首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
2012年6月30日新疆维吾尔自治区新源-和静县交界发生MS6.6地震,该地震是2010年青海玉树7.1级地震和2013年4月20日四川芦山7.0级地震之间中国大陆发生的最大的地震.本文基于新疆数字地震台网记录的此次地震序列震相资料,分别用绝对和相对定位方法联合对其进行重新定位,重新定位后余震展布为NW向,主震位置为43.429°N,84.755°E,深度为21.8 km.基于新疆地震台网记录6.6级地震波形数据,本文用CAP方法反演了震源机制解和震源深度.结果显示:MS6.6地震震源机制解:节面Ⅰ走向39°,倾角46°,滑动角12°,节面Ⅱ走向301°,倾角81°,滑动角135°;震源深度为21 km,与利用地震震相到时确定的主震震源深度基本一致.主震震源机制解的节面Ⅱ与伊犁盆地北缘断裂走向和倾角基本一致,综合精确定位余震展布和伊犁盆地北缘断裂性质分析认为,新源-和静MS6.6地震发震构造是伊犁盆地北缘断裂,震源深度为21 km左右,是一个高角的内陆倾滑地震.  相似文献   

2.
赵博  高原  黄志斌  赵旭  李大虎 《地球物理学报》2013,56(10):3385-3395
2013年4月20日发生了四川芦山MS7.0地震,主震中位于青藏地块与华南地块结合部的龙门山断裂带南端.本研究用双差定位法对芦山地震主震及余震序列进行重新定位,得到主震位置为(30.29°N,102.97°E,17.82 km)及4100多次余震重新定位结果.利用GSN/IRIS台网和国家台网及四川省区域台网的波形数据对主震及部分余震进行了震源机制解反演.结果表明,主震为一次逆冲地震,根据余震序列分布确定发震断层面走向为200°,震源机制解断层倾角为45°.基于震源断层面解和断层滑动方向,采用力轴张量计算法得到了研究区域的平均主压应力方向约为N112°E.  相似文献   

3.
2013年4月20日四川芦山MW6.7 (MS7.0)地震参数的测定   总被引:2,自引:0,他引:2  
2013年4月20日四川芦山MW6.7(MS7.0)地震发生后, 中国地震台网中心(CENC)发布了地震速报参数. 该文利用中国国家地震台网97个台站的资料对地震速报参数进行了修订, 得出: 四川芦山MW6.7地震的发震时刻为北京时间8时2分47.5秒(世界时间0时2分47.5秒), 震中位置为30.30°N、 102.99°E, 震源深度17 km. 该地震的面波震级为MS7.0, 短周期体波震级为mb6.0, 中长周期体波震级为mB7.0; 利用波形反演的方法计算了震源机制解, 得到的最佳双力偶解的参数分别为节面Ⅰ: 走向17°/倾角48°/滑动角80°; 节面Ⅱ: 走向212°/倾角43°/滑动角101°, 矩震级为MW6.7. 中国地震台网中心发布本次地震为面波震级MS7.0, 而美国地质调查局(USGS)国家地震信息中心(NEIC)发布为矩震级MW6.6. 为了消除这种差别, 建议我国也应将矩震级作为对外发布的首选震级, 使震级的发布与国际接轨.   相似文献   

4.
芦山7.0级地震序列的震源位置与震源机制解特征   总被引:7,自引:0,他引:7       下载免费PDF全文
基于中国国家和四川区域数字地震台网记录,采用HypoDD方法精确定位了四川芦山ML2.0级以上地震序列的震源位置,采用CAP方法反演了36次ML4.0级以上地震的最佳双力偶震源机制解,并利用小震分布和区域应力场拟合了可能存在的发震断层面参数,从而综合分析了芦山地震序列的震源深度、震源机制和震源破裂面特征,探讨可能的发震构造.结果显示,7.0级主震的震源位置为30.30°N、102.97°E,初始破裂深度为15 km左右,震源矩心深度为14 km左右,最佳双力偶震源机制解的两组节面分别为走向209°/倾角46°/滑动角94°和走向23°/倾角44°/滑动角86°,可视为纯逆冲型地震破裂,绝大多数ML4.0级以上余震的震源机制也表现出与主震类似的逆冲破裂特征.ML2.0级以上余震序列发生在主震两侧,集中分布的长轴为30 km左右,震源深度主要集中在5~27 km,ML3.5级以上较大余震则集中分布在9~25 km的深度上,并揭示出发震断层倾向北西的特征.利用小震分布和区域应力场拟合得到发震断层参数为走向207°/倾角50°/滑动角92°,绝大多数余震发生在断层面附近10 km左右的区域.综合地震序列分布特征、主震震源深度和已有破裂过程研究结果,可以推测主震破裂过程自初始点沿断层的两侧扩展破裂,南侧破裂比北侧稍长,滑动量主要集中在初始破裂点附近,可能没有破裂到地表.综合本文研究成果、地震烈度分布和现有的科学考察结果,初步推测发震构造为龙门山山前断裂,也不排除主震震中东侧还存在一条未知的基底断裂发震的可能性.  相似文献   

5.
精心挑选速度模型和观测资料,利用逆时成像技术对2013年4月20日发生在四川芦山的MS7.0地震的起始破裂点和震源中心进行成像.成像结果表明,地震的起始破裂点位于北纬30.289±0.005°,东经102.946±0.007°,震源深度11.8±2.3 km;震源中心在前3.5 s时间内与破裂起始点相同,在前9.5 s时间内也基本稳定在北纬30.27°和东经102.94°,距起始破裂点不远,意味着芦山MS7.0地震呈双侧破裂.  相似文献   

6.
孟令媛  周龙泉  刘杰 《地震学报》2013,35(5):632-641
2013年4月20日在我国四川省雅安市芦山县发生了MS7.0地震, 破坏最严重的宝兴、 芦山等极震区烈度达到Ⅷ—Ⅸ度. 该文针对芦山MS7.0地震震源参数的特征, 结合相关经验关系, 对本次地震的震源特征进行了初步分析. 结果表明, 芦山MS7.0地震为断层动态摩擦过程中的应力下调模式. 进一步应用Brune圆盘模型对芦山MS7.0地震近场强地面运动的理论值进行估算, 并基于加速度和速度的估算结果计算极震区的最大烈度, 约为Ⅷ—X度, 与实测的极震区最大烈度Ⅸ度较为接近. 选取宝兴和芦山为特征计算点, 构建动态复合震源模型, 对近断层区域内宝兴和芦山两个特征点进行了模拟计算. 模拟结果显示, 近断层区域强地面运动呈现持续时间短、 高频成分多等特征.   相似文献   

7.
继2008年汶川MS8.0地震和2013年芦山MS7.0地震后,2022年6月1日在龙门山断裂带南段又发生了一次MS6.1强震,距离2013年芦山MS7.0地震震中位置仅10 km.为研究此次地震的发震断层及两次芦山地震的关系,对震后60天的余震序列进行重定位,获得了933个高精度定位结果,EW,NS和UD方向上的定位误差分别为0.15 km,0.13 km和0.23 km.余震序列在水平分布上沿北东—南西向略长,在深度上主要分布在12—20 km,10 km以浅余震很少.余震震源深度剖面显示发震断层面倾向南东,与2013年芦山MS7.0地震发震断层结构中的反冲断层倾向一致,两次芦山地震的发震断层结构相交为复式Y型断裂结构,此次芦山地震的发震断层为其中一条深度更深的反冲断层.此次地震没有产生地表破裂,推测发震断层为一条埋深较深的隐伏断层.两次芦山地震的余震震中分布区跨过了该区域的一条大型逆冲型断裂带,即双石—大川断裂带.深度剖面显示芦山MS7.0地震的南东...  相似文献   

8.
2022年6月1日四川芦山发生MS6.1地震.基于四川区域台网的地震资料,采用HypoDD(双差重定位)方法对芦山MS6.1地震序列ML≥1.0的地震事件(2022年6月1日至7日)进行了重定位,利用gCAP(generalized Cut And Paste)波形反演方法获取了序列中MS≥3.0地震的震源机制和矩心深度,同时用Bootstrap方法评估了主震震源机制结果的稳定性以及计算了不同机构得到的多个震源机制中心解的最小旋转角,计算了现今区域应力场体系在2022年芦山MS6.1地震和2013年芦山MS7.0地震震源机制节面产生的相对剪应力和正应力,并根据芦山MS6.1地震序列重定位后的震源位置拟合了发震断层面,分析了该地震序列的发震构造.获得的主要结果如下:(1)芦山MS6.1地震序列主要沿着双石—大川断裂呈现NE-SW向的优势展布,初始破裂深度主要集中在10~18 km,平均深度14.5 km,整体呈现西...  相似文献   

9.
2004年东乌珠穆沁旗地震震源参数研究   总被引:5,自引:0,他引:5  
张爱萍  倪四道  杨晓勇 《地震》2008,28(3):61-68
利用波形反演方法, 研究并确定了2004年3月24日发生在内蒙古东乌珠穆沁旗与西乌珠穆沁旗交界处地震的震源机制及深度。 近震波形对震源机制有很好的约束, 而远震体波对于震源深度分辨率很高, 因此综合利用了近震和远震波形数据。 对于近震宽频带波形记录, 用CAP方法反演震源机制解。 利用远震直达P波、 pP波和sP波的到时能较好的确定震源深度。 综合利用近震宽频带波形和远震体波波形记录, 反演得出2004年03月24日地震为逆冲型, 震级为MW5.3。 其两个节面分别为: 节面I的走向、 倾角、 滑动角分别为147°、 22°、 87°, 节面Ⅱ的走向、 倾角、 滑动角分别为 330°、 68°、 91°; 震源深度为(12±2) km, 是一个典型的浅源上地壳地震。 与前震序列对比, 节面Ⅰ是可能的发震构造。  相似文献   

10.
王平川  张勇  冯万鹏 《地震学报》2021,43(2):137-151
利用远震资料、近场强震资料和合成孔径雷达干涉同震形变资料确定了2017年8月9日精河MS6.6地震的断层面参数及震源破裂细节。为得到可靠的断层几何参数,发展了一套基于InSAR数据滑动分布反演的三维格点搜索流程,对本次地震断层面的走向、倾角和震源深度进行了格点搜索。结果显示,地震断层面走向为95°,倾角为47°,震源深度为14 km。基于搜索得到的断层模型进行破裂过程联合反演的结果显示:精河MS6.6地震为一次单侧破裂事件,最大滑动量约为0.8 m,滑动区域集中在断层面上震源以西5—15 km,沿倾向15—25 km,破裂主要发生在10 km深度以下区域。断层面上的平均滑动角为106°。整个破裂过程释放的标量地震矩为3.6×1018 N·m,对应矩震级为MW6.3。破裂过程持续约9 s,期间的破裂速度约为2.1—2.6 km/s。由于地震破裂主要集中在10 km以下,未来可能需要关注该区域0—10 km发生潜在地震的可能性。   相似文献   

11.
本文提出并试验了一种基于接收函数建立区域模型进行震源机制反演的方法.选取四川地震台网记录的M≥3且信噪比高的近震波形资料,反演得到了芦山地震序列中74个地震的震源机制.通过对震源深度和震源机制的综合分析,探讨了芦山地震的发震构造和区域应力场状态.采用接收函数方法反演获取了26个台站下方的S波速度结构,对不同区域的台站反演结果进行叠加平均,以此区域平均S波速度作为本文震源机制反演使用的区域模型的S波速度;区域模型的P波速度由经验公式给出.反演稳定性测试表明,使用不同模型或对原始波形记录加入随机噪声的反演结果与原始反演相比,震源深度最大误差为1km,断层面各参数误差水平也很低,且显示的发震类型是一致的,其中随机噪声带来的误差小于模型带来的误差.主震反演得到的震源机制解为:震源深度17km,矩震级6.47;节面Ⅰ走向213°,倾角51°,滑动角98°;节面Ⅱ走向20°,倾角40°,滑动角80°;显示芦山主震可视为纯逆冲型地震,发震构造可能是某个具有较大倾角的逆冲断层,而不是低缓的推覆构造的基底滑脱面.同时本文反演获取的73个M≥3余震的震源机制绝大多数也显示了类似的发震类型,逆冲型地震为67个,占92%,具有绝对优势;走滑型地震为5个,正断型地震为1个.其中5个走滑型地震中的4个均分布在震源区的东北端.整个芦山地震序列深度集中在12~20km,且沿震源区短轴的余震深度剖面有自西向东呈逐步变浅的趋势,呈现清晰的铲形断面结构,结合本地地质构造,可以推断芦山地震序列主要发生在龙门山前山断裂以东的逆冲推覆体内的一个隐伏断裂上.P轴方位角优势方位与区域应力场及汶川震源区南段的相一致,表明芦山序列地震活动主要受区域应力场控制,且汶川震后该区应该不存在应力场变化.P轴仰角随深度分布则显示了孕震层在浅部为脆性上地壳,而深部已经进入了中地壳低速层.断层面的几何形态简单,倾角均值在不同深度保持稳定在55°左右,与主震倾角接近,这与汶川震源区南段的研究结果明显不同,揭示了龙门山断裂带南段与此次芦山发震断裂在断层面几何形态上的明显差异.  相似文献   

12.
基于中国国家和区域数字地震台网记录,采用CAP方法反演了2012年9月7日云南彝良5.7、5.6级地震的震源机制解和震源深度,并利用IRIS提供的远震记录深度震相(P、PP、SP)进一步确定了震源深度,最后结合地震序列分布、地震烈度分布和区域地质背景讨论了发震构造.结果显示彝良5.7级地震的震源机制解为节面I走向243°、倾角62°、滑动角149°,节面Ⅱ走向349°、倾角63°、滑动角32°;5.6级地震的震源机制解为节面I走向241°、倾角37°、滑动角162°,节面Ⅱ走向346°、倾角79°、滑动角54°,这两次地震的发震构造均为NE走向的石门断裂,震源矩心深度均为6 km左右,表明地震的能量释放主要发生在地壳浅部,这也是导致震区严重灾害的一个重要原因.  相似文献   

13.
区域地震波形对于震源研究非常重要,但限幅问题限制了区域地震台网数据的运用,并影响到震源参数测定的准确度.本文利用恢复后的芦山地震区域地震波形,研究了芦山地震的震级、点源机制解以及破裂过程.基于震中距99~300 km恢复前与恢复后地震数据获取的面波震级分别为7.01与7.06级.分别利用7个震中距150~250 km宽频带台站的恢复前和恢复后的数据反演点源机制解,与参考机制解相比,滑动角偏差自13°减小到了4°.基于7个震中距81~134 km的区域地震波形联合远场数据获得的震源破裂过程结果,其主要参数(如滑动分布、破裂速度等)与强地面运动波形联合远场数据得到的结果具有很好的一致性.研究结果表明,本文所采用的数据恢复方法具有较高的可靠性,有效提高了震源参数测定的准确度.  相似文献   

14.
The Oct.1,2014 M5.0 Yuexi earthquake occurred on the Daliang Shan fault zone where only several historical moderate earthquakes were recorded.Based on the waveform data from Sichuan regional seismic network,we calculated the focal mechanism solution and centroid depth of the M5.0 Yuexi earthquake by CAP (Cut and Paste) waveform inversion method,and preliminarily analyzed the seismogenic structure.We also calculated the apparent stress values of the M5.0 earthquake and other 14 ML≥4.0 events along the Shimian-Qiaojia fault segment of the eastern boundary of the Sichuan-Yunnan block.The result indicates that the parameters of the focal mechanism solution are with a strike of 256°,dip of 62°,and slip of 167° for the nodal plane Ⅰ,and strike of 352°,dip of 79°,and slip of 29° for the nodal plane Ⅱ.The azimuth of the P axis is 121° with dip angle of 11°,the azimuth of T axis is 217° with dip angle of 28°,and the centroid depth is about 11km,and moment magnitude is MW5.1.According to the focal mechanism solution and the fault geometry near the epicenter,we infer that the seismogenic fault is a branch fault,i.e.,the Puxiong Fault,along the central segment of the Daliang Shan fault zone.Thus,the nodal plane Ⅱ was interpreted as the coseismic rupture plane.The M5.0 Yuexi earthquake is a strike-slip faulting event with an oblique component.The above findings reveal the M5.0 Yuexi earthquake resulted from the left-lateral strike-slip faulting of the NNW Dalang Shan fault zone under the nearly horizontal principal compressive stress regime in an NWW-SEE direction.The apparent stress value of the Yuexi earthquake is 0.99MPa,higher than those of the ML ≥ 4.0 earthquakes along the eastern boundary of the Sichuan-Yunnan block since 2008 Wenchuan M8.0 earthquake,implying a relatively high stress level on the seismogenic area and greater potential for the moderate and strong earthquake occurrence.It may also reflect the current increasing stress level of the entire area along the eastern boundary,and therefore,posing the risk of strong earthquakes there.  相似文献   

15.
2013年7月22日,在甘肃岷县漳县交界处发生MS6.6地震,地震震中位置靠近临潭—宕昌断裂.本文通过构建有限断层模型,利用国家强震动台网中心提供的12条强地面运动三分量资料,通过波形反演方法来研究这次地震的震源破裂过程.结果显示这次地震是发生在甘东南地区岷县—宕昌断裂带东段附近的一次MW6.1级逆冲兼具左旋走滑破裂事件,最大滑动量约为80cm.发震断层走向及滑动性质与岷县—宕昌断裂吻合,推断本次地震与东昆仑断裂向北的扩展和推挤密切相关,是岷县—宕昌断裂进一步活动的结果.  相似文献   

16.
On two velocity models, the HypoDD method is used to accurately locate the Tongliao M5.3 earthquake sequence, then the CAP method is used to invert the focal mechanism solutions. The parameters of the seismogenic fault plane are fitted quantitatively by the small earthquake distribution and the regional stress field. The geometry, rupture features and possible seismogenic structure of the Tongliao M5.3 earthquake are comprehensively determined. The HypoDD relocation results show that this earthquake is located at 42.95°N, 122.37°E, the whole sequence trends in NW and major aftershocks (ML ≥ 3.0) strike in NEE direction. With the time elapsed, the aftershocks extended to the shallow crust gradually. Comparing the focal mechanism solutions and relocation results, we determine that the fitted causative fault based on NNW-trending aftershock distribution is reliable, which has the top left corner (43.00°N, 122.35°E, depth 3.3km), lower left corner (43.00°N, 122.35°E, depth 8.9km), upper right corner (42.92°N, 122.37°E, depth 3.3km), lower right corner (42.92°N, 122.37°E, depth 8.9km), extending range 3km×7km, trending in 349° (NNW), dip angle 86° (nearly vertical), and slip angle 15°. It is inferred that whole process of main shock rupture is from the source to the NW and SE sides as a shear. The rupture degree is larger in southeast where the late rupture concentrated, and did not reach the surface.  相似文献   

17.
GUO Zhi  CHEN Li-chun  LI Tong  GAO Xing 《地震地质》2018,40(6):1294-1304
The W-phase is a long period phase arriving between the P and S wave phases of a seismic source, theoretically representing the total near-and far-field long-period wave-field. Recent study suggests that the reliable source properties of earthquake with magnitude greater than ~MW4.5 can be rapidly inverted by using the W-phase waveform data. With the advantage of W-phase, most of major earthquake research institutes in the world have adopted the W-phase based inversion method to routinely assess focal mechanism of earthquake, such as the USGS and GFZ. In this study, the focal mechanism of the August 8, 2017 M7.0 Sichuan Jiuzhaigou and August 9, 2017 M6.6 Xinjiang Jinghe earthquakes were investigated by W-phase moment tensor inversion technique using global seismic event waveform recordings provided by Incorporated Research Institutions for Seismology, Data Management Center. To get reliable focal mechanism, we strictly select raw waveform data and carry out inversion in stages. At first, we discard waveform without correct instrument information. Then we carry out an initial inversion using selected waveform data to get primary results. Using the preliminary results as input, we carry out grid-search based inversion to find the final optimal source parameters. The inverted results indicate that the August 8, M7.0 Sichuan Jiuzhaigou shock resulted from rupturing on a NW-trending normal fault with majority of strike-slip movement. The parameters of two nodal planes are strike 152.7°, dip 61.4°, rake -4.8° and strike 245.0°, dip 85.8°, rake -151.3° respectively, and focal depth is 14.0km. The August 9, Xinjiang Jinghe M6.6 shock resulted from rupturing on a south-dipping thrust fault with left-lateral strike-slip. The parameters of two nodal planes are strike 100.6°, dip 27.5°, rake 114.1° and strike 259.3°, dip 65.1°, rake 78.0°, and the focal depth is 16.0km. The direction of two nodal planes is consistent with regional seismotectonic background.  相似文献   

18.
The Wulong MS5.0 earthquake on 23 November 2017, located in the Wolong sap between Wenfu, Furong and Mawu faults, is the biggest instrumentally recorded earthquake in the southeastern Chongqing. It occurred unexpectedly in a weak earthquake background with no knowledge of dramatically active faults. The complete earthquake sequences offered a significant source information example for focal mechanism solution, seismotectonics and seismogenic mechanism, which is helpful for the estimation of potential seismic sources and level of the future seismic risk in the region. In this study, we firstly calculated the focal mechanism solutions of the main shock using CAP waveform inversion method and then relocated the main shock and aftershocks by the method of double-difference algorithm. Secondly, we determined the seismogenic fault responsible for the MS5.0 Wulong earthquake based on these calculated results. Finally, we explored the seismogenic mechanism of the Wulong earthquake and future potential seismic risk level of the region. The results show the parameters of the focal mechanism solution, which are:strike24°, dip 16°, and rake -108° for the nodal plane Ⅰ, and strike223°, dip 75°, and rake -85° for the nodal plane Ⅱ. The calculations are supported by the results of different agencies and other methods. Additionally, the relocated results show that the Wulong MS5.0 earthquake sequence is within a rectangular strip with 4.7km in length and 2.4km in width, which is approximately consistent with the scales by empirical relationship of Wells and Coppersmith(1994). Most of the relocated aftershocks are distributed in the southwest of the mainshock. The NW-SE cross sections show that the predominant focal depth is 5~8km. The earthquake sequences suggest the occurrence features of the fault that dips northwest with dip angle of 63° by the least square method, which is largely consistent with nodal planeⅡof the focal mechanism solution. Coincidentally, the field outcrop survey results show that the Wenfu Fault is a normal fault striking southwest and dipping 60°~73° by previous studies. According to the above data, we infer that the Wenfu Fault is the seismogenic structure responsible for Wulong MS5.0 earthquake. We also propose two preliminary genetic mechanisms of "local stress adjustment" and "fluid activation effect". The "local stress adjustment" model is that several strong earthquakes in Sichuan, such as M8.0 Wenchuan earthquake, M7.0 Luzhou earthquake and M7.0 Jiuzhaigou earthquake, have changed the stress regime of the eastern margin of the Sichuan Basin by stress transference. Within the changed stress regime, a minor local stress adjustment has the possibility of making a notable earthquake event. In contract, the "fluid activation effect" model is mainly supported by the three evidences as follows:1)the maximum principle stress axial azimuth is against the regional stress field, which reflects NWW-SEE direction thrusting type; 2)the Wujiang River crosscuts the pre-existing Wenfu normal fault and offers the fluid source; and 3)fractures along the Wenfu Fault formed by karst dissolution offer the important fluid flow channels.  相似文献   

19.
2016年4月15日16时25分(UTC),日本熊本县发生MW7.1强烈地震,给当地人员、建筑及经济造成严重灾难和巨大损失.日本地震观测网F-net给出的震源机制解显示此次地震的震源位置为130.7630°E,32.7545°N,深度12.45 km,节面Ⅰ:走向N131°E、倾角53°、滑动角-7°;节面Ⅱ:走向N226°E、倾角84°、滑动角-142°.与此同时,余震的震中分布及其震源机制结果显示主震的震源机制在破裂过程中有可能发生了变化,单一的震源机制不足以充分解释观测数据.本文依据GNSS和InSAR地表形变反演结果为约束,并结合活动构造资料为参考,构建了震源机制变化的有限断层模型,采用水平层状介质模型,利用日本强震观测台网K-NET和KiK-net的近场加速度观测记录,通过多时间窗线性波形反演方法反演了此次地震的震源破裂过程.研究结果显示,这是一次沿Futagawa-Hinagu断层带发生的右旋走滑破裂事件,发震断层分为南北两段,其中北段走向N235°E、倾角60°,南段走向N205°E、倾角72°,断层深度范围和余震深度分布基本一致,断层面上滑动主要集中于断层北段,最大滑动量约7.9 m,整个断层的破裂过程持续约18 s,释放地震矩5.47×1019 N·m(MW7.1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号