首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
本提出了处理分离的太阳活动体光谱不对称轮廓的一种方法-“多云模型”方法。在某些假设和一定的近似条件下利用本提出的方法可同时得到太阳多个分离活动体的视向速度v,多普勒线宽ΔλD和线心光学深度τ0,源函数S的近似值。章给出了该方法的几个应用实例并进行了讨论。研究表明,计算所得的v和ΔλD的值是较为可靠的,二云模型是处理由两个分离活动体沿视线重叠而产生的不对称轮廓较为有效的方法。  相似文献   

2.
近年来,谭徽松等人以所选用标准星的观测轮廓与Gray的转致轮廓直接卷积,再与被测星观测轮廓比较,由此来测量了一些恒星的自转。在这种方法中,当所选标准星自转速度不严格为零时,将引入误差。本文在标准星速度(vsini)_s较小的条件下,进行函数展开,先后给出了轮廓修正关系式R_0(λ)=R(λ)-α_2(△λ_L)_s~2R″(λ),及速度修正关系式(vsini)_0~2=(vsini)~2+(vsini)_s~2。并估算说明,当标准星速度(vsini)_s<5km/s,而被测星速度vsini>20km/s时,该误差可不考虑。  相似文献   

3.
本文介绍了近几十年来国内外对太阳光谱分析方法研究概况,特别关注对太阳耀斑等活动现象的非对称谱线轮廓的定量或半定量研究。本文简要总结了“多云模型”方法在研究太阳日面和边缘多活动体的极不对称迭加轮廓的应用,可同时导出各个活动体的速度场和其它有关的物理参量的定量或半定量分布。该方法的应用表明它的可靠性和实用性,并检验了方法的有效性。  相似文献   

4.
多云模型’’是处理太阳活动体光谱不对称轮廓的有效方法,本文给出了该方法的一个具体应用实例,利用云南天文台二维多波段太阳光谱仪观测的1989年8月17日耀斑环Hβ波段光谱资料,得到了该耀斑环的视向速度场.  相似文献   

5.
1989年8月17日耀斑环的视向速度场   总被引:2,自引:1,他引:1  
“多云模型”是处理太阳活动体光变谱不对称轮廓的有效方法,本给出了该方法的一个具体应用实例,利用云南天台二维多波段太阳光谱仪观测的1989年8月17日耀斑Hβ波段光谱资料,得到了该耀斑环的视向速度场。  相似文献   

6.
本文对云南天文台1981年5月16日3B级双带大耀斑环(0922UT)的H_α—SSHG光谱资料作了初步的数据处理。采用非线性函数的最小二乘曲线拟合方法,从光谱轮廓求得圆面耀斑环的线心光学厚度τ_0、Doppler宽度Δλ_D平均能源函数S_λ及视向速度V_(11)的二维分布,为处理具有时空序列的光谱资料提供了一种数值方法。计算结果表明,耀斑环系内的物质由环顶沿两环腿向色球层溅落;用色球蒸发模型解释环中的物质来源较为合理。  相似文献   

7.
本文利用Edinburgh/Durham南天星系表的资料,以及UKST巡天第349号天区R片星像的COSMOS机扫描参数,对4个星系团内不同颜色成员星系的分布作了统计分析。结果表明:在这些团的内区,蓝星系在成员星系总数中所占的比例f_b小于团的外围部分;在场区中,f_b之值大于团区的相应值。文末简单讨论了f_b的某些特征的可能含义。  相似文献   

8.
本文提供了日珥发射线光谱分析的一种新方法。它允许源函数随光学深度变化,采用非线性最小二乘拟合,直接从观测轮廓同时确定线心光学厚度τ_0、Doppler宽度△λ_D和源函数变化因子α。 本文用这个方法给出了对文献[1]十个日珥早 Balmer 线的分析结果。这些结果表明,自反变H_α线源函数向日珥内增加,中心源函数是边缘的1.2~2.5倍;忽略源函数的这种变化,将使H_α线τ_0的确定明显偏大;日珥的自吸收减弱亦与源函数变化有关。 对日珥源函数变化的讨论,支持关于日珥辐射激发的主要机制是散射太阳入射辐射的论点。  相似文献   

9.
本文主要从理论上用解析方法讨论日珥视向速度随深度变化对谱线轮廓对称性的影响,得到的结论具有普遍性。第二节的分析表明,日珥的谱线轮廓可表示为二项叠加,其中第一项与源函数无关,只依赖于速度场模型,源函数分布仅通过第二项对谱线轮廓产生影响。然后在源函数不随深度变化的假定下,讨论各种速度场模型的谱线轮廓是否对称。得到的结论为:(1)常源函数与常速度场结合的谱线轮廓为对称轮廓;(2)常源函数与线性对称速度场结合的谱线也是对称轮廓;(3)常源函数与线性非对称速度场结合的谱线轮廓为不对称轮廓。最后,用数值计算对理论分析结果进行了检验。  相似文献   

10.
根据红移定义1+z=λi/λ0i,我们认为类星体红移分布ln(1+z)周期性受两个因素影响。首先,决定类星体红移的主要线(如Lα1216,CIV1549,CIII1909,MgII2798,NeV3426,OII3727,NeIII3868,Hγ4340,Hβ4861,OIII5007)固有波长可能构成0.205的周期性;另外,这些谱线的观测波长进入一定光学窗口对红移有一定限制,在一定条件下,它正好在某些红移出现峰值,并与ln(1+z)=0.205预言峰值一致。我们还在这两个基本考虑下进行模拟取样,发现有明显周期性,定量上证实了我们的基本考虑。本文是类星体红移分布的一种解释,它能说明为什么统计分布不同样品能得到不同的结论。进而,我们认为红移分布周期性不能成为内禀红移观点的观测支持。  相似文献   

11.
Rozelot  J.P.  Godier  S.  Lefebvre  S. 《Solar physics》2001,198(2):223-240
In this paper we first emphasize why it is important to know the successive zonal harmonics of the Sun's figure with high accuracy: mainly fundamental astrometry, helioseismology, planetary motions and relativistic effects. Then we briefly comment why the Sun appears oblate, going back to primitive definitions in order to underline some discrepancies in theories and to emphasize again the relevant hypotheses. We propose a new theoretical approach entirely based on an expansion in terms of Legendre's functions, including the differential rotation of the Sun at the surface. This permits linking the two first spherical harmonic coefficients (J 2 and J 4) with the geometric parameters that can be measured on the Sun (equatorial and polar radii). We emphasize the difficulties in inferring gravitational oblateness from visual measurements of the geometric oblateness, and more generally a dynamical flattening. Results are given for different observed rotational laws. It is shown that the surface oblateness is surely upper bounded by 11 milliarcsecond. As a consequence of the observed surface and sub-surface differential rotation laws, we deduce a measure of the two first gravitational harmonics, the quadrupole and the octopole moment of the Sun: J 2=−(6.13±2.52)×10−7 if all observed data are taken into account, and respectively, J 2=−(6.84±3.75)×10−7 if only sunspot data are considered, and J 2=−(3.49±1.86)×10−7 in the case of helioseismic data alone. The value deduced from all available data for the octopole is: J 4=(2.8±2.1)×10−12. These values are compared to some others found in the literature. Supplementary material to this paper is available in electronic form at http://dx.doi.org/10.1023/A:1005238718479  相似文献   

12.
A two-component theoretical model of the physical libration of the Moon in longitude is constructed with account taken of the viscosity of the core. In the new version, a hydrodynamic problem of motion of a fluid filling a solid rotating shell is solved. It is found that surfaces of equal angular velocity are spherical, and a velocity field of the fluid core of the Moon is described by elementary functions. A distribution of the internal pressure in the core is found. An angular momentum exchange between the fluid core and solid mantle is described by a third-order differential equation with a right-hand side. The roots of a characteristic equation are studied and the stability of rotation is proved. A libration angle as a function of time is found using the derived solution of the differential equation. Limiting cases of infinitely large and infinitely small viscosity are considered and an effect of lag of a libration phase from a phase of action of an external moment of forces is ascertained. This makes it possible to estimate the viscosity and sizes of the lunar fluid core from data of observations.  相似文献   

13.
Using the well-known equation for the normal component of the current which exist near the tangential discontinuity in the plasma in the case of the frozen-in magnetic field, and supposing that the current closes in the ionosphere in the auroral oval in the region 1, one calculates and compares with the data of observations the dependence of the density of the field-aligned current at the level of the ionosphere on the local time.  相似文献   

14.
15.
We calculate the so-called convective term, which shows up in the expression for the angular velocity of the elastic Earth, within the Andoyer formalism. The term emerges due to the fact that the elasticity-caused perturbation depends not only on the instantaneous orientation of the Earth but also on its instantaneous angular velocity. We demonstrate that this term makes a considerable contribution into the overall angular velocity. At the same time the convective term turns out to be automatically included into the correction to the nutation series due to the elasticity, if the series is defined by the perturbation of the figure axis (and not of the rotational axis) in accordance with the current IAU resolution. Hence it is not necessary to take the effect of the convective term into consideration in the perturbation of the elastic Earth as far as the nutation is related to the motion of the figure axis.  相似文献   

16.
Range of values of the Sun's mass quadrupole moment of coefficient J2 arising both from experimental and theoretical determinations enlarge across literature on two orders of magnitude, from around 10-7 until to 10-5. The accurate knowledge of the Moon's physical librations, for which the Lunar Laser Ranging data reach an outstanding precision level, prove to be appropriate to reduce the interval of J2 values by giving an upper bound of J2. A solar quadrupole moment as high as 1.1 10-5 given either from the upper bounds of the error bars of the observations, or from the Roche's theory, is not compatible with the knowledge of the lunar librations accurately modeled and observed with the LLR experiment. The suitable values of J2 have to be smaller than 3.0 10-6. As a consequence, this upper bound of 3.0 10-6 is accepted to study the impact of the Sun's quadrupole moment of mass on the dynamics of the Earth-Moon system. Such as effect (with J2 = 5.5±1.3 × 10-6) has been already tested in 1983 by Campbell & Moffat using analytical approximate equations, and thus for the orbits of Mercury, Venus, the Earth and Icarus. The approximate equations are no longer sufficient compared with present observational data and exact equations are required. As if to compute the effect on the lunar librations, we have used our BJV relativistic model of solar system integration including the spin-orbit coupled motion of the Moon. The model is solved by numerical integration. The BJV model stems from general relativity by using the DSX formalism for purposes of celestial mechanics when it is about to deal with a system of n extended, weakly self-gravitating, rotating and deformable bodies in mutual interactions. The resulting effects on the orbital elements of the Earth have been computed and plotted over 160 and 1600 years. The impact of the quadrupole moment of the Sun on the Earth's orbital motion is mainly characterized by variations of , , and . As a consequence, the Sun's quadrupole moment of mass could play a sensible role over long time periods of integration of solar system models. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
By means of a simple relation between the velocity v of the fluid particle and the velocity vf of the photospheric footpoint of the magnetic field line vz and Bz being respectively the components of v and the magnetic field B normal to the photospheric surface, it is shown formally that through the phtospheric surface the transport of all the quantities attributed to the magnetic field, such as the magnetic flux, the magnetic energy and the helicity, is independent of vz, and vf is the only kinematical quantity on which the transport depends. In addition, in the neighborhood of the neutral line the velocity vl of the moving curve of constant Bz is found to be equal approximately to the component of v or vf in the direction of vl. Since vl can be measured or extimated, so can the components of v and vf near the neutral line.  相似文献   

18.
When the K-corona is formed by the scattering of photospheric radiation from free electrons, the Fraunhofer lines are greatly broadened by the thermal motions of the hot electrons. This paper discusses the possibility of measuring the coronal electron temperature from the residual depressions in the K-coronal spectrum. If the ratio of the intensities at 4100 Å and 3900 Å can be measured to an accuracy of ±1%, the coronal temperature can be inferred to an accuracy of ±0.2 MK. The temperature of a coronal inhomogeneity may also be measured by this method, provided the position angle is known.Now at Fraunhofer Institute, Freiburg, Germany.  相似文献   

19.
The classical method of determination of the absolute azimuth (or Bessel's parameter n) can secure sufficiently precision for RA from observations of stars at high geographical latitudes during polar night only.  相似文献   

20.
介绍和论述了在后牛顿引力理论(PPN形式)中在优越参考系和非优越参考系中经过参数化后引力常数变化对地球自转产生的效应,其中特别重点介绍了年周期变化的效应。此外也将理论结果同观测结果相对比。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号