首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 414 毫秒
1.
Transparent exopolymer particles (TEP) are formed by the assembly of dissolved precursors, mainly mono and polysaccharides (DMCHO and DPCHO) that are released by microorganisms. Although TEP formation plays a significant role in carbon export to deep waters and can affect gas exchange at the sea surface, simultaneous measurements of TEP and their precursors in natural waters have been scantly reported. In this study, we described the spatial (vertical and regional) distribution of TEP, DMCHO and DPCHO in a region located around the Antarctic Peninsula, assessed their contribution to the total organic carbon pool, and explored their relationships with phytoplankton (with chlorophyll a (chl a) as a proxy) and bacteria. TEP concentration ranged from undetectable values to 48.9 µg XG eq L− 1 with a mean value of 15.4 µg XG eq L− 1 (11.6 µg TEP-C L− 1). DMCHO and DPCHO showed average values of 4.3 µmol C L− 1 and 8.6 µmol C L− 1, respectively. We did not find simple relationships between the concentrations of TEP and dissolved carbohydrates, but a negative correlation between DMCHO and DPCHO was observed. Chl a was the best regressor of TEP concentration in waters within the upper mixed layer, while bacterial production was the best regressor of TEP concentration below the mixed layer, underlining the direct link between these particles and bacterial activity in deep waters.  相似文献   

2.
The changes in the phytoplankton absorption properties during a diurnal cycle were investigated at one station located in the north-western area of the Alborán Sea. The experiment was performed in spring when the water column was strongly stratified. This hydrological situation permitted the establishment of a deep chlorophyll a (chl a) fluorescence maximum (DFM) which was located on average close to the lower limit of the mixed layer and the nutricline. The relative abundance of pico-phytoplankton (estimated as its contribution to the total chl a) was higher in the surface, however, micro-phytoplankton dominated the community at the DFM level. Chl a specific absorption coefficient (a*(λ)) also varied with optical depth, with a* (the spectrally average specific absorption coefficient) decreasing by 30% at the DFM depth with respect to the surface. A significant negative correlation between the contribution of the micro-phytoplankton to the total chl a and a* was obtained indicating that a* reduction was due to changes in the packaging effect. Below the euphotic layer, a* increased three-fold with respect to the DFM, which agrees with the expected accumulation of accessory pigments relative to chl a as an acclimation response to the low available irradiance. The most conspicuous change during the diurnal cycle was produced in the euphotic layer where the chl a concentration decreased significantly in the afternoon (from a mean concentration of 1.1 μg L−1 to 0.7 μg L−1) and increased at dusk when it averaged 1.4 μg L−1. In addition, a* and the blue-to-red absorption band ratio increased in the afternoon. These results suggest that a*(λ) diurnal variability was due to increase in photo-protective and accessory pigments relative to chl a. The variation ranges of a*(λ) at 675 and 440 nm (the absorption peaks in the red and blue spectral bands, respectively) in the euphotic layer were 0.01–0.04 and 0.02–0.10 m2 mg−1 chl a, respectively. Approximately 30% out of this variability can be attributed to the diurnal cycle. This factor should therefore be taken into account in refining primary production models based on phytoplankton light absorption.  相似文献   

3.
The spatial and temporal dynamics of dissolved inorganic nitrogen, dissolved phosphate, dissolved silica and chlorophyll a were measured seasonally at eight stations in the Ria de Aveiro. Between December 2000 and September 2001, the seasonal succession of phytoplankton assemblages, inferred after the spatial and seasonal variation of silica and of chlorophyll a concentrations, showed that diatoms (μmol Si L−1) dominated from late autumn until early spring, while chlorophytes (μg Chl a L−1) bloomed during late spring and summer. The Si:N:P ratios and Si concentrations indicated no seasonal depletion in dissolved silica, as in other temperate systems, possibly because of abnormal precipitation and flood events prolonging the supply of dissolved Si to the system. The Si:N:P ratios suggested P limitation at the system level. Despite the relative proportions of available nutrients, the mean phosphorus concentration (5.3 μmol L−1) was above the reported half-saturation constants for P uptake by phytoplankton. Thus, in Ria de Aveiro, the seasonal succession of phytoplankton assemblages may also be dependent on the grazing capacity of the pelagic community through top-down regulation.  相似文献   

4.
The subarctic North Pacific is one of the three major high nitrate low chlorophyll (HNLC) regions of the world. The two gyres, the NE and the NW subarctic Pacific gyres dominate this region; the NE subarctic Pacific gyre is also known as the Alaska Gyre. The NE subarctic Pacific has one of the longest time series of any open ocean station, primarily as a result of the biological sampling that began in 1956 on the weathership stationed at Stn P (50°N, 145°W; also known as Ocean Station Papa (OSP)). Sampling along Line P, a transect from the coast (south end of Vancouver Island) out to Stn P has provided valuable information on how various parameters change along this coastal to open ocean gradient. The NW subarctic Pacific gyre has been less well studied than the NE gyre. This review focuses mainly on the NE gyre because of the large and long term data set available, but makes a brief comparison with the NW gyre. The NE gyre has saturating NO3 concentrations all year (winter = about 16 μM and summer = about 8 μM), constantly very low chlorophyll (chl) (usually <0.5 mg m−3) which is dominated by small cells (<5 μm). Primary productivity is low (about 300–600 mg C m−2 d−1 and varies little (2 times) seasonally. Annual primary productivity is 3 to 4 times higher than earlier estimates ranging from 140 to 215 g C m−2 y−1. Iron limits the utilization of nitrate and hence the primary productivity of large cells (especially diatoms) except in the winter when iron and light may be co-limiting. There are observations of episodic increases in chl above 1 mg m−3, suggesting episodic iron inputs, most likely from Asian dust in the spring/early summer, but possibly from horizontal advection from the Alaskan Gyre in summer/early fall. The small cells normally dominate the phytoplankton biomass and productivity, and utilize the ammonium produced by the micrograzers. They do not appear to be Fe-limited, but are controlled by microzooplankton grazers. The NW Subarctic Gyre has higher nutrient concentrations and a shallower summer mixed depth and photic zone than Stn P in the NE gyre. Chl concentrations tend to be higher (0.5 to 1.5 μg L−1) than Stn P, but primary productivity in the summer is similar to Stn P (600 mg C m−2 d−1). There are no seasonal data from this gyre. Iron enrichment experiments in October, resulted in an increase in chl (mainly the centric diatom Thalassiosira sp.) and a draw down of nitrate, suggesting that large phytoplankton are Fe-limited, similar to Stn P.  相似文献   

5.
Macroalgae biomass and concentrations of nitrogen, phosphorus and chlorophyll a were determined weekly or biweekly in water and sediments, during the spring-summer of 1985 in a hypertrophic area of the lagoon of Venice. Remarkable biomass production (up to 286 g m−2 day−1, wet weight), was interrupted during three periods of anoxia, when macroalgal decomposition (rate: up to 1000 g m−2 day−1) released extraordinary amounts of nutrients. Depending on the macroalgae distribution in the water column, the nutrients released in water varied from 3·3 to 19·1 μg-at litre−1 for total inorganic nitrogen and from 1·8 to 2·7 μg-at litre−1 for reactive phosphorus. Most nutrients, however, accumulated in the surficial sediment (up to 0·640 and to 3·06 mg g−1 for P and N respectively) redoubling the amounts already stored under aerobic conditions, Phytoplankton, systematically below 5 mg m−3 as Chl. a, sharply increased up to 100 mg m−3 only after the release of nutrients in water by anaerobic macroalgal decomposition. During the algal growth periods, the N:P atomic ratio in water decreased to 0·7, suggesting that nitrogen is a growth-limiting factor. This ratio for surficial sediment was between 6·6 and 13·1, similar to that of macroalgae (8·6–12·0).  相似文献   

6.
Autotrophic and microheterotrophic plankton populations were monitored in the euphotic zone of the eastern subarctic Pacific during 6 one-month cruises in spring and summer, 1984, 1987 and 1988. Transmitted light, epifluorescence, and electron microscopy were used to identify, enumerate and estimate the biomass of size-populations of species. The 2–10μm size class dominated the biomass of both autotrophs and heterotrophs. The autotrophic flagellate, Phaeocystis pouchetii, was frequently observed in its non-colonial phase. Temporal variation in all the stocks was evident and could be explained only partially by the physical, chemical or biological factors investigated here. The general structure of the autotrophic community was similar to that in the North Atlantic, but major, unexplained variations between cruises occurred. Variation in mixed-layer depth and day length (but not variation in daily insolation) explained 25% of the variation in autotrophic doubling rate. Heterotrophic biomass comprised, in decreasing order of importance, non-pigmented flagellates, dinoflagellates, and ciliates. Ciliates rarely contributed more than 40% to the total. Microheterotrophic biomass rarely exceeded 30μg C 1−1 (avg 15μg C 1−1, 0–60m) whereas autotrophic biomass averaged 20μg C 1−1, 0–60m, and reached 74μg C 1−1 on one occasion, yet the grazing capacity of these microheterotrophs averaged 100% of primary production.  相似文献   

7.
To verify the hypothesis that the growth of phytoplankton in the Western Subarctic Gyre (WSG), which is located in the northwest subarctic Pacific, is suppressed by low iron (Fe) availability, an in situ Fe fertilization experiment was carried out in the summer of 2001. Changes over time in the abundance and community structure of phytoplankton were examined inside and outside an Fe patch using phytoplankton pigment markers analyzed by high-performance liquid chromatography (HPLC) and flow cytometry (FCM). In addition, the abundance of heterotrophic bacteria was also investigated by FCM. The chlorophyll a concentration was initially ca. 0.9 μg l−1 in the surface mixed layer where diatoms and chlorophyll b-containing green algae (prasinophytes and chlorophytes) were predominant in the chlorophyll biomass. After the iron enrichment, the chlorophyll a concentration increased up to 9.1 μg l−1 in the upper 10 m inside the Fe patch on Day 13. At the same time, the concentration of fucoxanthin (a diatom marker) increased 45-fold in the Fe patch, and diatoms accounted for a maximum 69% of the chlorophyll biomass. This result was consistent with a microscopic observation showing that the diatom Chaetoceros debilis had bloomed inside the Fe patch. However, chlorophyllide a concentrations also increased in the Fe patch with time, and reached a maximum of 2.2 μg l−1 at 5 m depth on Day 13, suggesting that a marked abundance of senescent algal cells existed at the end of the experiment. The concentration of peridinin (a dinoflagellate marker) also reached a maximum 24-fold, and dinoflagellates had contributed significantly (>15%) to the chlorophyll biomass inside the Fe patch by the end of the experiment. Concentrations of 19′-hexanoyloxyfucoxanthin (a prymnesiophyte marker), 19′-butanoyloxyfucoxanthin (a pelagophyte marker), and alloxanthin (a cryptophyte marker) were only incremented a few-fold increment inside the Fe patch. On the contrary, chlorophyll b concentration reduced to almost half of the initial level in the upper 10 m water column inside the Fe patch at the end of the experiment. A decrease with time in the abundance of eukaryotic ultraphytoplankton (<ca. 5 μm in size), in which chlorophyll b-containing green algae were possibly included was also observed by FCM. Overall, our results indicate that Fe supply can dramatically alter the abundance and community structure of phytoplankton in the WSG. On the other hand, cell density of heterotrophic bacteria inside the Fe patch was maximum at only ca. 1.5-fold higher than that outside the Fe patch. This indicates that heterotrophic bacteria abundance was little respondent to the Fe enrichment.  相似文献   

8.
Deep-sea sediment samples were collected in the Western Crozet Basin (Indian sector of the Southern Ocean) through Permanently Open Ocean Zone (POOZ), Polar Frontal Zone (PFZ) and Sub-Antarctic Zone (SAZ). Lipid class and fatty acid compositions were investigated to determine the sources and fate of organic matter in the first centimeter of sediment and, above this layer, in the fluff (when present) and particles in the overlying water. The total lipid content varied from 74 to 1033 μg l−1 in the overlying particles and fluffs, and from 24 to 97 μg g−1 dry mass (DM) in surficial sediments. Lipid composition was always dominated by phospholipids in the first centimeter of sediment and often in the overlying particles. The amount of phospholipids (labile compounds representative of fresh material) was compared to the amount of chlorophyll a (Chl a), another compound that is susceptible to rapid degradation. A strong N–S gradient was observed in the distribution of these two compounds, which was attributed to the contrasting hydrodynamic of the study area. The high sedimentation rate in POOZ resulted in better preservation of Chl a in this zone than in other zones of the Crozet Basin (PFZ and SAZ). Phospholipid fatty acids suggested the presence of viable as well as morphologically intact organisms, and these organisms consisted essentially of bacteria with some diatom cysts in the fluff of POOZ. These spores were able to grow in the culture, indicating that they were still viable. Despite the strong hydrodynamic variability, phospholipid fatty acids analysed from the deep-sea surficial sediments were never representative of plankton. This pointed to the extremely labile nature of the phospholipids originally present in planktonic material compared with Chl a, which was always found in overlying particles and surficial sediments.  相似文献   

9.
To test the iron hypothesis in the subarctic Pacific Ocean, an in situ iron-enrichment experiment (SEEDS) was performed in the western subarctic gyre in July–August 2001. About 350 kg of iron (as acidic iron sulfate) and 0.48 mol of the inert chemical tracer sulfur hexafluoride were introduced into a 10-m deep surface mixed layer over an 80 km2 area. This single iron infusion raised dissolved iron levels to 2.9 nM initially. Dissolved iron concentrations rapidly decreased after the infusion, but levels remained close to 0.15 nM even at the end of the 14-day experimental period. During SEEDS there were iron-mediated increases in chlorophyll a concentrations (up to 20 μg l−1), primary production rates, biomass and photosynthetic energy conversion efficiency relative to waters outside the iron-enriched patch. The rapid and very high accumulation of phytoplankton biomass in response to the iron addition appeared to be partly attributable to shallow mixed-layer depth and moderate water temperature in the western subarctic Pacific. However, the main reason was a floristic shift to fast-growing centric diatom Chaetoceros debilis, unlike the previous iron-enrichment experiments in the equatorial Pacific and the Southern Ocean, in both of which iron stimulated the growth of pennate diatoms. The iron-mediated blooming of diatoms resulted in a marked consumption of macronutrients and drawdown of pCO2. Biological and physiological measurements indicate that phytoplankton growth in the patch became both light- and iron-limited, making phytoplankton biomass relatively constant after day 9. The increase in microzooplankton grazing rate after day 9 also influenced the net growth rate of phytoplankton. There was no significant increase in the export flux of carbon to depth during the 14-day occupation of the experimental site. The export flux between day 4 and day 13 was estimated to be only 13% of the integrated primary production in the iron-enriched patch. The major part of the carbon fixed by the diatom bloom remained in the surface mixed layer as biogenic particulate matter. Our findings support the hypothesis that iron limits phytoplankton growth and biomass in a ‘bottom up’ manner in this area, but the fate of algal carbon remains unknown.  相似文献   

10.
Using the seawater dilution technique, we measured phytoplankton growth and microzooplankton grazing rates within and outside of the 1999 Bering Sea coccolithophorid bloom. We found that reduced microzooplankton grazing mortality is a key component in the formation and temporal persistence of the Emiliania huxleyi bloom that continues to proliferate in the southeast Bering Sea. Total chlorophyll a (Chl a) at the study sites ranged from 0.40 to 4.45 μg C l−1. Highest phytoplankton biomass was found within the bloom, which was a mixed assemblage of diatoms and E. huxleyi. Here, 75% of the Chl a came from cells >10 μm and was attributed primarily to the high abundance of the diatom Nitzschia spp. Nutrient-enhanced total phytoplankton growth rates averaged 0.53 d−1 across all experimental stations. Average growth rates for >10 μm and <10 μm cells were nearly equal, while microzooplankton grazing varied among stations and size fractions. Grazing on phytoplankton cells >10 μm ranged from 0.19 to 1.14 d−1. Grazing on cells <10 μm ranged from 0.02 to 1.07 d−1, and was significantly higher at non-bloom (avg. 0.71 d−1) than at bloom (avg. 0.14 d−1) stations. Averaged across all stations, grazing by microzooplankton accounted for 110% and 81% of phytoplankton growth for >10 and <10 μm cells, respectively. These findings contradict the paradigm that microzooplankton are constrained to diets of nanophytoplankton and strongly suggests that their grazing capability extends beyond boundaries assumed by size-based models. Dinoflagellates and oligotrich ciliates dominated the microzooplankton community. Estimates of abundance and biomass for microzooplankton >10 μm were higher than previously reported for the region, ranging from 22,000 to 227,430 cells l−1 and 18 to 164 μg C l−1. Highest abundance and biomass occurred in the bloom and corresponded with increased abundance of the large ciliate Laboea, and the heterotrophic dinoflagellates Protoperidinium and Gyrodinium spp. Despite low grazing rates on phytoplankton <10 μm within the bloom, the abundance and biomass of small microzooplankton (<20 μm) capable of grazing E. huxleyi was relatively high at bloom stations. This body of evidence, coupled with observed high grazing rates on large phytoplankton cells, suggests the phytoplankton community composition was strongly regulated by herbivorous activity of microzooplankton. Because grazing behavior deviated from size-based model predictions and was not proportional to microzooplankton biomass, alternate mechanisms that dictate levels of grazing activity were in effect in the southeastern Bering Sea. We hypothesize that these mechanisms included morphological or chemical signaling between phytoplankton and micrograzers, which led to selective grazing pressure.  相似文献   

11.
The first oceanographic research (hydrography, nutrient salts, chlorophyll, primary production and phytoplankton assemblages) in a Middle Galician Ria was carried out in Corme-Laxe during 2001, just a year before the Prestige oil spill, being the only reference to evaluate eventual changes in the phytoplankton community. Due to the small size of this ria (6.5 km2), oceanographic processes were driven by the continental water supplied by Anllons River during the wet season (20–30 m3 s−1 in winter), and the strong oceanic influence from the nearby shelf during the dry season. The annual cycle showed a spring bloom with high levels of chlorophyll (up to 14 μg Chl-a L−1) and primary production (3 g C m−2 d−1) and a summer upwelling bloom (up to 8 μg Chl-a L−1 and 10 g C m−2 d−1) where the proximity of the Galician upwelling core (<13.5 °C at sea surface) favors the input of upwelled seawater (up to 9 μM of nitrate and silicate) to the bottom ria layer, even during summer stratification events (primary production around 2 g C m−2 d−1). Thus, phytoplankton assemblages form a “continuum” from spring to autumn with a predominance of diatoms and overlapping species between consecutive periods; only in autumn dinoflagellates and flagellates characterized the phytoplankton community. In the Middle Rias as Corme-Laxe, the nutrient values, Chl-a, primary production and phytoplankton abundance for productive periods were higher than those reported for the Northern (Ria of A Coruña) and Southern Rias (Ria of Arousa) for year 2001; this suggests the importance of the hydrographic events occurring in the zone of maximum upwelling intensity of the Western Iberian Shelf, where a lack of annual cycles studies exists.  相似文献   

12.
We deployed a profiling buoy system incorporating a fast repetition rate fluorometer in the western subarctic Pacific and carried out time-series observations of phytoplankton productivity from 9 June to 15 July 2006. The chlorophyll a (Chl a) biomass integrated over the euphotic layer was as high as 45–50 mg Chl a m−2 in the middle of June and remained in the 30–40 mg Chl a m−2 range during the rest of observation period; day-to-day variation in Chl a biomass was relatively small. The daily net primary productivity integrated over the euphotic layer ranged from 144 to 919 mg C m−2 day−1 and varied greatly, depending more on insolation rather than Chl a biomass. In addition, we found that part of primary production was exported to a 150-m depth within 2 days, indicating that the variations in primary productivity quickly influenced the organic carbon flux from the upper ocean. Our results suggest that the short-term variability in primary productivity is one of the key factors controlling the carbon cycle in the surface ocean in the western subarctic Pacific.  相似文献   

13.
Seasonal change in the downward carbon transport due to respiration and mortality through diel vertical migration (DVM) of the calanoid copepods Metridia pacifica and Metridia okhotensis was estimated in the Oyashio region, western subarctic Pacific during six cruises from June 2001 to June 2002. M. pacifica (C4, C5 and adult females) was an active migratory species throughout the year though its DVM amplitude varied among seasons and stages. The mean distribution depths of adult females during the daytime were positively related with the illumination level in the water column, being shallowest in April and deepest in January. M. okhotensis generally showed less-extensive migrations than M. pacifica. Therefore, together with their lower abundance, this species is considered to be a less-important mechanism of downward transport of carbon except for April when their DVM was more active and descended deeper than M. pacifica, which remained in the upper 150 m even during the daytime. The mean migrating biomass of the two Metridia species was 558 mg C m−2 d−1 and was high during summer to winter (263–1676 mg C m−2 d−1) and low during spring (59–63 mg C m−2 d−1). Total downward flux through DVM fluctuated between 1.0 and 20.0 mg C m−2 d−1 with an annual mean of 8.0 mg C m−2 d−1. Contribution of the respiratory flux was greater than the mortality flux and accounted for 64–98% of total migratory flux throughout the year except for January when contribution of both fluxes was equal. Overall the annual carbon transport by DVM of Metridia spp. was estimated as 3.0 g C m−2 year−1, corresponding to 15% of the annual total POC flux at 150 m at the study site, suggesting that DVM is a significant process for carbon export in the subarctic region as well as that in tropical and subtropical oceanic regions. Since DVM in M. pacifica is more active during the non-bloom season when the gravitational flux of particulate matter is low, this species plays an important role in driving the biological pump in the subarctic Pacific during summer to winter.  相似文献   

14.
Concentrations of bacteria, chlorophyll a, and several dissolved organic compounds were determined during 11 tidal cycles throughout the year in a high and a low elevation marsh of a brackish tidal estuary. Mean bacterial concentrations were slightly higher in flooding (7·1 × 106 cells ml−1) than in ebbing waters (6·5 × 106 cells ml−1), and there were no differences between marshes. Mean chlorophyll a concentrations were 36·7 μg l−1 in the low marsh and 20·4 μg l−1 in the high marsh. Flux calculations, based on tidal records and measured concentrations, suggested a small net import of bacterial and algal biomass into both marshes. Over the course of individual tidal cycles, concentrations of all parameters were variable and not related to tidal stage. Heterotrophic activity measured by the uptake of 3H-thymidine, was found predominantly in the smallest particle size fractions (< 1·0 μm). Thymidine uptake was correlated with temperature (r = 0·48, P < 0·01), and bacterial productivity was estimated to be 7 to 42 μg Cl−1 day−1.  相似文献   

15.
Lagrangian experiments with short-term, drifting sediment traps were conducted during a cruise on RRS Charles Darwin to the NW coast of Spain to study the vertical flux and composition of settling biogenic matter. The cruise was split into two legs corresponding to (i) a period of increased production following an upwelling event on the continental shelf (3–10 August 1998) and (ii) an evolution of a cold water filament originating from the upwelled water off the shelf (14–19 August). The export of particulate organic carbon (POC) from the upper layer (0–60m) on the shelf was 90–240mgC.m−2.d−1 and off the shelf was 60–180mgC.m−2.d−1. Off shelf the POC flux at 200m was 50–60mg.m−2.d−1. A modest sedimentation of diatoms (15–30mgC.m−2.d−1) after the upwelling was associated with increased vertical flux of chlorophyll a (1.8–2.1mg.m−2.d−1) and a decrease of the POC:PON molar ratio of the settled material from 9 to 6.4. Most of the pico-, nano-, and microplankton in the settled material were flagellates; diatoms were significant during the on shelf and dinoflagellates during the off shelf leg. Off shelf, the exponential attenuation of POC flux indicated a strong retention capacity of the plankton community between 40 and 75m. POC:PON ratio of the settled particulate matter decreased with depth and the relative portion of flagellates increased, suggesting a novel, flagellate and aggregate mediated particulate flux in these waters. Export of POC from the euphotic layer comprised 14–26% of the integrated primary production per day during the on shelf leg and 25–42% during the off shelf leg, which characterises the importance of sedimentation in the organic carbon budget of these waters.  相似文献   

16.
Size-fractionated seawater samples were collected from the Gulf of Maine to determine the fraction (fc/d) of total dissolved (< 1 μm) Cd, Cu, Ni and 234Th in the colloidal size range (1,000 nominal molecular weight, NMW, to 1 μm) using cross-flow filtration. Colloidal Cd, Cu and Ni represents < 1–7% of the total dissolved concentration in these shelf waters and increases with an increase in particle concentration. By comparison, results obtained for particle-reactive 234Th indicate that < 1–47% of total dissolved is associated with the colloidal size fraction. A revised relationship between the concentration of colloids (Cc) and suspended particles (Cp) is reported (log Cc = 0.66 log Cp −2.01 kg L−1) and used to examine the dependence of fc/d for these metals on the concentration of suspended particles for Cp = 0.01–100 mg L−1. Results indicate that a significant fraction (˜ 10–30%) of Cd, Cu, Ni and 234Th in the traditionally defined ‘dissolved’ fraction may exist in the colloidal size range in regions characterized by high particle concentrations (Cp > 1–10 mg L−1), such as in near-shore and estuarine waters.  相似文献   

17.
Rates of transformation, recycling and burial of nitrogen and their temporal and spatial variability were investigated in deep-sea sediments of the Porcupine Abyssal Plain (PAP), NE Atlantic during eight cruises from 1996 to 2000. Benthic fluxes of ammonium (NH4) and nitrate (NO3) were measured in situ using a benthic lander. Fluxes of dissolved organic nitrogen (DON) and denitrification rates were calculated from pore water profiles of DON and NO3, respectively. Burial of nitrogen was calculated from down core profiles of nitrogen in the solid phase together with 14C-based sediment accumulation rates and dry bulk density. Average NH4 and NO3-effluxes were 7.4 ± 19 μmol m−2 d−1 (n = 7) and 52 ± 30 μmol m−2 d−1 (n = 14), respectively, during the period 1996–2000. During the same period, the DON-flux was 11 ± 5.6 μmol m−2 d−1 (n = 5) and the denitrification rate was 5.1 ± 3.0 μmol m−2 d−1 (n = 22). Temporal and spatial variations were only found in the benthic NO3 fluxes. The average burial rate was 4.6 ± 0.9 μmol m−2 d−1. On average over the sampling period, the recycling efficiency of the PON input to the sediment was 94% and the burial efficiency hence 6%. The DON flux constituted 14% of the nitrogen recycled, and it was of similar magnitude as the sum of burial and denitrification. By assuming the PAP is representative of all deep-sea areas, rates of denitrification, burial and DON efflux were extrapolated to the total area of the deep-sea floor (>2000 m) and integrated values of denitrification and burial of 8 ± 5 and 7 ± 1 Tg N year−1, respectively, were obtained. This value of total deep-sea sediment denitrification corresponds to 3–12% of the global ocean benthic denitrification. Burial in deep-sea sediments makes up at least 25% of the global ocean nitrogen burial. The integrated DON flux from the deep-sea floor is comparable in magnitude to a reported global riverine input of DON suggesting that deep-sea sediments constitute an important source of DON to the world ocean.  相似文献   

18.
The detailed distribution of algal chlorophyll and carotenoid pigments was determined around the halocline (freshwater-seawater interface) in the Krka Estuary on the east coast of the Adriatic Sea; in May 1988. After collection of water along the estuary, particulate matter was extracted and analyzed for pigments by high-performance liquid chromatography coupled with absorbance and fluorescence detection. Bottom marine waters were characterized by lower chlorophyll a (chl a) concentrations than encountered in surface waters, decreasing downstream from 0.50 μg l−1 to 0.16 μg l−1 at the marine end-member. The highest concentrations of chl α (up to 26.34 μg l−1) were found in the interfacial layer, an particularly at one station located off the city of ibenik, where high inputs of nutrients supported the accumulation of living algae at the halocline. Fucoxanthin was the most abundant carotenoid, which indicates a euryhaline dominance of diatoms in the estuary, whereas the dinoflagellate-derived carotenoid peridinin was confined to the interfacial and bottom saline waters of the inner estuary. High concentrations of alloxanthin and chl b were found in the interfacial layer, which also suggests an accumulation of Cryptophyceae and green algae in the inner estuary. Phaeophorbides showed higher concentrations in bottom waters than in surface waters, whereas the highest concentrations occurred in the interfacial layer. These high levels could reflect a density trapping of dead cells in an early degradation state, as suggested by the importance of allomerized chl a and chlorophyllide a vs. total chl a, or of faecal pellets originating from zooplankton grazing in the interfacial layer.  相似文献   

19.
Results of trace metal analyses performed on two species of Euphausiacea, Meganyctiphanes norvegica and Stylocheiron longicorne, and one species of Decapoda, Sergestes arcticus, collected off the east coast of Corsica, are reported. Analyses were carried out by atomic absorption spectrophotometry and by differential pulse anodic stripping voltammetry.S. arcticus contained lower concentrations of phosphorus (which was also analysed as a biological indicator), cadmium (0.33 μg g−1), copper (17.7 μg g−1), lead (2.13 μg g−1) and zinc (51 μg g−1) than the two Euphausiacea (0.50 μg Cd g−1, 25.4 μg Cu g−1, 4.03 μg Pb g−1 and 59 μg Zn g−1). Moreover, manganese concentrations were low in all the samples.When the results presented here are compared with previous results on phytoplankton and mesozooplankton, there appears to be no trend of trace metal enrichment from phytoplankton to the Decapoda.  相似文献   

20.
The magnitude of the exchange flux at the water–sediment interface was determined on the basis of the ammonia concentration gradient at the near-bottom water–interstitial interface and Fick's first law. It was established that in Puck Bay, ammonia almost always passes from the sediment to water. Ammonia flux varied from 5 to 1434 μmol NH4-N m−2 day−1. In total,c. 138·2 tonneammonia year−1pass from sediments of Internal Puck Bay to near-bottom water, the equivalent value for External Puck Bay being 686·9 tonne year−1. In total, about 825 tonne ammonia year−1passes from the sediment to near-bottom water of Puck Bay. In interstitial waters, ammonia occurred in concentrations varying over a wide range (3–1084 μmol NH4-N dm−3).The basic factors affecting the magnitude of ammonia concentration in interstitial waters included: oxidation of organic matter, type of sediment, and inflow of fresh underground waters to the region examined.This paper involves preliminary studies only and constitutes a continuation of the studies on ionic macrocomponents and phosphorus in interstitial waters of Puck Bay undertaken previously.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号