首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用温江观测站边界层塔和探空获取的观测资料,从地表物理量的日变化、边界层的垂直结构及逐日变化这些方面分析该站夏季边界层特征,得到以下结论:(1)地表各物理量都具有明显的日变化特征,呈现一峰一谷的演变状态,其中地表热通量、动量通量、气温以及风速的峰值皆出现在午后,谷值出现在凌晨,湿度与气温日变化是反位相的。(2)近地层低层大气气温在早晚时段,随高度的增加而上升,呈逆温状态;午间时段随高度的增加而下降。9 m以下大气在午后的比湿梯度最大。风速值随着高度的增高而增大,风切变随着高度的增高而减小。(3)探空观测的边界层垂直结构显示:夏季温江站早晚边界层大气层结稳定,而午后表现为典型的混合边界层特征。大气温/湿度差异随高度增长而降低,各个时次温/湿度的差异都主要集中边界层低层,越靠近地面大气温/湿度差异越突出。8:00的温度最低,14:00最高。14:00的大气比湿最小,2:00和20:00较大。近地层风速随高度增长较快,在离地2~300 m左右高度达到一个极值,4个时次的风速差异不大。(4)地表温度、短波辐射、感热通量对边界层的高度和降水都有一定的影响。  相似文献   

2.
董保举  徐安伦  苏锦兰 《气象》2023,49(11):1405-1413
基于大理国家气候观象台苍山-洱海梯度观测系统2011—2020年湿季小时降水资料,分析山顶、山腰和坝区3个站的降水日变化特征。结果显示:降水量日变化,坝区站呈现单峰型,山腰站和山顶站则是双峰型;降水频次日变化,坝区站和山顶站为单峰型,山腰站日变化比较平缓;各时次的降水量、降水频次基本随海拔高度的增加而增多;降水强度日变化,山顶站为双峰型,坝区站和山腰站波动较大,午后为小值区,夜间为大值区,3个站在14:00—17:00的降水强度相差不大,而其他时段山腰站和坝区站的降水强度比山顶站大。夜间降水量在持续时间2~16 h是大值区,随海拔的增加降水量大值区持续时间较长;白天降水量在持续时间小于6 h是大值区,随海拔的增加,大值出现的时间向后移。降水频次在持续时间小于6 h,3个站在白天、夜间分别有一个大值区,而持续时间7~18 h的只有山顶站夜间有大值区;坝区站和山顶站夜间降水频次大于白天降水频次,山腰站白天、夜间降水频次相差不大。长历时(中历时、短历时)的累计降水量、降水频次随海拔高度的增加而增大(减小);3个站长历时降水量(长历时降水频次)对总降水量(总降水频次)的贡献最大,贡献最小的是短...  相似文献   

3.
利用唐山2006—2013年区域自动站降水资料,分析了夏季降水和短历时强降水的日变化特征。结果指出,与一般性降水相比,短历时强降水更具夜间多发性,夜间降水量占总降水量的66.4%,降水量和降水频次日变化呈单峰结构,峰值出现在凌晨,谷值出现在午后,降水强度呈双峰结构,峰值出现在午后和凌晨,且8 a间夜间短历时强降水呈上升趋势。短历时强降水日变化特征地区差异较大,东北部出现频次最多,西南部频次最少、降水强度最大。唐山东北部呈簸箕状,西北东三面环山,强降水过程多东南风,迎风坡抬升加强上升运动,使其出现频次明显偏多;西南部临海,水汽条件比东北部好,故降水强度最大。东北部午后16时(北京时)的降水次峰值与西南部凌晨04时的峰值成因与海陆风昼夜变化关系密切。  相似文献   

4.
利用2016—2020年丽水市358个区域自动气象站逐日气温、相对湿度、风速等观测资料,使用人体舒适度评价指标,应用数理统计方法研究丽水山地海拔对人体舒适环境的影响,从而对不同季节丽水山地人体舒适环境进行区划。结果表明:丽水山地年平均人体舒适度指数为586,属于“凉爽,较舒适”等级。人体舒适度指数随海拔的升高而降低,海拔每上升100 m,年平均人体舒适度指数下降08;盛夏7—8月人体舒适度指数递减率增至10/100 m,冬季降至06/100 m。夏季海拔约300 m以上区域人体感觉“较舒适”,其中盛夏7—8月海拔约800~1 800 m感觉“舒适”;春、秋季海拔约1 500 m以下感觉“较舒适”,500 m以下低海拔山区和平原地区人体感觉“舒适”;冬季海拔约1 500 m以上的高山区域表现为“冷”。  相似文献   

5.
珠穆朗玛峰北坡地区的气温分布及其垂直梯度分析   总被引:1,自引:0,他引:1  
在资料比较稀少的珠穆朗玛峰北坡地区进行气象观测对于研究该地区的气候变化及其对冰川变化的影响具有重要意义.利用不同海拔(5 207,5 550,5 792和5 955 m)的4个自动气象站和高空探测资料,分析了珠穆朗玛峰北坡近地面和自由大气的温度分布状况及其梯度变化特征.结果表明,年平均日变化气温5 207 m站的升温速率最快,5 550 m站次之,5 792m和5 955m站最小,4个站月平均最高(低)气温分别为5.7℃(-9.3℃)、4℃(-6.5℃)、1.4℃(-14.8℃)和1.3℃(-15.4℃);气温递减率有明显的季节变化特征,最大(小)值出现在1月(3月),其值约为1.07℃·(100 m)-1(0.12℃·(100m)-1),年(春、夏、秋季)平均日变化幅度白天大、夜晚较小,冬季全天比较平缓,夏季在00:00-09:00(北京时)出现正值,其他季节全天皆为负值;自由大气的温度递减率值大部分都在0~1℃·(100 m)-1之间,海拔5 200~6 000m之间的平均温度递减率值为0.78℃·(100m)-1.  相似文献   

6.
利用广东省惠州市区2013—2016年逐日、逐时的环境和气象资料, 研究了珠江三角洲(简称“珠三角”)东侧惠州市臭氧污染特征及其与气象条件关系。结果表明:惠州市臭氧污染具有明显的月和季节变化特征, 10月臭氧平均浓度最高, 臭氧超标日和污染日主要出现在7—10月。惠州市臭氧浓度日变化呈单峰变化, 06—08时最低, 最大值出现在午后14—15时。臭氧浓度变化和气象条件关系密切, 低浓度臭氧大多出现在气温较低、相对湿度和风速较大、云量较多伴有降水、日照时数较小的天气, 臭氧浓度超标多出现在气温较高、相对湿度和风速较小、云量较少一般无降水、日照充足的天气。惠州市臭氧超标主要出现在地面和低空偏西风下, 这可能与惠州市处于珠三角城市群下风向的区域污染输送有关。   相似文献   

7.
选用昆仑山北部2016—2020年6—8月14个国家气象站、240个加密区域自动气象站逐小时降水资料,针对“季-月-日-时”时间尺度,以沿海拔高度梯次下降划分的高山区、中山区、低山区和平原区为空间尺度,分析昆仑山北部夏季降水多尺度时空变化特征。结果表明:(1)近5 a昆仑山北部夏季平均降水358.5 mm,小时降水和小时强降水频次分别为301次和74次;日降水极值95.4 mm出现在低山区,小时降水极值64.0 mm出现在平原区。(2)夏季和6—8月逐月降水、平均日降水和小时降水、小时降水频次5个要素特征量均呈“南多北少”的空间分布特征,均随海拔梯次下降而减少;最大小时降水则为反相分布,随海拔梯次下降而增多,小时强降水更易出现在海拔较低的低山区和平原区。(3)夏季降水日变化特征显著,中午至前半夜小时降水的大值中心随时间逐渐偏向低海拔区,大值中心由南向北偏移;小时降水的峰值时间和降水增强时段均随海拔梯次降低而后延,4类区域小时降水峰值均在白天出现,其中低山区和平原区峰值发生在午后。低山区和平原区午后强对流天气造成的短时强降水及其引发的中小河流山洪、滑坡、泥石流等地质灾害是防范重点。  相似文献   

8.
利用西安1951—2019年8—10月气象要素时、日值资料,对第十四届全国运动会、全国第十一届残运会暨第八届特奥会前后西安的气温、降水、风和相对湿度等气象要素的平均状况、极值及变化特征等进行了统计分析。结果表明:全运会期间西安的温湿条件适宜。9月15—27日,平均2~3 d会出现1次降雨,雨量接近中雨级别;降水日各时次降水发生频率变化不大,但降水量日变化明显,07—12时较大,21—06时相对较小。全运会期间西安日最大风速的变化较大,主要以东北风和西南风居多;平均风速日变化较明显,白天大,夜间小。全运会期间西安高温、暴雨、沙尘、大雨、雷暴等高影响天气事件出现概率较小,但霾和中等以上降雨事件出现概率相对较大。  相似文献   

9.
利用在青藏高原东南缘云南大理点苍山-洱海间不同海拔高度设立的自动气象观测站资料,分析了2012年1月1日—2014月12月31日的风向、风速、气温、相对湿度和气压等气象要素的立体变化特征,得出:1)不同海拔高度风速日变化均呈单峰型分布,海拔高度及地形对风速影响较大,海拔2640.0 m位于东西风局地环流高度位置。海拔1990.5~2640.0 m都存在东西风、南北风转化的日变化。2)气温日变化是单峰型分布,最小值出现在日出后,最大值出现在午后至日落前。3)相对湿度日变化是单峰型分布,海拔3520.0 m及以上的相对湿度最大值出现在22:00,最小值出现在11:00,而海拔1975.4~2640.0 m最大值出现在07:00-08:00,最小值出在15:00-17:00。4)气压日变化为双峰双谷型,第一个峰值出现在中午前,第二个峰值出现在午夜;第一个谷值出现在日出前,第二个谷值出现在日落。探讨了云南大理点苍山-洱海不同海拔高度气象要素日变化特殊分布是由于地形环境、水陆分布以及太阳辐射分布差异造成的,为今后研究高原复杂下垫面的大气结构、地气交换及局地环流时空变化特征提供重要依据。  相似文献   

10.
利用宜昌2007年12月10-25日的加密观测资料,分析了两次低值系统经过宜昌时大气边界层的温湿风廓线结构及其日变化特征。结果表明:位温廓线具有明显的日变化特征,对流边界层在白天出现和发展,其高度可达600m,而稳定边界层在夜间出现和发展,其高度可达300m,降水会抑制对流边界层和稳定边界层的发展;湿度廓线结构及其日变化与对流边界层的发展有关,总体上湿度随高度减小,贴近地面的薄层湿度随高度减小较快,而混合层内湿度随高度变化较小,出现降水时,近地层的湿度有明显增加,大气边界层内湿度随高度快速平稳减小;风速廓线结构比较复杂,总体上风速随高度增大,在大气边界层低层有时会出现一个风速极大值,风速廓线没有明显的日变化特征,大气边界层内风向变化较大,但以偏东风为主。  相似文献   

11.
利用WRF模式中的UCM+AH城市冠层方案,以2005年8月两个晴天为天气背景,对比研究了1993年与2005年不同下垫面情况下,沈阳市城市扩张对近地层风热环境及边界层的影响。结果表明:UCM+AH方案能够较合理准确地模拟出城市范围的2 m气温与10 m风速的日变化特征,且对2 m气温的模拟效果要优于10 m风速;模拟2 m气温的日较差偏大,模拟10 m风速系统性偏高0.5—1.0 m·s-1;城市土地扩张后,城区普遍增温,且夜间增温幅度较大,扩建城区夜间最大增温能达到7℃,老城区在夜间增温幅度最大可达3℃,上风向增温幅度较大;城区日间增温不明显,在0—1℃;城市土地扩张后,老城区风速普遍减小,但减小值1 m·s-1;扩建城区风速减小近1 m·s-1,城区内可能出现的高温辐合中心对周围近地层风速有加速作用;城市扩张对边界层最显著的影响体现在午后,城区的扩张增大了湍流动能的影响范围,湍流动能在数值上增加0.2—0.3 m2·s-2;扩建城区上空的边界层高度在14时抬升100—200 m,且下风向边界层内部的局地环流与垂直上升运动增强。  相似文献   

12.
四川盆地边缘山地强降水与海拔的关系   总被引:1,自引:0,他引:1  
周秋雪  康岚  蒋兴文  刘莹 《气象》2019,45(6):811-819
利用四川盆地1666个站点2011—2015年4—10月的逐小时降水资料及高精度格点海拔高度资料,对降水特征与海拔高度的变化关系进行详细分析,研究发现:(1)汛期总降水量、总雨日、小雨日、中雨日随海拔高度升高而增加,但降水量与雨日随海拔的增长方式并不相同,降水量显著增长区主要集中在200~1200 m,当海拔超过1200 m时降水量迅速减少;大雨日及暴雨日在海拔超过1200 m后也迅速减少。(2)盆地西北部、西南部沿山一带的暴雨日主要由强小时雨强贡献,而盆地东北部的暴雨日主要受持续性降水影响。(3)四川盆地复杂地形对降水的日变化有较为显著的影响,小时雨量及短时强降水频次峰值出现时间均随着海拔高度升高而提前,而短时强降水首次出现时间则随海拔高度升高而推迟。  相似文献   

13.
基于昌吉市2008—2015年逐时自动降水资料,分析了主汛期(5—8月)降水日变化特征。结果表明,降水主要集中在夜间21:00至翌日03:00,最大值出现在02:00,最小值出现在14:00;逐时降水频次为明显的单峰型,降水易发生在21:00至翌日08:00,降水频次的高峰值出现在01:00,降水最不易产生于午后15:00至18:00;降水强度变化的波动性较大,大值区出现在21:00至翌日02:00和午后15:00至19:00,最高值出现在18:00,最低值出现在04:00至08:00;在≥0.1 mm、≥1 mm和≥3 mm的逐时降水频次中,夜间降水频次较白天高,≥0.1 mm的降水出现次数较多;降水主要以夜雨,且以短时间(1—4h)的降水为主,贡献率最大的是持续7h的降水,最小的为12h;总云量和低云量的变化与降水量成显著正相关关系。  相似文献   

14.
利用南极长城站1985—2014年所获取的地面常规气象观测资料,对其气温、风和降水变化特征进行分析,结果表明:长城站年平均气温为-2.2℃,气候变化趋势率为0.079℃/10a,近30a长城站气温升高了0.24℃,秋季气温增速最大。年平均风速为7.3m/s,最多风向为ESE;大风天气多,年平均大风日数为133d,冬季大风日数(13d)较其它季节多,春季平均风速(7.9m/s)较其它季节大,大风主要风向集中出现在N—W、S—E两个方向区间。降水主要以雪和雨夹雪为主;月平均降水量45.5mm,降水日数为25d,降水日数无显著的季节性变化;夏季降水量呈减少趋势,其它三季降水量呈增多趋势;年降水量为546.5mm,年降水日数为296d,降水量变化趋势与以往结论相左,近30a长城站的降水量呈增多趋势,气候变化趋势率为41.8mm/10a。  相似文献   

15.
梅里雪山地区是中国地形起伏最大的地区之一,其气候环境复杂多变、空间分异特征显著,对区域气温和降水的系统分析有助于揭示区域内冰川变化的原因和水文循环过程。站点观测的缺乏和再分析资料的低空间分辨率是精细刻画该地区气象条件的主要制约因素。研究中首先基于有限站点观测,采用尺度因子法和月尺度的回归校正对ERA5-Land产品进行校准;然后,考虑气温和降水的海拔效应,采用Anusplin插值的方式对校准后的结果进行统计降尺度。最终获得了梅里雪山地区近30年(1990—2020年)1 km空间分辨率的气温、降水数据,并以此分析了这一地区降水、气温的时空异质性及其在不同海拔梯度上的表现特征。结果表明,区域气温以0.15℃/(10 a)的速率呈显著上升趋势,且各季节升温的幅度及分布范围各异;降水则以-41.19 mm/(10 a)的速率呈显著下降趋势,整个区域呈“变暖变干”的倾向。区域增温具有明显的海拔依赖性,海拔低于4000 m和>5000 m时,增温不随海拔变化而变化,当海拔处于4000~5000 m时,增温幅度随海拔升高而增加。区域降水也具有显著的海拔梯度效应,当海拔<5000 m时,西坡降水随海拔的升高而减少,当超过该海拔后降水随海拔升高而增加;东坡降水始终随海拔升高而增加。梅里雪山气候变化的时空分异特征是大气环流背景和复杂地理环境共同作用的结果。区域持续的变暖及降水的减少可能会进一步加重该区冰川水资源的流失。  相似文献   

16.
利用2009—2018年冬季北京地区200多个自动气象站逐时10 m风速、风向观测数据,分典型区域(山区、山区与平原过渡区、平原区、城区)研究北京地区冬季近地面风的精细特征,并使用有完整记录的2 a(2017和2018年)冬季延庆高山区不同海拔高度10 m风逐时观测数据,多视角分析高山区不同海拔高度近地面风的特征和成因,以深刻认识北京地区复杂地形条件下冬季近地面风的特征和规律。结果表明:(1)北京地区冬季近地面平均风受西部北部地形、城市下垫面粗糙度和冷空气活动共同影响,平均风速沿地形梯度分布,山区高平原低,平原中又以城区风速最小;盛行西北风和北风,在城区东、西两侧盛行风出现扰流,在山区和过渡区一些地方还存在与局地地形环境明显关联的其他盛行风向。(2)4个典型区域冬季近地面风速日变化均表现为白天风速大于夜间,午间风速最大的“峰强谷平”单峰特征,这一特征的稳定性在城区高、山区低。(3)4个区域冬季弱风(< 1 m/s)频率为31%—42%,城区较高、山区较低;强风(> 10.8 m/s)频次则是山区多、城区少,强风风向主要表现为偏西—偏北,与冷空气活动密切关联;城区、平原区和过渡区偏南风频率均为极小,暗示北京“山区—平原”风模态在冬季是“隐式”的、不易被直接观测到。(4)近地面风的水平尺度代表范围在延庆高山区高海拔处明显大于低海拔处,海拔1500 m附近(平均的边界层顶高度)是延庆高山近地面风速日变化特征的“分水岭”,低于该海拔高度时近地面风速日变化表现为前述“峰强谷平”单峰特征,而高于该海拔高度时近地面风速日变化则呈现相反特征,即夜间大白天小、午间最小的“峰平谷深”特征,这是由边界层湍流活动的日变化及伴随的低层自由大气动量向边界层内下传所致。(5)延庆高山近地面风速大体上随观测高度而增大,高海拔站点日平均风速数倍于低海拔站点。白天—前半夜,海拔约2000 m的站点冬季盛行偏西风,风向变化不大,但风速为2—12 m/s;1000 m左右的低海拔站则风速比较稳定(< 6 m/s),风向从午间至傍晚相对多变。   相似文献   

17.
基于2016年6月21日—7月31日温江站边界层塔和加密探空观测获取的资料,对比分析了该站有雨日和无雨日的边界层大气特征,得到以下结论:(1)温江站7月的降水量较多,降水时段以凌晨2—6时居多,呈现典型的"夜雨"特征。(2)探空观测资料揭示:无雨日白天边界层呈现典型的混合边界层特征。有雨日边界层大气温度总是小于无雨日,在极大值出现的午后时段二者的差值最大,云作用使得无雨日的底层逆温现象在有雨日呈现为近似恒温现象。有雨日近地层大气比湿日变化幅度低于无雨日,其日变化主要受湍流运动和辐合输送的影响。温江站边界层低层大气的风速总体较小,有雨日的风速明显大于无雨日,且风向更有利于产生降水。(3)边界层塔观测显示:有雨日太阳短波辐射以及各个地表通量的极大值仅为无雨日的2/3左右。白天,有雨日的温度低于无雨日,日变化幅度比无雨日低3℃左右;夜间二者都呈现显著的逆温现象。有雨日白天湿度高于无雨日,夜间则低于无雨日,有雨日湿度日变化幅度比无雨日少2 g/kg;白天,有雨日风速日变幅也略小于无雨日,除了午后时段,有雨日在凌晨2时还出现另外一个风速极大值;有雨日的气压值总是略高于无雨日,白天的气压差值比夜间大。白天,有雨日各个地面观测量的极值出现时间总是比无雨日滞后1 h左右。  相似文献   

18.
基于昌吉市2009—2015年逐时自动降水资料,分析了主汛期(5—8月)降水的日变化特征。结果表明,降水主要集中在夜间21:00至翌日03:00,最大值出现在00:00,最小值出现在14:00;逐时降水频次为明显的单峰型,降水易发生在21:00至翌日08:00,降水频次的高峰值出现在01:00,降水最不易产生于午后14:00—18:00;降水强度变化的波动性较大,大值区出现在21:00至翌日02:00和15:00—19:00,最高值出现在18:00,最低值出现在03:00—08:00;在≥0.1 mm、≥1 mm和≥3 mm的逐时降水频次中,夜间降水频次较白天高,≥0.1 mm的降水出现次数较多;降水主要以夜雨,且以短时间(1~4 h)的降水为主,贡献率最大的是持续7 h的降水。  相似文献   

19.
基于2019年1月~2020年12月西南地区东部大官山降水观测数据,分析了降水随海拔高度的变化特征。结果表明:2019~2020年,大官山降水量总体随海拔升高而增大,多年平均梯度变化率为1.32%/100 m,最大降水高度在海拔1900 m左右。各季降水梯度变化率中,夏、秋季高,冬、春季低,夏季为3.31 mm/100 m,秋季为1.39 mm/100 m,冬季为0.50 mm/100 m,春季为0.67 mm/100 m。各月降水梯度变化率中,7月最高,达5.06 mm/100 m,1月和11月最低,分别为0.23 mm/100 m和0.29 mm/100 m。降水日数和小雨日数随高度的线性变化趋势较明显,平均上升率分别为2.86 d/100 m和2.56 d/100 m。大雨日数在海拔1900 m左右最大,暴雨日数在海拔2500 m左右最大。降水日变化表现出多峰值特征,降水量和降水强度均在06~09时达到最大,降水频率也随海拔高度升高而增大,其中,高海拔降水频率在15时左右达到最大。降水随海拔高度的变化与天气过程密切相关,持续阴雨天气过程降水量的梯度变化较为平缓,暴雨天气过程降水量随海拔的升高而升高,局地阵雨中单次过程降水量与海拔高度相关性不明显。   相似文献   

20.
徐伟  张蕾  漆梁波  刘冬韡  张仕鹏  曹丹萍 《气象》2019,45(9):1262-1277
首先利用上海77个区域站2011—2014年逐时气温和风资料,研究了地面风对上海城市热岛(urban heat island,UHI)的影响及UHI季节性空间分布特征的成因,并从海陆热力差异初步揭示了向岸风对热岛强度(urban heat island intensity,I_(UHI))的影响。其次利用上海7个国家站1961—2014年逐月气温和风资料,研究了上海各季地面风速与I_(UHI)的年际变化关系。结果表明:(1)UHI中心出现的位置与风向、风速有密切的关系,特别是夜间UHI中心有向城市下风方向漂移的特征,其平均漂移风速阈值为2 m·s~(-1),UHI区域随风速增大向城市下风方向延伸,I_(UHI)随风速的增大而减小。(2)上海各季夜间UHI特征明显,尤以秋冬季最为明显,春季次之,夏季最弱。春夏季夜间UHI中心出现在城区西北侧,而秋冬季夜间UHI中心稳定在城区,表现为典型UHI。各季白天均表现为下风方大范围增暖现象。季节地面盛行风决定了UHI季节性空间分布特征。(3)白天向岸风具有抑制升温作用(春夏季最为明显),受其影响气温大值区易出现在内陆地区,春夏季城市偏东区I_(UHI)小于偏西区;夜间向岸风具有抑制降温作用(秋冬季最为明显),受其影响秋冬季东部沿海地区出现明显增暖且城市偏东区I_(UHI)大于偏西区。海陆热力差随季节不同和盛行风风速大小决定了向岸风这种作用的大小及影响范围。(4)各季年平均地面风速与I_(UHI)均呈显著负相关,1961—2014年上海各季风速均表现为递减趋势(春冬季最明显),为I_(UHI)增大提供有利条件。21世纪以来各季I_(UHI)均呈现减缓特征(夏秋季最明显),风速并不是导致I_(UHI)减缓的主要因素。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号