首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In a novel approach in observational high-energy gamma-ray astronomy, observations carried out by imaging atmospheric Cherenkov telescopes provide necessary templates to pinpoint the nature of intriguing, yet unidentified EGRET gamma-ray sources. Using GeV-photons detected by EGRET and taking advantage of high spatial resolution images from H.E.S.S. observations, we were able to shed new light on the EGRET observed gamma-ray emission in the Kookaburra complex, whose previous coverage in the literature is somewhat contradictory. 3EG J1420–6038 very likely accounts for two GeV gamma-ray sources (E>1 GeV), both in positional coincidence with the recently reported pulsar wind nebulae (PWN) by HESS in the Kookaburra/Rabbit complex. PWN associations at VHE energies, supported by accumulating evidence from observations in the radio and X-ray band, are indicative for the PSR/plerionic origin of spatially coincident, but still unidentified Galactic gamma-ray sources from EGRET. This not only supports the already suggested connection between variable, but unidentified low-latitude gamma-ray sources with pulsar wind nebulae (3EG J1420–6038 has been suggested as PWN candidate previously), it also documents the ability of resolving apparently confused EGRET sources by connecting the GeV emission as measured from a large-aperture space-based gamma-ray instrument with narrow field-of-view but superior spatial resolution observations by ground-based atmospheric Cherenkov telescopes, a very promising identification technique for achieving convincing individual source identifications in the era of GLAST-LAT.   相似文献   

2.
The EGRET telescope aboard the NASA Compton Gamma-Ray Observatory ( CGRO ) has repeatedly detected 3EG J1835+5918, a bright and steady source of high-energy gamma-ray emission which has not yet been identified. The absence of any likely counterpart for a bright gamma-ray source located 25° off the Galactic plane initiated several attempts of deep observations at other wavelengths. We report on counterparts in X-rays on a basis of a 60-ks ROSAT HRI image. In order to conclude on the plausibility of the X-ray counterparts, we reanalysed data from EGRET at energies above 100 MeV and above 1 GeV, including data up to CGRO observation cycle 7. The gamma-ray source location represents the latest and probably the final positional assessment based on EGRET data. We especially address the question of flux and spectral variability, here discussed using the largest and most homogeneous data set available at high-energy gamma-rays for many years. The results from X-ray and gamma-ray observations were used in a follow-up optical identification campaign at the 2.2-m Guillermo Haro Telescope at Cananea, Mexico. VRI imaging has been performed at the positions of all of the X-ray counterpart candidates, and spectra were taken where applicable. The results of the multifrequency identification campaign toward this enigmatic unidentified gamma-ray source are given, especially on the one object which might be associated with the gamma-ray source 3EG J1835+5918. This object has the characteristics of an isolated neutron star and possibly of a radio-quiet pulsar.  相似文献   

3.
Point sources in the region of hard gamma rays 30 MeV-10 GeV were identified with single young pulsars, like Crab; transient gamma ray sources and bright quasars. The main problem in this region is the small number of the photons, registrated from the source. In order to overcome this problem the new construction of a gamma telescope is proposed, which registers quanta from all directions simultaneously. In this way it is possible to increase the sensitivity by more than an order of magnitude with the same size and smaller weight, in comparison with EGRET. Analyses have shown, that such a telescope must stay without the calorimeter, what reduces its spectral resolution. The estimated number of point sources which could be discovered by such a telescope could approach one thousand. Results of Monte Carlo simulations are presented.  相似文献   

4.
The Whipple Observatory 10 m γ-ray telescope has been used to survey the error boxes of 24 EGRET unidentified sources in an attempt to find counterparts at energies of 350 GeV and above. In no case is a statistically significant signal found in the EGRET error box which implies that, at least for this sample, the γ-ray spectra of these sources steepen between 100 MeV and 350 GeV.  相似文献   

5.
The variability of γ-ray sources listed in the third EGRET catalog is studied using three variability indices. These indices are found to be statistically equivalent if the observed data are sufficiently accurate. Using the three indices,30 EGRET point sources which are positionally coincident with pulsars and 40 persistent unidentified sources at low latitudes are analyzed for their variability status. It is found that 14 of the 30 point sources may have genuine or plausible associations with pulsars, and 16 of the 40 persistent unidentified sources are possible pulsar candidates.  相似文献   

6.
Population synthesis is used to study the contribution from unresolved sources to the Galactic ridge emission measured by EGRET. Synthesized source counts are compared with the 3rd EGRET catalogue at low and high latitudes. For pulsar-like populations, 5–10% of the emission >100 MeV comes from sources below the EGRET threshold. A steeper luminosity function can increase this to 20% without violating EGRET source statistics. Less luminous populations can produce much higher values without being detected. Since the unresolved source spectrum is different from the interstellar spectrum, it could provide an explanation of the observed MeV and GeV excesses above the predictions, and we give an explicit example of how this could work.  相似文献   

7.
A large fraction of the anticipated source detections by the Gamma-ray Large Area Space Telescope (GLAST-LAT) will initially be unidentified. We argue that traditional approaches to identify individuals and/or populations of gamma ray sources will encounter procedural limitations. Those limitations are discussed on the background of source identifications from EGRET observations. Generally, our ability to classify (faint) source populations in the anticipated GLAST dataset with the required degree of statistical confidence will be hampered by sheer source wealth. A new paradigm for achieving the classification of gamma ray source populations is discussed.  相似文献   

8.
Statistical studies indicate that the 271 point sources of high-energy gamma rays belong to two groups: a galactic population and an isotropic extragalactic population. Many unidentified extragalactic sources are certainly blazars, and it is the intention of this work to uncover gamma-ray blazars missed by previous attempts. Until recently, searches for blazar counterparts to unidentified EGRET sources have focused on finding AGN that have 5-GHz radio flux densities S 5 near or above 1 Jy. However, the recent blazar identification of 3EG J2006-2321 (S 5 = 260 mJy) and other work suggest that careful studies of weaker flat-spectrum sources may be fruitful. In this spirit, error circles of four high-latitude unidentified EGRET sources have been searched for 5-GHz sources. The gamma-ray sources are 3EG J1133+0033, 3EG J1212+2304, 3EG J1222+2315, and 3EG J1227+4302. Within the error contours of each of the four sources are found six radio candidates; by observing the positions of the radio sources with the 0.81-m Tenagra II telescope it is determined that 14 of these 24 radio sources have optical counterparts with R < 22. Eight of these from two different EGRET sources have been observed in the B, V, and R bands in more than one epoch and the analysis of these data is ongoing. Any sources that are found to be variable will be the objects of multi-epoch polarimetry studies.  相似文献   

9.
This paper reports the results from three targeted searches of Milagro TeV sky maps: two extragalactic point source lists and one pulsar source list. The first extragalactic candidate list consists of 709 candidates selected from the Fermi-LAT 2FGL catalog. The second extragalactic candidate list contains 31 candidates selected from the TeVCat source catalog that have been detected by imaging atmospheric Cherenkov telescopes (IACTs). In both extragalactic candidate lists Mkn 421 was the only source detected by Milagro. This paper presents the Milagro TeV flux for Mkn 421 and flux limits for the brighter Fermi-LAT extragalactic sources and for all TeVCat candidates. The pulsar list extends a previously published Milagro targeted search for Galactic sources. With the 32 new gamma-ray pulsars identified in 2FGL, the number of pulsars that are studied by both Fermi-LAT and Milagro is increased to 52. In this sample, we find that the probability of Milagro detecting a TeV emission coincident with a pulsar increases with the GeV flux observed by the Fermi-LAT in the energy range from 0.1 GeV to 100 GeV.  相似文献   

10.
The Cygnus region of the Milky Way is prolific in star formation and presents extended diffuse γ-ray emission with a few γ-ray point sources. Among them is 3EG J2020+4017, the brightest of the unidentified EGRET sources, positionally coincident with the supernova remnant G78.2+2.1. Even though the EGRET and multi-wavelength data have not provided a conclusive identification for this γ-ray loud, but otherwise faint object, the evidence favors a pulsar like source. The EGRET photon data lack the signal-to-noise ratio required for a period search, but will serve as a valuable timing baseline extension in the case that GLAST confirms the pulsar nature of the γ-Cygni source. Work sponsored by CONACyT grant SEP-2003-C02-42611.  相似文献   

11.
A54 Cosmic Ray Acceleration in Galactic Wind Shocks A71 Detection of Ultra‐High Energy Cosmic Rays and Neutrinos with LOFAR A80 Status of the gravitational‐wave detector GEO600 A87 Recent Results and Future of the MAGIC gamma‐ray telescope A92 Cosmic ray detection with the radio technique A93 Cosmic Ray Physics with IceCube A94 The resonance‐like gamma‐ray absorption processes for use in astrophysics A97 Geometry reconstruction of air shower fluorescence detectors revisited A102 Supermassive Binary Black Holes & Radio Jets A108 Muonic Component of Air Showers Measured by KASCADE‐Grande A110 Towards new frontiers: observation of photons with energies above 1018 eV A112 The IceCube Neutrino Telescope A114 The ground‐based gamma‐ray observatory CTA A116 IceCube: Recent Results and Prospects A117 Particle Physics with AMANDA and IceCube A118 Altitude dependence of fluorescence light emission by extensive air showers A120 Neutrino‐induced cascades in AMANDA & IceCube A122 Enhancement Telescopes for the Pierre Auger Southern Observatory in Argentina A123 Proton spectra from relativistic shock environments in AGN and GRBs A124 The Baikal Neutrino Telescope – Physics Results A127 Searches for point‐like sources of cosmic neutrinos with IceCube A128 The MAGIC/IceCube Target of Opportunity Programtest run A131 Supernova detection with IceCube: from low to high energy neutrinos A132 Measurement of the UHECR energy spectrum from hybrid data of the Pierre Auger Observatory A133 Extension of IceCube at Lower Energy: the Use of AMANDA as Nested Array and the Future Prospectives A135 Searching for neutrinos with the Pierre Auger Observatory A138 Search for Transient Emission of Neutrinos in IceCube A140 Acoustic Neutrino Detection in Antarctic Ice A159 AMANDA limits on the diffuse muon‐neutrino flux: physics implications A164 Investigation of the Radio Emission of Cosmic Ray Air Showers with LOPES A168 The Northern Site of the Pierre Auger Observatory A170 Shower reconstruction and size spectra with KASCADE‐Grande data A171 Neutrinos from Gamma Ray Bursts: predictions and limits from AMANDA‐II data A172 Simulation study of shower profiles from ultra‐high energy cosmic rays A174 Upper limit to the photon fraction in cosmic rays above 1019 eV from the Pierre Auger Observatory A176 Astrophysics at MeV energies A180 Study of the Cosmic Ray Composition above 0.4 EeV using the Longitudinal Profiles of Showers observed at the Pierre Auger Observatory A185 Backgrounds for UHE horizontal neutrino showers A186 The Front‐End Cards of the Pierre Auger Surface Detectors: Test Results and Performance in the Field A187 Monte Carlo Studies for MAGIC‐II A194 Measuring the proton‐air cross section from logitudinal air shower profiles A195 The UHECR energy spectrummeasured at the Pierre Auger Observatory A203 Highlights of Observations of Galactic Sources with the MAGIC telescope A207 Adesign study for a 12.5 m ∅︁ Imaging Air Cherenkov Telescope for ground‐based γ ‐ray astronomy A210 The Future of Long‐Wavelengths Radio‐Astronomy in Germany: LOFAR and GLOW A211 Online Monitoring of the Pierre Auger Observatory A216 OPTIMA‐Burst – Catching GRB Afterglows (and other Transients) with High Time Resolution A227 JEM‐EUSO mission A232 Rapid Variations in AGN: Clues on Particle Accelerators A235 Systematic search forVHEgamma‐ray emission from X‐ray bright high‐frequency peaked BL Lac objects A237 Prospects for GeV Astronomy in the Era of GLAST A241 Improvements of the energy reconstruction for the MAGIC telescope by means of analysis and Monte Carlo techniques A265 Discovery of VHE γ ‐rays from BL Lacertae with the MAGIC telescope A266 Results of two observation cycles of LS I+61°303 with the MAGIC telescope A267 Wide Range Multifrequency Observations of Northern TeV Blazars A269 Diffusive and convective cosmic ray transport in elliptical galaxies  相似文献   

12.
HAGAR, an array of seven atmospheric Cherenkov telescopes located at Hanle in Himalayas, has been observing VHE gamma ray sources since September 2008. Taking advantage of the high altitude location, HAGAR could achieve an energy threshold of about 200 GeV. Several astronomical sources, mostly pulsars and blazar class active galactic nuclei, have been observed in the last nine years. Pulsations from Crab pulsar and emission from blazars Mkn 421 and Mkn 501 has been detected successfully. Details of HAGAR telescope array will be given and some important results will be discussed. Also the future plans will be described briefly.  相似文献   

13.
研究表明活动星系核的高能γ射线辐射和低频射电辐射有着某些内在的联系。EGRET已检测到66 颗可信度很高的活动星系核。而这些高能的活动星系核有部分缺少足够的射电图象观测。为研究这些河外剧变源的射电辐射性质及致密结构,并研究活动量系核射电喷流弯曲与高能辐射的内在联系。我们利用国际欧洲VLBI网,英国的MERLIN 和美国的VLA对近20 颗γ射线活动星系核进行了观测。本文给出部分高能γ射线活动星系核在8 .5GHz的VLA 观测图象。  相似文献   

14.
The field of Very High Energy (VHE) gamma ray astronomy using the Atmospheric Cerenkov Technique has entered an interesting phase with detection of various galactic and extragalactic sources. Among galactic sources, only the Crab nebula has been established as a standard candle. Most observations on pulsars are in agreement as to the necessity for the GeV spectra to steepen at < 200 GeV. While the Imaging method for increase of sensitivity has been successful with many results, an alternate technique —Wavefront Sampling Technique- is also being used by an increasing number of experiments. The recently commissioned experiment at Pachmarhi (PACT) in India is presented as an example of this technique. Preliminary results from this experiment show detection of VHE γ-ray emission from (a) the Crab nebula at a high significance and (b) Crab and Geminga pulsars at > 1.5 TeV which could be the second component of the Outer Gap pulsar models.  相似文献   

15.
We study collective wind configurations produced by a number of massive stars, and obtain densities and expansion velocities of the stellar wind gas that is to be target, in this model, of hadronic interactions. We study the expected γ-ray emission from these regions, considering in an approximate way the effect of cosmic ray modulation. We compute secondary particle production (electrons from knock-on interactions and electrons and positrons from charged pion decay), and solve the loss equation with ionization, synchrotron, bremsstrahlung, inverse Compton, and expansion losses. We provide examples where configurations can produce sources for GLAST satellite, and the MAGIC, HESS, or VERITAS telescopes in non-uniform ways, i.e., with or without the corresponding counterparts. We show that in all cases we studied no EGRET source is expected.  相似文献   

16.
A major legacy of the EGRET experiment aboard the Compton Gamma-Ray Observatory (CGRO) is the detection of a large number of unidentified Gamma-ray sources. Out of the 271 EGRET sources are 170 not identified yet [Hartman et al. ApJS (123) (1999) 79]. To provide additional information on these unidentified EGRET sources, we derived simultaneous MeV fluxes or flux limits for each source by analyzing the contemporaneous COMPTEL data. Then we compare these MeV fluxes to the extrapolations of the published EGRET spectra. Our results can be grouped into 4 categories [Zhang et al. A&A (421) (2004) 983]: (1) non-constraining upper limits (∼120 sources), (2) hints (> 2 sigma) or detections with consistent MeV fluxes (∼16 sources), (3) enhanced MeV emission (2 sources), and (4) constraining MeV flux limits, requiring a spectral break (∼22 sources). In summary, for about 40 of the unidentified EGRET sources we can provide supplementary spectral information in the neighboring gamma-ray band, which – together with other source parameters – might provide clues to the underlying source nature.  相似文献   

17.
Radio telescopes are a scarce resource designed to provide experimental data for astrophysical research, and various studies have focused on the design of observing schedules that make optimal use of available telescope time. We consider strategies for minimising the time required to observe a fixed set of pulsars, which provides an excellent example of scheduling in an unpredictable environment. First, owing to scintillation, the intensity of a pulsar signal is variable and random; therefore, the decision to abort or prolong an observation can be made only after some fraction of the scheduled observation has been completed. Second, observations may be interrupted by radio frequency interference or when the source sets below the horizon. Some sources are visible for more or less time depending on their declination and the latitude of the observing telescope. Formulating the problem in these terms leads to a highly dynamic shortest path problem with uncertainty. Unlike other documented telescope scheduling approaches, we demonstrate how a simple earliest setting policy achieves sets of pulsar observations in a rather short timespan. The policy is fast to apply due to a novel algorithm that pre-calculates the subset of next candidates before the end of the current integration. Our simulation also clarifies that the uncertainty arising from the scintillation (signal strength) encountered on arrival adds significantly to the variation in overall durations and that different hourly start times can favour or hamper the progress of a set of observations.  相似文献   

18.
LS I +61 303 has been detected by the Cherenkov telescope MAGIC at very high energies, presenting a variable flux along the orbital motion with a maximum clearly separated from the periastron passage. In the light of the new observational constraints, we revisit the discussion of the production of high-energy gamma rays from particle interactions in the inner jet of this system. The hadronic contribution could represent a major fraction of the TeV emission detected from this source. The spectral energy distribution resulting from pp interactions is recalculated. Opacity effects introduced by the photon fields of the primary star and the stellar decretion disk are shown to be essential in shaping the high-energy gamma-ray light curve at energies close to 200 GeV. We also present results of Monte Carlo simulations of the electromagnetic cascades developed very close to the periastron passage. We conclude that a hadronic microquasar model for the gamma-ray emission in LS I +61 303 can reproduce the main features of its observed high-energy γ-ray flux.   相似文献   

19.
We develop a numerical code for simulating the magnetospheres of millisecond pulsars, which are expected to have unscreened electric potentials due to the lack of magnetic pair production. We incorporate General Relativistic (GR) expressions for the electric field and charge density and include curvature radiation (CR) due to primary electrons accelerated above the stellar surface, whereas inverse Compton scattering (ICS) of thermal X-ray photons by these electrons are neglected as a second-order effect. We apply the model to PSR J0437-4715, a prime candidate for testing the GR-Electrodynamic theory, and find that the curvature radiation spectrum cuts off at energies below 15 GeV, which are well below the threshold of the H.E.S.S. telescope, whereas Classical Electrodynamics predict a much higher cutoff near 100 GeV, which should be visible for H.E.S.S., if standard assumed Classical Electrodynamics apply. GR theory also predicts a relatively narrow pulse (2φ L ∼ 0.2 phase width) centered on the magnetic axis, which sets the beaming solid angle to ∼0.5 sr per polar cap (PC) for a magnetic inclination angle of 35 relative to the spin axis, given an observer which sweeps close to the magnetic axis. We also find that EGRET observations above 100 MeV of this pulsar constrain the polar magnetic field strength to B pc < 4× 108 G for a pulsar radius of 10 km and moment of inertia of 1045 g cm2. The field strength constraint becomes even tighter for a larger radius and moment of inertia. Furthermore, a reanalysis of the full EGRET data set of this pulsar, assuming the predicted pulse shape and position, should lead to even tighter constraints on neutron star and GR parameters, up to the point where the GR-derived potential and polar cap current may be questioned.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号