首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
上海复合极端风暴洪水淹没模拟   总被引:1,自引:0,他引:1       下载免费PDF全文
河口三角洲和沿海城市面临着台风、暴雨、高潮位和上游下泄洪水叠加的“四碰头”复合极端风暴洪水的严重威胁。构建了大气-海洋-陆地相耦合的一体化数值模拟系统,实现了上海市“风”“暴”“潮”“洪”多灾种复合情景的极端洪涝淹没模拟,并验证了耦合方法的有效性,为复合风暴洪水的一体化模拟提供了一套可行的数值模拟方法。在9711台风影响下,模拟了1998年堤防升级改造后淹没面积(水深>0.2m)比改造前减少了62%,表明沿海沿江堤防设施建设在上海市防台防汛中起着关键性的作用。复合极端风暴洪水的有效模拟可为财产保险和未来市政规划提供参考。  相似文献   

2.
《China Geology》2019,2(1):26-39
Bulletins of China’s National Sea Level show that the average rising rate of sea-levels in China is 3.3 mm/a over the past 40 years, with an obviously accelerated rising trend in the last decade. The rate of relative sea-level rise of the Yangtze River Delta reached >10 mm/a after considering the land subsidence, and Bohai Bay is even greater than 25 mm/a. The impact of the sea level rise to the coastal area will be greater in the coming years, so carrying out an assessment of this rising trend is urgent. This paper, taking the coastal area of Tianjin and Hebei as examples, comprehensively evaluates the impact of sea-level rise through multitemporal remote sensing shoreline interpretation, ground survey verification, elevation measurements for both seawall and coastal lowlands. The results show that the average elevation of the measured coastal areas of Tianjin and Hebei is about +4 m, and the total area of >100 km2 is already below the present mean sea level. More than 270 km, ca. 31% of the total length of the seawall, cannot withstand a 1-in-100-year storm surge. Numerical simulations of the storm flooding on the west coast of Bohai Bay, for 1-in-50-years, 1-in-100-years, 1-in-200-years and 1-in-500-years, show that if there were no coastal dykes, the maximum flooding area would exceed 3000 km2, 4000 km2, 5300 km2 and 7200 km2, respectively. The rising sea has a direct and potential impact on the coastal lowlands of Tianjin and Hebei. Based on the latest development in international sea-level rise prediction research, this paper proposes 0.5 m, 1.0 m and 1.5 m as low, middle and high sea level rise scenarios by 2100 for the study area, and combines the land subsidence and other factors to the elevation of the existing seawall. Comprehensive evaluation results indicate that even in the case of a low scenario, the existing seawall will not be able to withstand a 1-in-100-years storm surge in 2030, and the potential flooding areas predicted by the model will become a reality in the near future. Therefore, the seawall design in the coastal areas of Tianjin and Hebei must consider the combined effects of land subsidence, sea level rise and the extreme storm surges caused by it.©2019 China Geology Editorial Office.  相似文献   

3.
Evaluation of coastal inundation hazard for present and future climates   总被引:2,自引:1,他引:1  
Coastal inundation from hurricane storm surges causes catastrophic damage to lives and property, as evidenced by recent hurricanes including Katrina and Wilma in 2005 and Ike in 2008. Changes in hurricane activity and sea level due to a warming climate, together with growing coastal population, are expected to increase the potential for loss of property and lives. Current inundation hazard maps: Base Flood Elevation maps and Maximum of Maximums are computationally expensive to create in order to fully represent the hurricane climatology, and do not account for climate change. This paper evaluates the coastal inundation hazard in Southwest Florida for present and future climates, using a high resolution storm surge modeling system, CH3D-SSMS, and an optimal storm ensemble with multivariate interpolation, while accounting for climate change. Storm surges associated with the optimal storms are simulated with CH3D-SSMS and the results are used to obtain the response to any storm via interpolation, allowing accurate representation of the hurricane climatology and efficient generation of hazard maps. Incorporating the impact of anticipated climate change on hurricane and sea level, the inundation maps for future climate scenarios are made and affected people and property estimated. The future climate scenarios produce little change to coastal inundation, due likely to the reduction in hurricane frequency, except when extreme sea level rise is included. Calculated coastal inundation due to sea level rise without using a coastal surge model is also determined and shown to significantly overestimate the inundation due to neglect of land dissipation.  相似文献   

4.
21世纪中叶天津沿海地区极端高水位趋势预测   总被引:6,自引:3,他引:3  
宋美钰  王福  王宏 《地质通报》2008,27(6):829-836
据统计,天津沿海地区50年一遇的风暴潮极端增水水位为 4.092m,开展控沉工作后的地面下沉速率约为15mm/a,目前沿岸海挡顶面高程一般为 4.332m.参考孟加拉湾、伦敦、汉堡等沿海地区在2050年海平面上升(取较今高约0.2m的推测值)背景下的极端增水趋势预测(增加0.5m),推测天津沿海地区2050年的极端高水位将增加到 4.792m(4.092m 0.2m 0.5m),现有海挡顶面高程将下沉至 3.687m(以2007年为起算年份).2050年极端高水位将比届时的海挡顶面高1.105m,由此将加重风暴潮水漫溢致灾的危险.如果再考虑波浪叠加、河口效应、极端海面上升等不确定因素的影响,危险将更加严重.  相似文献   

5.
The northern coasts of the Gulf of Mexico (GoM) are highly vulnerable to the direct threats of climate change, such as hurricane-induced storm surge, and such risks are exacerbated by land subsidence and global sea-level rise. This paper presents an application of a coastal storm surge model to study the coastal inundation process induced by tide and storm surge, and its response to the effects of land subsidence and sea-level rise in the northern Gulf coast. The unstructured-grid finite-volume coastal ocean model was used to simulate tides and hurricane-induced storm surges in the GoM. Simulated distributions of co-amplitude and co-phase lines for semi-diurnal and diurnal tides are in good agreement with previous modeling studies. The storm surges induced by four historical hurricanes (Rita, Katrina, Ivan, and Dolly) were simulated and compared to observed water levels at National Oceanic and Atmospheric Administration tide stations. Effects of coastal subsidence and future global sea-level rise on coastal inundation in the Louisiana coast were evaluated using a “change of inundation depth” parameter through sensitivity simulations that were based on a projected future subsidence scenario and 1-m global sea-level rise by the end of the century. Model results suggested that hurricane-induced storm surge height and coastal inundation could be exacerbated by future global sea-level rise and subsidence, and that responses of storm surge and coastal inundation to the effects of sea-level rise and subsidence are highly nonlinear and vary on temporal and spatial scales.  相似文献   

6.
The devastation due to storm surge flooding caused by extreme wind waves generated by the cyclones is a severe apprehension along the coastal regions of India. In order to coexist with nature’s destructive forces in any vulnerable coastal areas, numerical ocean models are considered today as an essential tool to predict the sea level rise and associated inland extent of flooding that could be generated by a cyclonic storm crossing any coastal stretch. For this purpose, the advanced 2D depth-integrated (ADCIRC-2DDI) circulation model based on finite-element formulation is configured for the simulation of surges and water levels along the east coast of India. The model is integrated using wind stress forcing, representative of 1989, 1996, and 2000 cyclones, which crossed different parts of the east coast of India. Using the long-term inventory of cyclone database, synthesized tracks are deduced for vulnerable coastal districts of Tamil Nadu. Return periods are also computed for the intensity and frequency of cyclones for each coastal district. Considering the importance of Kalpakkam region, extreme water levels are computed based on a 50-year return period data, for the generation of storm surges, induced water levels, and extent of inland inundation. Based on experimental evidence, it is advocated that this region could be inundated/affected by a storm with a threshold pressure drop of 66 hpa. Also it is noticed that the horizontal extent of inland inundation ranges between 1 and 1.5 km associated with the peak surge. Another severe cyclonic storm in Tamil Nadu (November 2000 cyclone), which made landfall approximately 20 km south of Cuddalore, has been chosen to simulate surges and water levels. Two severe cyclonic storms that hit Andhra coast during 1989 and 1996, which made landfall near Kavali and Kakinada, respectively, are also considered and computed run-up heights and associated water levels. The simulations exhibit a good agreement with available observations from the different sources on storm surges and associated inundation caused by these respective storms. It is believed that this study would help the coastal authorities to develop a short- and long-term disaster management, mitigation plan, and emergency response in the event of storm surge flooding.  相似文献   

7.
海平面上升已引起各国政府和科技界的高度关注。预计未来30年,浙江沿海海平面将比2009年升高88~140 mm。海平面上升与浙江沿海平原地面沉降迭加将进一步恶化地质与生态系统,引发许多灾害问题,制约沿海区域经济社会的可持续发展。本文主要就如何应对海平面上升与地面沉降迭加引发的地质灾害链与生态环境问题进行了探讨,认为要从地球系统科学角度,重视对陆-海相互作用机制与生态环境效应的研究,着手考虑建立陆海(包括入海河流)统筹的海岸带地质与生态环境监测评价系统。  相似文献   

8.
相对海平面上升的危害与防治对策   总被引:2,自引:0,他引:2  
相对海平面上升已成为中国沿海地区海洋地质环境灾害之一。本文在有关学者以往研究工作的基础上,对中国相对海平面上升所造成的危害作了进一步探讨,并提出一系列防治对策。相对海平面上升能够在沿海地区造成海岸侵蚀、风暴潮灾害加剧、海水入侵、水资源和水环境遭到破坏、沿海低地被淹、防汛工程功能降低等诸多灾害。为了减缓这些灾害,采取一定的防治对策是十分迫切和必要的,其中加强海平面变化监测和科学研究是基础,提高海堤标准、加强海堤管理与保护、施行海滩人工喂养是关键,此外还要辅以公众意识的提高。  相似文献   

9.
Coastal regions are vulnerable to storm surge and flooding due to tropical and extratropical storms. It is necessary to build robust resiliency of the coastal communities to these hazards. The main objectives of operational surge and inundation forecast and coastal warning systems are to protect life and to sustain economic prosperity. The National Oceanic and Atmospheric Administration of the United States has initiated an integrated effort through pilot demonstration projects, and model-based ocean and coastal forecasting systems, to build improved operational warnings and forecasts capability for storm surge and inundation. This note describes the overall strategy and progress to date, with an emphasis on forecasting extratropical storm surge.  相似文献   

10.
Extreme sea-level events (e.g. caused by storm surges) can cause coastal flooding, and considerable disruption and damage. To understand the impacts or hazards expected by different sea levels, waves and defence failures, it is useful to monitor and analyse coastal flood events, including generating numerical simulations of floodplain inundation. Ideally, any such modelling should be calibrated and validated using information recorded during real events, which can also add plausibility to synthetic flood event simulations. However, such data are rarely compiled for coastal floods. This paper demonstrates the capture of such a flood event dataset, and its integration with defence and floodplain modelling to reconstruct, archive and better understand the regional impacts of the event. The case-study event comprised a significant storm surge, high tide and waves in the English Channel on 10 March 2008, which resulted in flooding in at least 37 distinct areas across the Solent, UK (mainly due to overflow and outflanking of defences). The land area flooded may have exceeded 7 km2, with the breaching of a shingle barrier at Selsey contributing to up to 90 % of this area. Whilst sea floods are common in the Solent, this is the first regional dataset on flood extent. The compilation of data for the validation of coastal inundation modelling is discussed, and the implications for the analysis of future coastal flooding threats to population, business and infrastructure in the region.  相似文献   

11.
中国沿岸海平面上升及影响研究的现状与问题   总被引:17,自引:0,他引:17  
对近年来中国沿岸相对海平面上升趋势及其影响研究的现状进行了总结,着重就目前研究中有关我国沿岸潮滩湿地与其他低地淹没以及加剧的海岸灾害估算等方面存在的难点和问题进行了分析与讨论。并在此基础上提出今后应加强相关基础资料积累、重视海平面上升与其他协同作用因素对研究对象的综合影响、海平面上升引起的海洋水文与海岸环境要素演变以及我国沿岸海岸信息系统研究等方面的建议。  相似文献   

12.
Sea level rise threatens to increase the impacts of future storms and hurricanes on coastal communities. However, many coastal hazard mitigation plans do not consider sea level rise when assessing storm surge risk. Here we apply a GIS-based approach to quantify potential changes in storm surge risk due to sea level rise on Long Island, New York. We demonstrate a method for combining hazard exposure and community vulnerability to spatially characterize risk for both present and future sea level conditions using commonly available national data sets. Our results show that sea level rise will likely increase risk in many coastal areas and will potentially create risk where it was not before. We find that even modest and probable sea level rise (.5 m by 2080) vastly increases the numbers of people (47% increase) and property loss (73% increase) impacted by storm surge. In addition, the resulting maps of hazard exposure and community vulnerability provide a clear and useful example of the visual representation of the spatial distribution of the components of risk that can be helpful for developing targeted hazard mitigation and climate change adaptation strategies. Our results suggest that coastal agencies tasked with managing storm surge risk must consider the effects of sea level rise if they are to ensure safe and sustainable coastal communities in the future.  相似文献   

13.
李勇  田立柱  裴艳东  王福  王宏 《地质通报》2016,35(10):1638-1645
基于ROMS海洋模式,结合近年的地质实测资料,建立了渤海湾西部地区风暴潮漫滩的数值模型。对模型进行验证后,对渤海湾西部区域重现期为50a、100a、200a及500a的风暴潮漫滩进行了数值模拟,分析了不同重现期风暴潮漫滩发展的动态过程及最大漫滩淹水范围。结果表明,数值模型基本能反映风暴潮的增水趋势,能够模拟风暴潮漫滩发生发展的动态过程。随着风暴潮强度的增加,渤海湾西部地区淹水范围具有从东海岸向西部内陆区域扩展的趋势。通过曲线拟合发现,风暴潮最大漫滩面积比值与高水位之间基本呈线性关系。  相似文献   

14.
Sea-level rise will increase the area covered by hurricane storm surges in coastal zones. This research assesses how patterns of vulnerability to storm-surge flooding could change in Hampton Roads, Virginia as a result of sea-level rise. Physical exposure to storm-surge flooding is mapped for all categories of hurricane, both for present sea level and for future sea-level rise. The locations of vulnerable sub-populations are determined through an analysis and mapping of socioeconomic characteristics commonly associated with vulnerability to environmental hazards and are compared to the flood-risk exposure zones. Scenarios are also developed that address uncertainties regarding future population growth and distribution. The results show that hurricane storm surge presents a significant hazard to Hampton Roads today, especially to the most vulnerable inhabitants of the region. In addition, future sea-level rise, population growth, and poorly planned development will increase the risk of storm-surge flooding, especially for vulnerable people, thus suggesting that planning should steer development away from low-lying coastal and near-coastal zones.  相似文献   

15.
Classifying inundation limits in SE coast of India: application of GIS   总被引:1,自引:0,他引:1  
A study on the possible inundation limit in SE coast of India was carried out using various physical, geological and satellite imageries. The coastal inundation hazard map was prepared for this particular region as it was affected by many cyclones, flooding, storm surge and tsunami waves during the last six decades. The results were generated using various satellite data (IRS-P6 LISS3; LANDSAT ETM; LANDSAT-5 ETM; LANDSAT MSS) and digital elevation models (ASTER GLOBAL DEM), and a coastal vulnerability index was generated for the entire coastal stretch of Nagapattinam region in SE coast of India. The coastal area which will be submerged totally due to a 1–5 m rise in water level due to any major natural disaster (tsunami or cyclone) indicates that 56–320 km2 will be submerged in this particular region. The results suggest that nearly 7 towns and 69 villages with 667,477 people will be affected and indicate that proper planning needs to be done for future development.  相似文献   

16.
Catastrophic flooding associated with sea-level rise and change of hurricane patterns has put the northeastern coastal regions of the United States at a greater risk. In this paper, we predict coastal flooding at the east bank of Delaware Bay and analyze the resulting impact on residents and transportation infrastructure. The three-dimensional coastal ocean model FVCOM coupled with a two-dimensional shallow water model is used to simulate hydrodynamic flooding from coastal ocean water with fine-resolution meshes, and a topography-based hydrologic method is applied to estimate inland flooding due to precipitation. The entire flooded areas with a range of storm intensity (i.e., no storm, 10-, and 50-year storm) and sea-level rise (i.e., current, 10-, and 50-year sea level) are thus determined. The populations in the study region in 10 and 50 years are predicted using an economic-demographic model. With the aid of ArcGIS, detailed analysis of affected population and transportation systems including highway networks, railroads, and bridges is presented for all of the flood scenarios. It is concluded that sea-level rise will lead to a substantial increase in vulnerability of residents and transportation infrastructure to storm floods, and such a flood tends to affect more population in Cape May County but more transportation facilities in Cumberland County, New Jersey.  相似文献   

17.
18.
The extent of saltwater intrusion in southern Baldwin County,Alabama   总被引:1,自引:0,他引:1  
Sea level rise (SLR) as a result of global warming has an impact on the increasing inundation on the coastal area. Nowadays, Semarang coastal area in Indonesia is already subject to coastal hazard due to tidal inundation and land subsidence. The impact of the inundation is predicted to be even more severe with the scenario of sea level rise. This paper concentrates on the risk assessment to the population, land use, and monetary losses as a result of coastal inundation under enhanced sea level rise. This paper uses the scenario of the depth of inundation to generate coastal inundation model using GIS-Technology. Anticipatory issues including methodology development for hazard assessment would be necessary for Semarang coastal area, and therefore, geo-information technology can be considered as a useful tool to rapidly assess the impact of the coastal hazard and evaluate the economic losses.  相似文献   

19.
Estimation of the probability distribution of extreme sea levels, for the present time and the next century, is discussed. Two approaches are described and their strengths and weaknesses are compared. The first approach is based on dynamics and uses a storm surge model forced by tides, winds and air pressure fields. The second approach is based on the statistical analysis of observed hourly sea level records using a new first-order Markov process that can capture non-Gaussian characteristics (such as skewness) in the non-tidal component of the observed sea level record. It is shown that both approaches can provide good estimates of present day flooding probabilities for regions with relatively strong tides. The limitations of both approaches in terms of assessing the effect of global sea level rise, glacial-isostatic adjustment of the land, and changes in the frequency and severity of storms and hurricanes, are illustrated using recent results for the Northwest Atlantic. Some sensitivity studies are carried out to transform uncertainty in climate change projections into uncertainties in the probability of coastal flooding.  相似文献   

20.
Due to increasing flood severities and frequencies, studies on coastal vulnerability assessment are of increasing concern. Evaluation of flood inundation depth and extent is the first issue in flood vulnerability analysis. This study has proposed a practical framework for reliable coastal floodplain delineation considering both inland and coastal flooding. New York City (NYC) has been considered as the case study because of its vulnerability to storm surge-induced hazards. For floodplain delineation, a distributed hydrologic model is used. In the proposed method, the severities of combined inland and coastal floods for different recurrence intervals are determined. Through analyzing past storms in the study region, a referenced (base) configuration of rainfall and storm surge is selected to be used for defining flood scenarios with different return periods. The inundated areas are determined under different flooding scenarios. The inundation maps of 2012 superstorm Sandy in NYC is simulated and compared with the FEMA revised maps which shows a close agreement. This methodology could be of significant value to the planners and engineers working on the preparedness of coastal urban communities against storms by providing a platform for updating inundation maps as new events are observed and new information becomes available.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号