO was estimated using a box model constrained by these measured trace gas concentrations and meteorological variables. Air masses at WO are usually affected by the boundary layer (BL) in the daytime associated with an upslope flow, while it is affected by the free troposphere (FT) at night associated with a downslope flow. An anti-relationship between ozone and water vapor concentrations at WO is found by investigating the average diurnal cycle pattern of ozone and water vapor under clear sky conditions. This relationship implies that air masses at WO have both the FT and BL characteristics. Model simulations were carried out for clear sky conditions in January and July of 1996, respectively. The chemical characteristics of mixed air masses (MC) and of free tropospheric air masses (FT) at WO were investigated. The effects of the variation in NOx and water vapor concentrations on the chemical budget of ozone at WO were evaluated for the considered periods of time. It was shown that ozone was net produced in January and net destroyed in July for both FT and MC conditions at WO. The estimated net ozone production rate at WO was –0.1 to 0.4 ppbv day–1 in FT air of January, 0.0 to 1.0 ppbv day–1 in MC air of January, –4.9 to –0.2 ppbv day–1 in FT air of July, and –5.1 to 2.1 ppbv day–1 in MC air of July.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号