首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Gouldsboro Granite forms part of the Coastal Maine Magmatic Province, a region characterized by granitic plutons that are intimately linked temporally and petrogenetically with abundant co-existing mafic magmas. The pluton is complex and preserves a felsic magma chamber underlain by contemporaneous mafic magmas; the transition between the two now preserved as a zone of chilled mafic sheets and pillows in granite. Mafic components have highly variably isotopic compositions as a result of contamination either at depth or following injection into the magma chamber. Intermediate dikes with identical isotopic compositions to more mafic dikes suggest that closed system fractionation may be occurring in deeper level chambers prior to injection to shallower levels. The granitic portion of the pluton has the highest Nd isotopic composition (εNd = + 3.0) of plutons in the region whereas the mafic lithologies have Nd isotopic compositions (εNd = + 3.5) that are the lowest in the region and similar to the granite and suggestive of prolonged interactions and homogenization of the two components. Sr and Nd isotopic data for felsic enclaves are inconsistent with previously suggested models of diffusional exchange between the contemporaneous mafic magmas and the host granite to explain highly variable alkali contents. The felsic enclaves have relatively low Nd isotopic compositions (εNd = + 2 – + 1) indicative of the involvement of a third, lower εNd melt during granite petrogenesis, perhaps represented by pristine granitic dikes contemporaneous with the nearby Pleasant Bay Layered Intrusion. The dikes at Pleasant Bay and the felsic enclaves at Gouldsboro likely represent remnants of the silicic magmas that originally fed and replenished the overlying granitic magma chambers. The large isotopic (and chemical) contrasts between the enclaves and granitic dikes and granitic magmas may be in part a consequence of extended interactions between the granitic magmas and co-existing mafic magmas by mixing, mingling and diffusion. Alternatively, the granitic magmas may represent an additional crustal source. Using granitic rocks such as these with abundant evidence for interactions with mafic magmas complicate their use in constraining crustal sources and tectonic settings. Fine-grained dike rocks may provide more meaningful information, but must be used with caution as these may also have experienced compositional changes during mafic–felsic interactions.  相似文献   

2.
The Cordillera del Paine pluton in the southernmost Andes of Chile represents a deeply dissected magma chamber where mafic magma intruded into crystallizing granitic magma. Throughout much of the 10x15 km pluton, there is a sharp and continuous boundary at a remarkably constant elevation of 1,100 m that separates granitic rocks (Cordillera del Paine or CP granite: 69–77% SiO2) which make up the upper levels of the pluton from mafic and comingled rocks (Paine Mafic Complex or PMC: 45–60% SiO2) which dominate the lower exposures of the pluton. Chilled, crenulate, disrupted contacts of mafic rock against granite demonstrate that partly crystallized granite was intruded by mafic magma which solidified prior to complete crystallization of the granitic magma. The boundary at 1,100 m was a large and stable density contrast between the denser, hotter mafic magma and cooler granitic magma. The granitic magma was more solidified near the margins of the chamber when mafic intrusion occurred, and the PMC is less disrupted by granites there. Near the pluton margins, the PMC grades upward irregularly from cumulate gabbros to monzodiorites. Mafic magma differentiated largely by fractional crystallization as indicated by the presence of cumulate rocks and by the low levels of compatible elements in most PMC rocks. The compositional gap between the PMC and CP granite indicates that mixing (blending) of granitic magma into the mafic magma was less important, although it is apparent from mineral assemblages in mafic rocks. Granitic magma may have incorporated small amounts of mafic liquid that had evolved to >60% SiO2 by crystallization. Mixing was inhibited by the extent of crystallization of the granite, and by the thermal contrast and the stable density contrast between the magmas. PMC gabbros display disequilibrium mineral assemblages including early formed zoned olivine (with orthopyroxene coronas), clinopyroxene, calcic plagioclase and paragasite and later-formed amphibole, sodic plagioclase, mica and quartz. The early formed gabbroic minerals (and their coronas) are very similar to phenocrysts in late basaltic dikes that cut the upper levels of the CP granite. The inferred parental magmas of both dikes and gabbros were very similar to subalkaline basalts of the Patagonian Plateau that erupted at about the same time, 35 km to the east. Mafic and silicic magmas at Cordillera del Paine are consanguineous, as demonstrated by alkalinity and trace-element ratios. However, the contemporaneity of mafic and silicic magmas precludes a parent-daughter relationship. The granitic magma most likely was derived by differentiation of mafic magmas that were similar to those that later intruded it. Or, the granitic magma may have been contaminated by mafic magmas similar to the PMC magmas before its shallow emplacement. Mixing would be favored at deeper levels when the cooling rate was lower and the granitic magma was less solidified.  相似文献   

3.
造山后脉岩组合与内生成矿作用   总被引:14,自引:2,他引:12  
造山带大规模花岗质岩浆活动之后往往有一期区域性脉岩产出,被称为岩基后岩墙群。这类脉岩具有近同时形成、宽成分谱系和小体积的特点。根据太行山、燕山、东昆仑山、天山等造山带的观察,这类脉岩可以划分成煌斑岩质、玄武质、闪长质(安山质)、花岗闪长质(英安质)和花岗质(流纹质)等5组。前人大多偏重于研究其中基性部分,因而常常将其与大陆裂解相关基性岩墙群混为一谈。岩石地球化学分析表明,虽然同组脉岩不同样品之间可能存在演化关系,不同脉岩组之间很难相互演化。结合近年来有关岩浆过程速率的研究成果,推测这些脉岩是原生或近原生岩浆固结的产物。这意味着区域地温曲线在不同深度同时穿过所有相应原岩的固相线。基于岩浆起源热体制和区域岩石圈岩石学结构分析,笔者曾经指出,这样的岩浆产生条件要求造山带岩石圈拆沉作用。因此,这类岩墙群的形成是区域构造应力场由挤压向伸展转换阶段的产物,可以用来标定造山过程的结束,因而称其为造山后脉岩组合。进一步对比分析表明,这类脉岩组合分布非常普遍,是地球上业已发现的三类区域性岩墙群之一。尽管如此,基于热传递速率的分析,造山后脉岩组合的形成还应当伴随大规模流体活动。由于深部流体中成矿元素的浓度强烈依赖于压力,新的岩石成因模型意味着造山后脉岩组合与成矿作用相伴生。野外检验表明,可以基于露头观察识别成矿流体的通道和成矿元素大规模堆积的场所。因此,造山后脉岩组合不仅可以用来标定区域造山过程结束的时间,也是区域找矿预测的有效标志。  相似文献   

4.
The Tunk Lake pluton of coastal Maine, USA is a concentrically zoned granitic body that grades from an outer hypersolvus granite into subsolvus rapakivi granite, and then into subsolvus non-rapakivi granite, with gradational contacts between these zones. The pluton is partially surrounded by a zone of basaltic and gabbroic enclaves, interpreted as quenched magmatic droplets and mushes, respectively, as well as gabbroic xenoliths, all hosted by high-silica granite. The granite is zoned in terms of mineral assemblage, mineral composition, zircon crystallization temperature, and major and trace element concentration, from the present-day rim (interpreted as being closer to the base of the chamber) to the core (interpreted as being closer to the upper portions of the chamber). The ferromagnesian mineral assemblage systematically changes from augite and hornblende with augite cores in the outermost hypersolvus granite to hornblende, to hornblende and biotite, and finally, to biotite only in the subsolvus granite core of the pluton. Sparse fine-grained basaltic enclaves that are most common in the outermost zone of the pluton suggest that basaltic magma was present in the lower portions of the magma chamber at the same time that the upper portions of the magma chamber were occupied by a granitic crystal mush. However, the slight variations in initial Nd isotopic ratio in granites from different zones of the pluton suggest that contamination of the granitic melt by basaltic melt played little role in generating the compositional gradation of the pluton. The zone of basaltic and gabbroic chilled magmatic enclaves, and gabbroic xenoliths, hosted by high-silica granite, that partially surround the pluton is interpreted as mafic layers at the base of the pluton that were disrupted by invading late-stage high-silica magma. These mafic layers are likely to have consisted of basaltic lava layers and basalt that chilled against granitic magma to produce coarse-grained gabbroic mush. Basaltic and gabbroic magmatic enclaves and gabbroic xenoliths are hornblende-bearing, suggesting that their parent melts were relatively hydrous. The water-rich nature of the underplating mafic magmas may have prevented extensive invasion of the granitic magma by these magmas, owing to the much greater viscosity of the granitic magma than the mafic magmas in the temperature range over which magma interaction could have occurred.  相似文献   

5.
In the Cuthbert Lake region of north-central Manitoba, northeasterly trending ultramafic-mafic dikes, part of the Molson dike swarm, show a range of composition from gabbro to olivine-hornblende pyroxenite to hornblende peridotite. The major dike which is ultramafic in composition is 60 m thick. Olivine and chromian spinel were the earliest cumulus phases formed in a subcrustal magma chamber before the emplacement of the dikes. Orthopyroxene and clinopyroxene were formed following emplacement at about 1120° C. Plagioclase and hornblende were the latest phases to crystallize from the intercumulus melt. Mineralogical and chemical variations across the major dike are interpreted to have resulted from flow differentiation of multiple injections of magma carrying suspended olivine crystals. Olivine phenocrysts changed their compositions from about Fo87 to values ranging from Fo80to Fo73 as a function of the amount of intercumulus melt. The composition of this melt is estimated to have been basaltic. A mafic dike, about 10 m thick and occurring about 20 m away from the main ultramafic dike, is believed to have been formed from magmas that were tapped from an upper layer overlying the olivine-rich zone in a subcrustal magma chamber. Separation must have occurred when clinopyroxene and plagioclase appeared on the liquidus.Geological Survey of Canada Contribution 36486  相似文献   

6.
The Pleasant Bay layered gabbro-diorite complex (420 Ma) formed via repeated injections of mafic magma into a felsic magma chamber. It is dominated by repeating sequences (macrorhythmic units) with chilled gabbroic bases which may grade upward into medium-grained gabbro, diorite and granite. Each unit represents an injection of mafic magma into the chamber followed by differentiation. Increases in Sri and decreases in )Ndi with stratigraphic height indicate open-system isotopic behaviour and exchange between the mafic and felsic magmas. Isotopic variations of whole-rock samples in individual macrorhythmic units do not conform to bulk mixing or AFC models between potential parental magmas. Sr isotopic studies of single feldspar crystals from one macrorhythmic unit indicate that exchange of crystals between the resident felsic magma and mafic influxes was important, that some of the rocks contain feldspar xenocrysts, and that the rocks are isotopically heterogeneous on an intercrystal scale. Xenocryst abundance increases with stratigraphic height, suggesting that crystal exchange occurred in situ. The lack of disequilibrium textures in the xenocrystic feldspar indicates the evolved macrorhythmic magma and resident silicic magma were of a similar composition and likely in thermal equilibrium at the time of crystal transfer. Mafic chilled margins are enriched in alkalis and isotopically evolved compared with mafic dikes (representing the parental melts) and suggest rapid in-situ diffusional exchange following emplacement of individual mafic replenishments.  相似文献   

7.
浙江拔茅破火山岩浆作用:开放体系多机制复合演化   总被引:1,自引:3,他引:1  
拔茅火山杂岩的成分变化范围广泛,包括玄武质,玄武粗安质,粗面安山质,粗面英安质,流纹英安质到流纹质和高硅流纹质岩石都有,它们不是由单一母岩浆演化而来,也不是由单一岩浆房喷发形成的,而是来自多种类型的岩浆房,并经历过复杂的演化过程,为开放体系多机制复合演化,其中早期双峰式基性端元是由上地幔部分熔融形成的,而酸性端无则是地壳物质边熔融边喷发(分离熔融)的结果,作为火山杂岩主体的粗面英安质岩石,其岩浆是在高位主岩浆房内由玄武质岩浆与流纹英安质岩浆混合形成的,发生混合的流纹英安质与玄武质岩浆的比例为57:43,而粗面安山质岩浆则是溶部岩浆房内由玄武质岩浆分离结晶形成的,晚期侵出-侵入的流纹英安质岩穹和高硅流纹斑岩株则分别代表高位次级岩浆房的成分及其硅质帽。  相似文献   

8.
运用岩浆动力学原理探讨庄河地区光明山花岗岩复式岩体岩浆侵位的驱动力、上升通道、通道最小临界宽度和定位过程,指出光明山花岗岩复式岩体是由其岩浆在区域挤压力的作用下,沿由深大断裂所提供的最小临界宽度呈脉状上侵,并在地壳浅部以岩墙扩张的形式定位而成.  相似文献   

9.
The geological setting, ages, petrography and geochemistry of late Pan-African ( 580 Ma) calc-alkaline and tholeiitic dike rocks in the Bir Safsaf igneous complex of south-west Egypt are discussed. These basaltic to rhyolitic dikes intruded contemporaneously and shortly after the intrusion of granitoids. The major and trace element data, Sr and Nd isotope relations, in combination with textural observations, confirm complex interactions between most of the intermediate calcalkaline dike melts and plutonic melts, with different degrees of mixing, assimilation, replenishment and tapping of magma chambers. Trachytic and rhyolitic dikes are strongly differentiated melts from the granitic pluton. The tholeiitic dikes evolved dominantly by fractional crystallization processes. It is inferred that open system and closed system processes operated in calc-alkaline magma chambers, and that the calc-alkaline melts came from a garnet-and amphibole-bearing mantle, modified by a subduction component. Tholeiitic rocks were formed later by fractional crystallization and assimilation processes. Magma ascent of both dike types took place in an extensional environment and the presumed subduction zone has to be seen in connection with the Atmur-Delgo suture zone.  相似文献   

10.
WIEBE  R. A. 《Journal of Petrology》1988,29(2):383-411
The Newark Island Layered Intrusion occurs in the ProterozoicNain anorthosite complex of Labrador. It contains an exceptionalsuite of cumulates ranging from troctolites and gabbros to quartzmonzonites and intermediate hybrid rocks. These layered rocksformed in a chamber that was periodically fed by a wide rangeof basic and acid magmas, the compositions of which are preservedin numerous feeder dikes. Where basic magmas commingled withcooler granitic magma, they commonly formed chilled pillows.Because of periodic injections of both acid and basic magmasthe magma chamber was compositionally stratified for much ofits existence. At times, granitic cumulates formed along thechamber walls while mafic to intermediate hybrid cumulates formedon the floor. Stratigraphic and structural relations indicatethat the magma chamber grew upward during deposition, and thatit evolved from a west-dipping sheet to a north-plunging synform.Three major episodes of expansion can be linked to injectionsof large (e.g., 20km3) volumes of acid magma. The entry of thisacid magma into the chamber disrupted previously formed cumulates,creating enlarged feeders down which resident basic magma collapsed.The resultant structures (troughs) contain strongly chilledpillows of resident basic magma that existed near the bottomof the chamber at the time of acid replenishment.  相似文献   

11.
杨富贵  洪文兴 《矿物学报》1998,18(4):411-416
运用岩浆动力学原理探讨了西准噶尔东部碱性花岗岩浆侵位的驱动力、上升通道、通道最小临界宽度和定位过程。指出:碱性花岗岩体是由其岩浆主要在区域性挤压应力作用下,沿深大断裂以最小临界宽度1.33~301m的脉状上升,并在地壳浅部发生气球膨胀和岩墙扩张.定位于与区内深大断裂有关的次级张性裂隙发育部位后形成的。  相似文献   

12.
Five mafic dike swarms between 30° and 33°45′S were studied for their geochemical signature and kinematics of magma flow directions by means of AMS data. In the Coastal Range of central Chile (33°−33°45′S), Middle Jurassic dike swarms (Concón and Cartagena dike swarms, CMDS and CrMDS, respectively) and an Early Cretaceous dike swarm (El Tabo Dike Swarm, ETDS) display the presence of dikes of geochemically enriched (high-Ti) and depleted (low-Ti) basaltic composition. These dikes show geochemical patterns that are different from the composition of mafic enclaves of the Middle Jurassic Papudo-Quintero Complex, and this suggests that the dikes were injected from reservoirs not related to the plutonic complex. The mantle source appears to be a depleted mantle for Jurassic dikes and a heterogeneous-enriched lithospheric mantle for Cretaceous dikes. In the ETDS, vertical and gently plunging magma flow vectors were estimated for enriched and depleted dikes, respectively, which suggest, together with variations in dike thickness, that reservoirs were located at different depths for each dike family. In the Elqui Dike Swarm (EDS) and Limarí Mafic Dike Swarm (LMDS), geochemical patterns are similar to those of the mafic enclaves of the Middle Jurassic plutons. In the LMDS, east to west magma flow vectors are coherent with injection from neighbouring pluton located to the east. In the EDS, some dikes show geochemical and magma flow patterns supporting the same hypothesis. Accordingly, dikes do not necessarily come from deep reservoir; they may propagate in the upper crust from coeval shallow pluton chamber. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

13.
The Xiangshan volcanic-intrusive complex is composed of rhyolitic crystal tuffs, welded tuffs, rhyodacite, porphyroclastic rhyolitic lava, subvolcanic rocks such as granite porphyry, and late quartz monzonitic porphyry and lamprophyre dikes. We report the first occurrence of a quartz–amphibole schist (QAS) xenolith enclosed within a mafic microgranular enclave (MME) in the Xiangshan volcanic-intrusive complex. The mineralogy of this xenolith consists of amphibole, biotite, quartz, and minor plagioclase. Petrographic and mineral composition studies indicate that the protolith of this xenolith likely originated from the metamorphic basement beneath Xiangshan. The amphibole (actinolite and magnesiohorblende) has been partially replaced by orthopyroxene at 800–1000°C and by diopside at <700°C, according to mineral thermometers; this replacement process may have taken place after the xenolith was trapped by the mafic magma host (now an MME). Studies of the QAS xenolith provide new information on the emplacement history of the mafic magma. The peak metamorphic temperature for amphibole replaced by pyroxene is higher than the crystallization temperature of the subvolcanic magma, which indicates that the heat of pyroxene formation must have been provided by the engulfing mafic melt. This magma must have emplaced to crustal level and trapped the QAS as a xenolith and then injected into the felsic magma. We suggested that the hybridization processes for the major elements of the pristine mafic magma may have been contaminated by crustal rocks to form its present composition of MME before mafic magma injection. However, the hybridization process appears not to have been formed via a single-stage process because various types of MMEs are presented in the Mesozoic magmatic rocks of SE China.  相似文献   

14.
The Pleasant Bay layered gabbro–diorite intrusion, locatedon the coast of Maine between Bar Harbor and Machias, is roughlyoval in plan, measuring 12 km by 20 km. Gravity data, contactrelations, and internal layering suggest that it is basinformin structure with a maximum thickness of {small tilde}3 km.Its roof and upper parts have been lost through erosion. Whereit is in contact with underlying granite, the base of the intrusiontypically consists of strongly chilled gabbro with convex-downwardlobate forms, suggesting that the granite was incompletely solidifiedwhen the gabbro was emplaced. Roughly 90% of the exposed rocksare weakly layered gabbro and mafic diorite, both of which varywidely in grain-size and texture. Layers and lenses of medium-grainedleucocratic diorite to granodiorite are widely intercalatedwith the chilled mafic rocks and commonly contain partly digestedmafic inclusions; they also commonly contain zones of pillow-likebodies of gabbro chilled on all margins. The dioritic rocksare consistently topped by gabbroic layers with chilled lobatebases and commonly appear to feed granitic pipes and diapirsinto overlying gabbro. Much of the intrusion can be subdividedinto hundreds of macrorhythmic units (from 1 to 100 m thick)consisting of basally chilled gabbro that grades upward to dioriteor highly evolved leucocratic silicic cumulates. Basaltic dikesare abundant both in the underlying granite and in the layeredgabbro–diorites; they have appropriate compositions tobe feeders for chilled gabbroic layers in the Pleasant Bay intrusion. The layered rocks of the Pleasant Bay intrusion record hundredsof basaltic injections into a chamber with resident silicicmagma. Small injections produced chilled gabbroic layers andpillows within silicic cumulates. Larger infusions of basalticmagma produced temporary compositional stratification and episodesof double-diffusive convection within the chamber. Althoughfractional crystallization produced compositional variationin much of the gabbro, units that grade from chilled gabbroat the base to highly silicic cumulates at the top provide cumulaterecords of magma stratification and hybridization along a double-diffusiveinterface between basaltic and silicic magmas. The intrusionprovides a superb plutonic record of events that have oftenbeen inferred for silicic eruptive centers. Mafic–siliciclayered intrusions comparable with the Pleasant Bay are morewidespread than has generally been appreciated.  相似文献   

15.
The paper reports the results of integrated geological, petrological, geochemical, and geochronological studies of the Tastau igneous ring complex in the Zaisan orogen of eastern Kazakhstan. Interaction between felsic and mafic magmas has been studied. Hybrid rocks are represented by gabbros and diorites injected into a granitic magma chamber. They occur as dikes and pillow-like and globular mafic bodies variously disintegrated and mixed with host granitoids. The age of synplutonic rocks is 242 ± 20 Ma (U/Pb zircon dating), which is, with regard to analytical error, substantially younger than it was presumed.Mechanisms of interaction between felsic and mafic magmas have been studied. They include mechanical (mingling) and chemical (mixing) interaction, which produce composite mixtures and hybrid rocks. The ratios of mafic to felsic components involved in the formation of intermediate rocks were calculated from major elements by regression analysis and tested with regard to rare and trace elements. The model for mingling includes rapid quenching of the mafic melt when it is injected into the granitic magma chamber, decomposition of crystalline fragments, dispersion of fragments and crystals in the magma chamber under conditions of rapid turbulent flow, and enrichment of felsic magma with femic components to produce monzonitic magmas.  相似文献   

16.
造山后脉岩组合的岩石成因——对岩石圈拆沉作用的约束   总被引:9,自引:3,他引:9  
造山后脉岩组合是在寄主岩基冷却之后形成的,可能是造山带应力场转换的标志。昆仑造山带早中生代末期以及太行山-燕山造山带晚中生代花岗质岩基中广泛出露这种类型的脉岩,可划分为煌斑岩质,玄武质,闪长质,花岗闪长质.花岗质和富硅花岗质等5组。主元素和痕量元素分析表明它们是不同的原生岩浆固结的产物,相互之间不存在重要的分离结晶,同化混染和岩浆混合作用的关系,因而要求软流圈/岩石圈系统不同圈层的源区岩石同时达到部分熔融的条件。结合已有的高温高压实验,区域岩石圈结构和地质事件序列的分析,认为岩石圈拆沉作用是造山后脉岩组合形成的最合理触发机制。简单热模拟表明,软流圈窗顶界埋深达到一定深度时(例如昆仑造山带为82km),可以满足处于不同深度位置的中性麻粒岩,基性榴辉岩和地幔橄榄岩同时发生部分熔融。这时,岩石圈/软流圈系统可以有6~8个产生岩浆的位置。热的软流圈物质快速涌入软流圈窗,不仅触发地幔岩的减压熔融,也可能导致区域构造应力场由挤压转换为伸展,为岩浆的快速侵位创造了条件。所提供的岩石成因模型可以更合理地解释造山后脉岩组合的地质特征,主元素和痕量元素特征,也可以满足同位素体系变异所要求的条件。  相似文献   

17.
张昕  吴才来  陈红杰 《中国地质》2017,44(5):938-958
通常认为,花岗岩体中的花岗岩脉与岩体是同一次岩浆活动的产物,是深部演化的岩浆沿着岩体的裂缝侵入后冷凝形成的。南召岩体位于北秦岭东部,近年来在岩体中发现一条宽约5 m的花岗岩脉。岩脉呈紫红色,斑状结构,斑晶为石英。LA-MC-ICP-MS锆石U-Pb定年得出该岩脉的形成时间为(119.6±0.7)Ma,与岩体的年龄(452.3±6.2)Ma相差很大。锆石Hf同位素测试结果表明,岩脉的源岩可能主要是新生地壳,结合地球化学研究分析得出该岩脉呈现I型花岗岩的特性。该岩脉的年龄、Hf同位素和地球化学特征同邻近的伏牛山岩体相近,推测岩脉的源岩可能和伏牛山岩体的源岩相同。根据研究结果及区域地质构造分析,认为燕山期由于太平洋板块的俯冲作用和陆內拉张作用,导致扬子板块及华北板块沿秦岭造山带形成一系列断裂。岩浆沿着断裂上侵,大部分形成了伏牛山岩体,小部分沿着周围的裂隙侵入形成岩脉,并在侵位的过程中与寄主岩发生物质交换。  相似文献   

18.
Mafic dike–granite associations are common in extensional tectonic settings and important and pivotal in reconstructing crust–mantle geodynamic processes. We report results of zircon U–Pb and hornblende 40Ar-39Ar ages and major-element and trace-element data for mafic dike–granite association from the northern West Junggar, in order to constrain their ages, petrogenesis, and geodynamic process. The mafic dike–granite association was emplaced in the early Devonian. The Xiemisitai monzogranites have high SiO2 contents and low MgO, Cr, and Ni concentrations, suggesting that they were mainly derived from crustal sources and were probably generated by partial melt of the juvenile mid-lower crust. The mafic dikes have low Mg# and Cr and Ni abundances, suggesting that they have experienced significant fractional crystallization. The Xiemisitai mafic dikes contain hornblende and biotite and display negative Nb–Ta–Ti anomalies, enrichment of LREEs and LILEs, and depletion of HREEs and HFSEs, consistent with an origin from a lithospheric mantle metasomatized by subducted slab-derived fluids. In addition, the Xiemisitai mafic dikes are plotted within melting trends with little to no garnet (Cpx: Grt = 6:1) in their source. The La/Yb versus Tb/Yb plot also indicates the presence of less than 1% residual garnet in the source region for the Xiemisitai mafic dikes. Therefore, it can be inferred that the Xiemisitai mafic dikes were generated at a correspondingly shallow depth, mostly within the spinel stability field. The Xiemisitai mafic dikes were most probably generated by the partial melting of the metasomatized lithospheric mantle at relatively shallow depths (<80 km). The Xiemisitai mafic dike–granite association could have been triggered by asthenospheric upwelling as a result of the rollback of the subducted Irtysh–Zaysan oceanic lithosphere.  相似文献   

19.
A Middle Paleozoic tectonothermal event in the eastern Siberian craton was especially active in the area of the Vilyui rift, where it produced a system of rift basins filled with Devonian–Early Carboniferous volcanics and sediments, as well as long swarms of mafic dikes on the rift shoulders. Basalts occur mostly among Middle Devonian sediments and are much less spread in Early Carboniferous formations. The dolerite dikes of the Vilyui–Markha swarm in the northwestern rift border coexist with the Mirnyi and Nakyn fields of diamond-bearing kimberlites. The voluminous dikes and sills intruded before the emplacement of kimberlites. The Mir kimberlite crosscuts a dolerite sill and a dike in the Mirnyi field, while a complex dolerite dike (monzonite porphyry) cuts through the Nyurba kimberlite in the Nakyn field. Thus, the kimberlites correspond to a longer span of Middle Paleozoic basaltic magmatism. The basalts in Middle Paleozoic sediments have faunal age constraints, but the age of dolerite dikes remains uncertain. The monzonite porphyry dike in the Nyurba kimberlite has been dated by the 40Ar/39Ar method, and the obtained age must be the upper bound of the dike emplacement. The space and time relations between basaltic and kimberlitic magmatism were controlled by Devonian plume–lithosphere interaction.  相似文献   

20.
The Kangâmiut dike swarm in West Greenland contains numerous composite dikes with mafic margins and andesitic centers. Internal chilled margins show that the andesitic centers intruded into the middle of the mafic dikes. Major element systematics indicate that the fractionation of olivine, clinopyroxene, plagioclase and Fe–Ti oxides drove the evolution of the Kangâmiut parental magma during its transition from mafic to andesitic compositions. Incompatible trace elements show a marked relative decrease in middle and heavy rare-earth elements (REE) between the mafic margins and the andesitic centers. The decrease in the REE is not explicable by olivine, clinopyroxene, plagioclase and Fe–Ti oxide fractionation or by the fractionation of the accessory phases apatite, zircon or garnet. Rb–Sr and Sm–Nd isotopes from margin and center pairs from these composite dikes are nearly identical indicating that crustal contamination had little to no affect on their evolution. Trace element modeling utilizing the mixing of evolved Kangâmiut magmas and low degree melts derived from partial melting of garnet lherzolite produce excellent fits with the trace element patterns for the andesitic centers. These models suggest that the late-stage evolution of the Kangâmiut dikes included input of mantle melts produced during the end stages of rifting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号