首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 203 毫秒
1.
以天然钙蒙脱土为研究对象,采用不同浓度的离子固化剂对其进行改性处理,开展素土与改性蒙脱土在相对湿度(P/P0)0~0.95区间的水汽等温吸-脱附试验,通过吸附速率曲线、晶层间距d001值变化曲线分析蒙脱土水合机制,并采用蒙脱土孔隙比变化曲线关联分析水合-孔隙演化规律,提出不同尺度孔隙吸附水的界限相对湿度区间。在此基础上,基于X射线衍射(XRD)、氮气吸附以及压汞试验对离子固化剂改性蒙脱土水合过程的孔隙分布特征进行验证分析。试验结果表明:对于钙蒙脱土,00.8~0.9时,黏土颗粒表面持续吸附弱结合水,此时大孔内逐渐充填水分。离子固化剂通过改变蒙脱土的微观物理化学性质(阳离子与晶层基面)调控其吸附水特性,进而影响不同尺度孔隙的吸附水过程。  相似文献   

2.
通过十六烷基三甲基溴化铵(CTMAB)与钠基蒙脱土离子交换制备出季胺盐阳离子插层蒙脱土(CTMA’-M),采用小角X射线衍射仪、傅里叶变换红外光谱仪和高分辨透射电镜表征微观结构,研究CTMA’的插层量、溶液的初始pH值、初始浓度和其他共存离子对吸附铀性能的影响,考察了CTMA’-M处理铀矿水)台废水的应用性能。结果表明:CTMA’插层后蒙脱土的层间距由1.21nm增加到4.09nm,但仍保持钠基蒙脱土原有的晶体结构。随CTMAB用量的增加,插层到蒙脱土层间的CTMA’量增加,对铀离子的吸附容量逐渐增大,当CTMAB的用量超过阳离子交换容量的1.4倍时,铀吸附容量基本保持不变。溶液pH和接触时间对铀离子吸附性能影响较大.CTMA’-M最佳吸附pH值为6.0,平衡吸附时间为80min,CTMA’插层能够改善蒙脱土对铀离子的选择性吸附。在1L含有15mg/L铀的废水中加入1.5gCTMA’-M时,铀的去除率达到98%以上。  相似文献   

3.
锆铝基柱撑蒙脱土的制备研究   总被引:1,自引:0,他引:1  
以钠基蒙脱土为原料,采用共聚法合成锆铝基柱撑蒙脱土,并研究不同锆铝摩尔比例和不同NaOH的量对柱撑蒙脱土制备的影响。XRD研究表明,当锆铝摩尔比例为1:6、加入70ml0.4mol/LNaOH时,可得到(001)面网层间距达1.9343nm的锆铝基柱撑蒙脱土。通过FT—IR发现,锆铝聚合羟基阳离子进入蒙脱土层间,形成Si-O-Al和Si-O-Zr。对柱撑前后蒙脱土的比表面积和孔径结构进行分析,发现锆铝基柱撑蒙脱土具有较大的比表面积,较为均匀的孔径分布,是一种合适的催化和吸附材料。  相似文献   

4.
一、膨润土的构造和特性膨润土又称皂土、膨土岩和斑脱岩。它是以蒙脱石为主要成分的粘土矿物。天然的膨润土除纯蒙脱石外,还含有不定数量的其它粘土矿物如高岭土和非粘土矿物石英、长石、方英石等。一般认为蒙脱石的晶胞是由两层〔Si-O〕四面体夹着一层〔AL-(O·OH)〕八面体构成。晶层间的距离,由于层间的吸水量不同而不同。当层间不含水时,其层间距离为3.2(?),当吸附水量达到26H_2O 时,层间距离为21.4(?)。钠基胞蒙石的层间距离  相似文献   

5.
黏性土中细粒表面水膜是影响其物理力学性质的内在因素。经典土力学一般将土粒表面水膜分为强结合水和弱结合水,即所谓双电层模型,弱结合水的存在是土具有可塑性的原因,强弱结合水的界限含水率为塑限,该模型很好地解释了黏性土的稠度变化及其有关的物理力学行为。然而,通过等温吸附试验发现,土粒表面还存在吸附水膜,对非饱和土高吸力段的物理力学特性有重要影响。为此,本文将黄土颗粒表面水膜分为单层吸附水、多层吸附水、强结合水、弱结合水和自由水5种类型。取甘肃正宁Q2最顶层的L2黄土试样,采用等温吸附和液限、塑限测试,对该黄土样和其中的单矿物颗粒各水膜之间的界限含水率进行了定量表征,并测试黄土试样的土水特征曲线(SWCC),在SWCC上界定了这些界限含水率与基质吸力的关系。当水汽压很低时,土粒表面的吸力来自水的偶极分子与颗粒表面离子间的静电引力,形成单层吸附水,水膜厚度为1个水分子直径;离颗粒表面超出水分子直径的地方,吸力来自范德华力,水的偶极子相互靠拢呈定向排列,形成了多层吸附水;当土粒周围水分增加,颗粒表面未平衡掉的分子引力又可吸引更多的极化水分子,此时在吸附水的周围形成结合水,结合水又分为强结合水和弱结合水;吸附水和结合水膜以外的水为自由水。  相似文献   

6.
膨润土又称膨土岩或斑脱岩,是以蒙脱石类矿物为主要成分的粘土岩,是一种含水的铝硅酸盐矿物。 蒙脱石颗粒极细,由于晶格置换晶层表面带有大量负电荷,能吸附可交换性阳离子。以吸附钠离子为主时称为钠质膨润土,以吸附钙离子为主时称为钙质膨润土。此外,还有过渡类型。钠质膨润土具有高的电动电位和极强的水化能,在物性上优于钙质膨润土,从而有广泛应用价值。在冶金工业中用于球团矿的粘合剂。  相似文献   

7.
钙钠离子对蒙脱石脱水特性的影响   总被引:2,自引:1,他引:2  
蒙脱石的脱水特性通常是指它所含水分(包括吸附水、层间或OH结构水)的损失特性,如水分失去量、脱水速率和脱水温度等。这些特性不仅与蒙脱石矿物本身的成分有关,而且与其所吸附的阳离子密切相关。膨润土是以蒙脱石类矿物为主要成分的粘土,它的物理化学性质主要由其中的蒙脱石所决定。蒙脱石吸附的钙、钠离子又是决定膨润土工业使用价  相似文献   

8.
文章通过对泥质岩的黏土质矿物组分、成岩作用中黏土质矿物变化综合研究,认为泥质岩中存在大量黏土矿物,且泥质沉积物由松散到固结成岩实质上是黏土矿物组成的变化。泥质岩中主要黏土矿物包括高岭石、蒙皂石、绿泥石、伊利石以及其组成的混层型矿物伊利石/蒙皂石、绿泥石/蒙皂石,其成岩过程可划分为成岩早期的压实阶段、成岩晚期的黏土矿物转化阶段。压实阶段的泥质沉积物中黏土矿物具有物源的继承性、沉积水体古环境指示意义;受压实作用孔隙水、层间水被排出,原生絮凝团被压破,使片状质点趋于平行排列,黏土矿物与孔隙水发生反应,亦形成少量的新生作用矿物,因而黏土矿物具继承源和新生作用源特性。成岩晚期阶段发生层间水释放及层间阳离子交换,从而使得矿物晶体结构与成分发生变化,主要表现为一元黏土矿物向二元混层型转化,最后再到一元型黏土矿物的转化,最终形成转变源黏土矿物。  相似文献   

9.
为了厘清铬铁矿床母岩浆的含水性及水在铬铁矿成矿中的作用,本文从岩石矿物学角度对与铬铁矿床有关的三类岩体进行了对比。蛇绿岩和大型层状镁铁-超镁铁岩体是铬铁矿床的主要载体,而弧岩浆堆晶成因的阿拉斯加型岩体则以铬铁矿化为主,少有经济价值的铬铁矿床。前两者均缺少独立产出的含水矿物,表明为典型的贫水体系,与其铬铁矿中含水矿物包裹体和流体包裹体所推测的母岩浆富水特征相悖;贫矿的阿拉斯加型岩体产出大量的含水矿物,与其产出于富水-高氧逸度的俯冲构造背景相一致。因此,岩浆的高含水量并不是铬铁矿成矿的关键。结合实验岩石学结果,我们认为铬铁矿的结晶应与岩浆演化过程中的水饱和及流体不混溶有关,铬铁矿的表面吸附水对铬铁矿的运移富集起到了重要作用。这些表面吸附水最主要是造成了铬铁矿周边橄榄石的蛇纹石化,形成铬铁矿体的选择性蚀变,有时可以进入橄榄石甚至是铬铁矿晶格,发生矿物出溶现象,亦可与演化的熔体混合形成结晶粒间矿物(以辉石为主),也有可能被生长的铬铁矿所包裹形成包裹体。  相似文献   

10.
以皂石、高岭石、绿泥石和伊利石为原材料,分别与赖氨酸进行反应,研究赖氨酸在上述粘土矿物上的吸附行为, 并运用粉末X-射线衍射技术(XRD)、傅里叶变换红外吸收光谱术(FTIR)和热重(TG)等分析方法,表征反应前后粘土 矿物的变化。实验结果表明,不同粘土矿物对赖氨酸的吸附等温线均符合Freundlich等温方程,且不同粘土矿物对赖氨酸的 饱和吸附量大小顺序为:皂石>蒙脱石>绿泥石>高岭石>伊利石;XRD结果表明皂石对赖氨酸的吸附发生在矿物层间,而绿 泥石、高岭石和伊利石对赖氨酸的吸附主要在矿物表面进行;FTIR和TG结果表明赖氨酸主要取代粘土矿物层间吸附水,以 氢键的形式与Si-O-Si(IVAl)键合。实验结果将有助于进一步探明环境中粘土矿物对有机质的吸附机理。  相似文献   

11.
Preparation and Characterization of Hydroxyiron-Montmorillonite Complexes   总被引:1,自引:0,他引:1  
Iron elementin soil exists mainly in form s of Fe(OH) 2 ,Fe(OH ) 2 and Fe2 (OH ) 2 2 in tropical and subtropical areaswhere p H values are less than7.These hydroxy- Fe ions reactslowly with montmorillonite by intercalation into their inter-layer space and adsorption on their surfaces,and in this wayvarious hydroxyiron- montmorillonite complexes are formed(Cool and Vansant,1998;Wu et al.,1997;Molinared andClearfield,1994) . Hydroxyiron- montm orillonite complexesare assum ed to have…  相似文献   

12.
在蒙脱石有机改性体系中,交换液酸碱度对蒙脱石荷电性以及十八烷基三甲基氯化铵(OTAC)的电离度影响很大,进而影响OTAC在蒙脱石中的吸附以及制备复合物的凝胶粘度。研究发现,在pH=3的强酸性交换体系中,蒙脱石端面可变电荷为正电荷,OTAC阳离子和蒙脱石之间静电斥力的存在不利于OTAC在蒙脱石上的吸附,吸附量和吸附率分别是0.943CEC和85.7%,制备复合物的凝胶粘度最低,分别是μ0min为45.67Pa·s,μ30min为16.52Pa·s;在pH=10的弱碱性交换体系中,由于蒙脱石层面和端面均带有负电荷,静电引力更有利于OTAC阳离子在蒙脱石层间交换及表面吸附,其吸附量和吸附率最高,分别为1.097CEC和99.71%,制备复合物的凝胶粘度也较高,分别是μ0min为95.93Pa·s,μ30min为37.67Pa·s;在强碱性交换体系中,当pH=11和13时,蒙脱石对OTAC的吸附量和吸附率降低明显,吸附量分别为1.08CEC和1.058CEC,吸附率分别降到98.20%和96.18%,对应复合物的μ0min分别为96.52Pa·s和93.52Pa·s,μ30min分别为36.57Pa·s和36.53Pa·s,究其原因由于交换液中OTAC阳离子和高浓度的钠离子在蒙脱石层间和表面存在竞争吸附导致蒙脱石层间钠离子的交换难度加大。  相似文献   

13.
Computer animation of center of mass coordinates obtained from 800 ps molecular dynamics simulations of Cs-smectite hydrates (1/3 and 2/3 water monolayers) provided information concerning the structure and dynamics of the interlayer region that could not be obtained through traditional simulation analysis methods. Cs+ formed inner sphere complexes with the mineral surface, and could be seen to jump from one attracting location near a layer charge site to the next, while water molecules were observed to migrate from the hydration shell of one ion to that of another. Neighboring ions maintained a partial hydration shell by sharing water molecules, such that a single water molecule hydrated two ions simultaneously for hundreds of picoseconds. Cs-montmorillonite hydrates featured the largest extent of this sharing interaction, because interlayer ions were able to inhabit positions near surface cavities as well as at their edges, close to oxygen triads. The greater positional freedom of Cs+ within the montmorillonite interlayer, a result of structural hydroxyl orientation and low tetrahedral charge, promoted the optimization of distances between cations and water molecules required for water sharing. Preference of Cs+ for locations near oxygen triads was observed within interlayer beidellite and hectorite. Water molecules also could be seen to interact directly with the mineral surface, entering its surface cavities to approach attracting charge sites and structural hydroxyls. With increasing water content, water molecules exhibited increased frequency and duration of both cavity habitation and water sharing interactions. Competition between Cs+ and water molecules for surface sites was evident. These important cooperative and competitive features of interlayer molecular behavior were uniquely revealed by animation of an otherwise highly complex simulation output.  相似文献   

14.
粘土矿物对有机质的吸附是自然界重要的过程之一。科学界对于有机质与粘土矿物的相互作用过程和机制研究仍处 于一个比较薄弱的阶段。该文采用天然有机质赖氨酸(左旋) 和壳聚糖与蒙脱石进行室内合成模拟实验,通过X射线衍 射、化学分析和红外光谱分析的手段对反应产物进行系统研究。结果表明,蒙脱石对赖氨酸和壳聚糖的吸附均存在两种机 制:阳离子交换和有机分子间的相互吸引。赖氨酸在蒙脱石层间的排布有三种构型,随着赖氨酸浓度的增加分别以倾斜 式、垂直呈“之”字形排列,最后形成第二排并可能生成简单肽;氨基酸的净电荷是影响吸附过程的重要因素,主要与pH 值相关。壳聚糖能在蒙脱石层间形成分层结构,溶液的pH值和无机盐的存在都会影响吸附过程。壳聚糖-蒙脱石复合体在 常温常压下水溶液中能稳定存在,而相同条件下赖氨酸易从蒙脱石层间释放,这主要是由有机质本身的性质以及有机质和 蒙脱石的结合方式决定的。  相似文献   

15.
在水体系中,蒙脱石矿物表面结合水膜厚度大小,取决于矿物层间阳离子及矿物的晶体化学特征.当层间阳离子种类相同时,首先取决于水与矿物结构参数的不适应程度.结合水膜厚度,影响蒙脱石层间阳离子在土—水体系中的电导率.本文通过对不同地区、不同类型蒙脱石—水体系电导率测定,讨论水与蒙脱石晶胞参数不适应度对体系电导率的影响规律.  相似文献   

16.
蒙脱石层电荷与有机改性蒙脱石凝胶性能关系研究   总被引:2,自引:2,他引:2  
利用自然沉降法提取了山东两不同产地膨润土中的钙基蒙脱石矿物M1和M2,利用结构式推算法计算了两提纯蒙脱石的层电荷:M1单位半晶胞的层电荷为0.38,M2单位半晶胞的层电荷为0.59;利用十八烷基三甲基氯化铵对蒙脱石进行有机改性,并对有机蒙脱石凝胶性能和层电荷的相关关系进行研究。研究发现:蒙脱石单位半晶胞的层电荷越低,在水中的分散性越好,越有利于十八烷基三甲基铵阳离子的插层,相应有机改性蒙脱石在二甲苯和乙醇体系中的凝胶性能越好(如M1);蒙脱石单位半晶胞的层电荷越高,在水中的分散性越差,越不利于十八烷基三甲基铵阳离子的插层,相应有机改性蒙脱石产品的凝胶性能较差(如M2)。  相似文献   

17.
叶玲  张敬阳  吴季怀 《矿物学报》2007,27(2):121-126
利用蒙脱石的层间活性,用过渡金属离子与配位体生成的配合物改性蒙脱石,通过测定改性蒙脱石对直接大红染料的脱色性及XRD图,研究配合物的中心离子种类、配位体种类、制备方法等对蒙脱石层间结构及吸附较大分子化合物性能的影响。结果表明,带正电的配合物离子能够有效进入蒙脱石层间、增大层间距;4或6配位数的配合物改性蒙脱石能明显提高对染料的吸附性;采用金属离子为先驱体,先插入蒙脱石层间,再原位生成配合物的两步法效果较好。  相似文献   

18.
受核废料衰变热影响,处置库内缓冲层的膨润土会长期处于高温状态。经历持续高温作用后,膨润土的膨胀自愈能力能否得以保持,还没有明确的结论。利用马弗炉维持105 ℃恒温环境,对粉状膨润土持续加热到预定周期;然后,获得不同加热周期试样的水-力性能。结果表明,随着加热时间增长,膨润土水-力性能出现大幅衰减。借助X射线衍射仪测试发现持续加热90 d其晶面间距缩合,出现了硅质氧化物胶结,导致颗(团)粒集聚。其红外光谱和热重特征表明,持续加热作用脱去了蒙脱石层间离子水合水,引起部分Na、Mg离子随水分蒸发而逃逸,两者共同作用导致蒙脱石颗(团)粒发生缩合作用。通过观察其扫描电镜图片也能发现,经过90 d持续加热后,蒙脱石颗(团)粒表面不再层次分明,而是紧密地相互搭接,发生了显著的缩合行为。粒度分布特征进一步证实,膨润土经历90 d加热后,即使浸泡28 d,其颗(团)粒依然未被分散,可初步推断上述缩合行为不可逆。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号