首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
High-steep slopes in open pit mines are much more likely to collapse due to mining operations. Challenges such as data acquisition, precise numerical models and adaptable methodologies have impeded more reliable results of slope stability analysis based on the current methods. Within this context, this paper proposes a combined methodology using light detection and ranging technology to capture high-resolution slope geometry, three-dimensional geological and geotechnical modeling technologies for creating high-quality numerical simulation models and finite-element slope stability analyses combined with a new automatic strength reduction technique to analyze complex geotechnical problems. At the end, the methodology introduces a time series analysis to improve the reliability of the calculated factor of safety. A case study in the deepest open pit mine in Hambach, Germany, was conducted to test and demonstrate the effectiveness and applicability of the proposed methodology.  相似文献   

2.
Vibrations due to production blasting can induce damage to the rock mass at large distances by altering larger geological structures, fault areas or other structures, where the orientation with respect to the mine geometry is unfavorable and can cause displacement of large rock volumes. Past occurrences of this nature in Escondida Mine placed geomechanical safety restrictions as to maximum allowable blast size in the northeast area of the mine. These restrictions limited the efficiency of drilling and blasting operations seriously limiting daily production. This is what prompted this study to attempt to increase shot size while reducing stability problems. This would permit keeping stable the slope over which the ore extraction belts are located, as well as the main access ramp to the mine. Using a rigorous and systematic instrumentation and monitoring effort of blasting vibrations at multiple locations with respect to an unstable location allowed the development of a database to establish acceptable vibrations limits. A parallel effort was the development and gauging of a mechanistic model for the prediction and simulation of blasting vibrations. Excellent results were obtained from a comparison between the measured and predicted results. This allowed the use of the gauged model to verify the practicality of increasing the shot size in the restricted blasting zones, without exceeding safe vibration limits. The practical success achieved using this research approach resulted in increased blasting size, with a consequent increase of blasted material per shot, and contributed to more flexible mining operations.  相似文献   

3.
复合采动影响下边坡岩体变形机制的数值分析   总被引:3,自引:0,他引:3  
在各类矿产资源的开采过程中,有许多矿区属地下与露天复合开采情况。依据采区的空间对应关系,两种采动影响域中的一部分相互重叠,致使其采动效应相互作用和相互叠加,从而组成一个复合动态系统,因此,边坡岩体变形机理更加复杂,与单一露天开采相比有较大的差异。然而,过去在处理此类问题时近似地按单一露天采动影响下的分析方法,结果与实际情况有一定差异。  相似文献   

4.
王振伟 《岩土力学》2014,35(7):1843-1848
露天边坡的稳定性是关乎矿山安全生产的重要因素之一。以安家岭露天煤矿29211工作面开采为例,采用相似材料模型试验研究方法,研究井工开采对露天矿边坡变形破裂过程的影响。试验结果表明:29211采面的推进使得上覆岩层发生垮落和下沉变形,形成“拱式”结构,对边坡产生较大的水平推力作用,导致边坡向临空面方向发生较大的水平位移,同时也造成了边坡不同程度的拉裂和沉降变形;当29211工作面推进至合理停采线2时,边坡岩体内出现局部裂缝,推进至设计停采线时,边坡岩体内裂缝已逐渐形成并贯通至坡底,因此,29211工作面推进至合理停采线2时为适宜停采位置;29211工作面开采完毕后工作面中部正上方沉降量最大,边坡岩体最大下沉量约为8 m,边坡体内裂缝逐渐贯通,有被挤出的趋势。研究结果对露天矿现场开采安全提供理论指导。  相似文献   

5.
Investigating the propagation and attenuation of blast vibration in rock slopes is the key point to assess the influence of underground mine blasting on overlaying open pit slopes stability and determining the potential risk. In this paper, Daye Iron Mine in China has been chosen as the case to study the effect of blast vibrations on overlaying open pit slopes due to underground mine blast. Firstly, the characteristics of blast loadings are analyzed by the dynamic finite element method. Then, a three dimensional (3D) numerical model of the open pit and the underground mine is made, which is verified by the field monitoring data to prove its reliability. The effect of blast vibration on overlaying open pit slope due to underground mine blasting are discussed based on the peak particle velocity (PPV) and the peak effective tensile stress (PETS) distribution characteristics which are calculated and analyzed by inputting the obtained blast vibration data into the numerical model. The results show that the effect of present mining blasting on the stability of pit slopes are limited because the simulated maximum PPV and PETS of monitoring point on slopes are all < 0.747 cm/s and 0.738 MPa. At last, according to numerical simulations of the underground mine blasting, the PPV predicting formulas for the slopes in Daye Open Pit Iron Mine is proposed based on the classic Sadaovsk formula.  相似文献   

6.
复杂条件下露天采场边坡变形分析   总被引:3,自引:0,他引:3  
露天采场边坡的变形特征对边坡稳定性评价、露天开采以及对边坡变形监测具有重要意义 ,复杂条件下 ,露天采场边坡的变形特征难以预测。本文采用快速拉格朗日分析 (FL AC)方法对金牛公司露天采场稳定边坡、不稳定边坡时空上的变形特征以及空区和分步开挖对边坡变形特征的影响进行了综合分析。结果表明 :FL AC方法在分析复杂条件下的边坡变形特征方面显示了较强的优势 ,稳定边坡和不稳定边坡有着各自不同的变形特征 ,空区和开采速度对边坡变形产生一定的影响。  相似文献   

7.
A new formulation is given to conduct a probabilistic block theory analysis. A new computer code (PBTAC) is developed to perform both deterministic and probabilistic block theory analysis. The variability of the discontinuity orientation and shear strength is incorporated in the probabilistic block theory analysis. Discontinuity orientation is treated as a bivariate random variable including the correlation that exists between the dip angle and dip direction. PBTAC code was applied to perform both deterministic and probabilistic block theory analyses for a part of an open pit mine in USA. Needed geological and geotechnical data for the analyses were obtained from field and laboratory investigations. The variability of the discontinuity orientations resulted in important differences between the probabilistic and deterministic block theory analyses results. The results confirmed that the design value selected for the maximum safe slope angle (MSSA) for a particular region in the open pit mine based on the deterministic block theory analysis can be on the unsafe side. In summary, the results showed clearly the superiority of probabilistic block theory analysis over the deterministic block theory analysis in obtaining additional important information with respect to designing rock slopes. The calculated values agree very well with the existing almost stable bench face angles reported by the mining company.  相似文献   

8.
M.K Seguin 《Geoforum》1974,5(2):55-67
A brief summary of our knowledge of permafrost is presented. The general properties and the thermal regime of permafrost encountered in the Schefferville area are discussed. The factors influencing the occurrence or disappearance of permafrost are discussed individually. Attempts to determine the mechanical and thermal properties of frozen rock materials, with the aim of relating these to geophysical results and to the various blasting responses appear to represent the best approach. In addition to the mapping of topography, drainage patterns, distribution and type of vegetation, snow cover and installation of thermistors, electrical resistivity surveys, borehole geophysical techniques and seismic refraction method are now recognized as important tools in predicting and outlining permafrost zones where blasting and handling procedures of iron ore are very expensive and difficult. Examples and results of such studies carried out on the Timmins 1, Timmins 4, and Fleming 3 deposits are presented. As the mining operations will move northwards into the Timmins, Barney, Goodwood, Leroy and Kivivic groups of deposits, an increasing percentage of the mining activities will be located in permafrost; consequently, it is of the utmost importance to develop a technique permitting a rapid and accurate prediction of permafrost zones in order to reduce prohibitive costs of operation. The delineation of permafrost in a particular deposit has many practical applications such as the demarcation of areas where trenching and test pitting is planned, prediction of ground conditions for test and tonnage drilling, delineation of areas of open cast walls which will be affected by permafrost and consecutive importance in slope design, operational planning of areas where free digging is possible during dirt (overburden) stripping and economic planning of mining operations, particularly with respect to drilling and blasting costs. Additional important applications include the delineation of areas of potential water problems during operations due to the presence of permafrost in the wall rocks and broad outline of the blasting patterns and choice of charge distributions to be used.  相似文献   

9.
In most mining operations the ore undergoes several processes such as drilling, blasting, loading, hauling, crushing, grinding and liberation to become the final salable product. Drilling and blasting is an important step in this process chain and it's results such as fragmentation, muckpile shape and looseness, dilution, damage and rock softening effect the efficiency of downstream processes. The value created per ton of broken ore is the difference between the price it commands when sold as the final product and the cost to produce it. Traditionally, the total process in the mining industry is classified into two groups as mining and milling. These are managed as separate cost centres inspite of the interdependency. Each process has a budget and production target and emphasis is usually on maximising production (tons) and minimising cost rather than the overall profitability of the whole business unit. The efficiency of each process is considered to be satisfactory as long as they are within budget and meet the production targets. The mine and mill managers usually try to optimise each process independently rather than the entire process. This paper discusses the potential pitfalls of decreasing the drilling and blasting cost per ton of broken rock without considering its impact on downstream processes. It introduces a holistic approach to blast optimisation by identifying and measuring the leverage that blast results have on different downstream processes and then optimising the blast design to achieve the results that maximise the overall profitability rather than just minimising the drilling and blasting costs. This paper demonstrates the benefits of such a holistic approach to blasting based on computer model simulations and field studies from metal and open cut coal mining.  相似文献   

10.
模糊评判在露天转地下矿山的矿房结构参数优化中的应用   总被引:1,自引:0,他引:1  
模糊评判法能较好地解决方案选择的问题。本文针对石人沟铁矿露天转地下矿山过渡期开采期间,矿山地下开采带来的露天边坡、地下采场稳定性问题,通过数值模拟,得到地下第一中段开采时地下采场和边坡的应力、应变数值,并结合矿块的采切比、矿块回采率经济指标,运用模糊数学的方法,建立了考虑经济效益的稳定性模糊评判模型。通过合理确定评价指标的隶属度函数和利用二元排序法构造判断矩阵确定各评价指标的权重,对9种方案进行了综合评判,确定了最优方案,选出了合理的矿房结构参数,既可保证矿山的安全生产,又可保证矿山经济效益。  相似文献   

11.
Drilling and blasting is a major technology in mining since it is necessary for the initial breakage of rock masses in mining. Only a fraction of the explosive energy is efficiently consumed in the actual breakage and displacement of the rock mass, and the rest of the energy is spent in undesirable effects, such as ground vibrations. The prediction of induced ground vibrations across a fractured rock mass is of great concern to rock engineers in assessing the stability of rock slopes in open pit mines. The waveform superposition method was used in the Gol-E-Gohar iron mine to simulate the production blast seismograms based upon the single-hole shot vibration measurements carried out at a distance of 39 m from the blast. The simulated production blast seismograms were then used as input to predict particle velocity time histories of blast vibrations in the mine wall using the universal distinct element code (UDEC). Simulated time histories of particle velocity showed a good agreement with the measured production blast time histories. Displacements and peak particle velocities were determined at various points of the engineered slope. The maximum displacement at the crest of the nearest bench in the X and Y directions was 26 mm, which is acceptable in regard to open pit slope stability.  相似文献   

12.
In Pasir mine, coal seams and host rocks of varying thickness have been uniquely deposited with an average dip angle of 85°. The host rocks are weak and mainly composed of mudstone and sandstone comprising of 90–95% of the total pit volume. The thickness of coal seams and host rocks ranges from sub-metric to few tenths of meter. The overall safe pit slope angle was evaluated to be 27° for mining depth of 50–150 m. Several slopes failure incidents have occurred in the mine causing considerable disruption in production and monetary loss. It is envisaged that slope failures may be triggered due to blasting conducted in steeply dipping stratified deposit. In order to investigate the causes of slope failures, peak particle velocity (PPV) and accelerations at various locations from the blast site have been measured. In addition, finite element models of pit slope have been analyzed by applying static or gravity loading as well as blasting or dynamic loading. This paper elaborates the results of in situ measurements of ground vibration and numerical investigation and suggests possible causes of slope failures in Pasir mine.  相似文献   

13.
In blasting with air decks, repeated oscillation of shock waves within the air gap increases the time over which it acts on the surrounding rock mass by a factor at between 2 and 5. The ultimate effect lies in increasing the crack network in the surrounding rock and reducing the burden movement. Trials of air deck blasting in the structurally unfavourable footwall side of an open pit manganese mine has resulted in substantial improvements in fragmentation and blast economics. Better fragmentation resulted in improved shovel loading efficiency by 50–60%. Secondary blasting was almost eliminated. Use of ANFO explosive with this technique reduced explosive cost by 31.6%. Other benefits included reductions in overbreak, throw and ground vibration of the order of 60–70, 65–85 and 44% respectively. This paper reviews the theory of air deck blasting and describes in detail the air deck blast trials conducted in a manganese open pit mine in India. The blast performance data have been analysed to evaluate the benefits of air decking over conventional blasting.  相似文献   

14.
地下与露天复合采动影响下边坡岩体稳定性评价方法的研究   总被引:15,自引:3,他引:12  
矿产资源的开采, 有些是按地下与露天复合开采方式进行。依据采区的空间对应关系, 两种采动影响域中的一部分相互重叠, 导致采动效应相互作用和相互叠加, 从而组成一个复合动态系统, 因此边坡岩体变形机理更加复杂, 与单一露天开采相比有较大的差异;然而, 过去在处理此类问题时近似地应用单一露天采动影响下的分析方法, 结果与实际情况存在一定差异;本文在理论分析的基础上, 推导出边坡稳定性的评价方法, 为此类矿山后续采矿设计及安全生产提供科学依据。  相似文献   

15.
通过对乌努格吐山铜钼矿露天采场边坡自然背景条件、岩体结构类型、岩石力学参数、工程地质岩组特征、结构面特征、边坡工程地质分区、边坡稳定性评价、边坡破坏类型及规模等论述,阐明了露天采场边坡工程地质特征.边坡稳定性计算结果表明,A区A-A'剖面、C区E-E'剖面稳定性计算结果不能满足安全系数的要求,其他区边坡总体稳定性较好.露天采场现处于生产建设阶段,边坡正处于剥离形成过程中,边坡几何形态保存较完整,仅局部出现小型崩塌、垮塌、粒状解体、楔形破坏、地裂缝和大气降水冲刷等.尚未出现较大规模破坏,现状边坡总体稳定,基本可代表未来边坡的破坏类型和稳定状态.  相似文献   

16.
以山西平朔安太堡矿露井联合开采为例,通过数值模拟及现场位移监测资料对比分析,探讨了露天矿高边坡在顺坡、逆坡及侧向切坡开采3种情况下的复合应力场和位移场的分布特征及规律。研究表明,边坡内井工开采不利于边坡稳定性,但由于工作面推进方向不同,边坡受采动影响部位的顺序不同,因而对边坡稳定性的影响存在一定的差异。逆坡开采时,随着工作面向坡内推进,边坡前、后期表现出两种完全不同类型的变形位移,前期以倾倒型崩塌破坏为主,后期稳定性有所增强;顺坡开采时,边坡保安煤柱宽度不断减小,在侧向偏压作用下,边坡将产生沿软弱结构面的推动式剪切滑动;边坡下切坡开采时,边坡除发生沿软弱结构面的推动式剪切滑动外,还可能发生后缘沿采空裂隙、下部沿软弱层面的张拉滑动变形。  相似文献   

17.
Blasting has been the most frequently used method for rock breakage since black powder was first used to fragment rocks, more than two hundred years ago. This paper is an attempt to reassess standard design techniques used in blasting by providing an alternative approach to blast design. The new approach has been termed asymmetric blasting. Based on providing real time rock recognition through the capacity of measurement while drilling (MWD) techniques, asymmetric blasting is an approach to deal with rock properties as they occur in nature, i.e., randomly and asymmetrically spatially distributed. It is well accepted that performance of basic mining operations, such as excavation and crushing rely on a broken rock mass which has been pre conditioned by the blast. By pre-conditioned we mean well fragmented, sufficiently loose and with adequate muckpile profile. These muckpile characteristics affect loading and hauling [1]. The influence of blasting does not end there. Under the Mine to Mill paradigm, blasting has a significant leverage on downstream operations such as crushing and milling. There is a body of evidence that blasting affects mineral liberation [2]. Thus, the importance of blasting has increased from simply fragmenting and loosing the rock mass, to a broader role that encompasses many aspects of mining, which affects the cost of the end product. A new approach is proposed in this paper which facilitates this trend 'to treat non-homogeneous media (rock mass) in a non-homogeneous manner (an asymmetrical pattern) in order to achieve an optimal result (in terms of muckpile size distribution).' It is postulated there are no logical reasons (besides the current lack of means to infer rock mass properties in the blind zones of the bench and onsite precedents) for drilling a regular blast pattern over a rock mass that is inherently heterogeneous. Real and theoretical examples of such a method are presented.  相似文献   

18.
A programme of blast improvement was initiated at the Mt Whaleback iron ore mine by BHPIO management in early-1998. One component of that work was the need to improve wall control blasting practices to better achieve the designed pit slope elements. This paper describes the geological conditions in which pit walls are developed, the mine operating equipment, the blast design concepts applied to minimise blast damage, the techniques applied in an assessment of the blast performance and the operational procedures developed to ensure that the blast concepts are effectively implemented in the production environment. Substantial changes have been implemented in both technical and operational aspects of the mining operation in order to achieve the improvements in pit wall condition, in particular recognising the need for a more flexible approach to limits blasting in response to highly variable and complex geology. The benefits to the mine are not only an improved wall condition, but increased confidence on the part of mine management that mine plans may be implemented on design and on schedule.  相似文献   

19.
In this paper, the application of 2D and 3D electrical resistivity methods in geotechnical investigations is explored through a case study in Northern Greece. These two methods were employed at a lignite surface mining operation where fracture zones and discontinuities have been recently observed close to the pit boundaries. The main aim of the geophysical survey was to estimate the inclination of the contact between the Neogene and Schist/Carbonate formations near the southern limits of the pit, as well as to estimate the thickness of the carbonate rocks on top of the Schist formations to evaluate the stability of the southern slopes. Synthetic data were initially generated to help plan an efficient electrical tomography survey, in a region with complex geology and irregular terrain. Three configurations (Wenner–Schlumberger and dipole–dipole or pole–dipole) proved essential in such conditions and helped improving the resolution of the resistivity section. The sections were then calibrated by boreholes. Finally, the geophysical survey provided invaluable data regarding the geometry of the bedrock and possible faults, which was essential for the slope stability calculations.  相似文献   

20.
边坡稳定性对露天煤矿安全高效开采至关重要。在系统总结蒙东地区露天煤矿赋存条件的基础上,提出了该地区露天煤矿边坡的工程地质特征及稳定性影响关键因子。采用正交试验与极差分析法,对该地区露天煤矿边坡稳定性影响因子的敏感度进行了研究。研究结果表明:软弱结构面分布特征、软弱结构面强度及变形特征、地下水疏排效果和综合帮坡角是控制该地区露天煤矿边坡稳定性的关键因子;不同开采阶段边坡稳定性影响因子的敏感性会发生变化,边坡防治策略及重点也应相应调整。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号