首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Within the more than 30 yr of cosmic ray astrophysics, neither their origin nor their precise mode of propagation have found undisputable explanations. Among the favoured boosters have been point sources, like supernovae and pulsars, as well as extended sources, like cosmic clouds and supernova remnants. Extended sources have been proposed by Fermi (1949), and pushed more recently by a number of investigators because of the huge available reservoirs, and because repetitive shock acceleration can generate power law spectra which are similar to the ones observed (Axfordet al., 1977; Bell, 1978; Blandford and Ostriker, 1978; Krymsky, 1977). Yet the shock acceleration model cannot easily be adjusted to achieve particle energies in excess of some critical energy, of order 104±1 GeV (Völket al., 1981). For this and several other reasons, the suggestion is revived that neutron stars are the dominant source of high-energy cosmic rays. To be more precise: the (relativistic) ionic component of the cosmic rays is argued to be injected by young binary neutron stars (?105 yr) whose rotating magnetospheres act like grindstones in the wind of their companion (Kundt, 1976). The high-energy (?30 GeV) electron-positron component may be generated by young pulsars (?105 yr) and by collision processes, and the electron component below 30 GeV predominantly by supernova remnants.  相似文献   

2.
The origin of cosmic rays is one of the key questions in high-energy astrophysics. Supernovae have been always considered as the dominant sources of cosmic rays below the energy spectrum knee. Multi-wavelength observations indeed show that supernova remnants are capable for accelerating particles into sub-PeV (1015 eV) energies. Diffusive shock acceleration is considered as one of the most efficient acceleration mechanisms of astrophysical high-energy particles, which may just operate effectively in the large-scale shocks of supernova remnants. Recently, a series of high-precision ground and space experiments have greatly promoted the study of cosmic rays and supernova remnants. New observational features challenge the classical acceleration model by diffusive shock and the application to the scenario of supernova remnants for the origin of Galactic cosmic rays, and have deepened our understanding to the cosmic high-energy phenomena. In combination with the time evolution of radiation energy spectrum of supernova remnants, a time-dependent particle acceleration model is established, which can not only explain the anomalies in cosmic-ray distributions around 200 GV, but also naturally form the cosmic-ray spectrum knee, even extend the contribution of supernova particle acceleration to cosmic ray flux up to the spectrum ankle. This model predicts that the high-energy particle transport behavior is dominated by the turbulent convection, which needs to be verified by future observations and plasma numerical simulations relevant to the particle transport.  相似文献   

3.
The role of nearby galactic sources, the supernova remnants, in formation of observed energy spectrum and large-scale anisotropy of high-energy cosmic rays is studied. The list of these sources is made up based on radio, X-ray and gamma-ray catalogues. The distant sources are treated statistically as ensemble of sources with random positions and ages. The source spectra are defined based on the modern theory of cosmic ray acceleration in supernova remnants while the propagation of cosmic rays in the interstellar medium is described in the frameworks of galactic diffusion model. Calculations of dipole component of anisotropy are made to reproduce the experimental procedure of “two-dimensional” anisotropy measurements. The energy dependence of particle escape time in the process of acceleration in supernova remnants and the arm structure of sources defining the significant features of anisotropy are also taken into account. The essential new trait of the model is a decreasing number of core collapse SNRs being able to accelerate cosmic rays up to the given energy, that leads to steeper total cosmic ray source spectrum in comparison with the individual source spectrum. We explained simultaneously the new cosmic ray data on the fine structure of all particle spectrum around the knee and the amplitude and direction of the dipole component of anisotropy in the wide energy range 1 TeV–1 EeV. Suggested assumptions do not look exotic, and they confirm the modern understanding of cosmic ray origin.  相似文献   

4.
We consider the galactic population of gamma-ray pulsars as possible sources of cosmic rays at and just above the “knee” in the observed cosmic ray spectrum at 1015–1016 eV. We suggest that iron nuclei may be accelerated in the outer gaps of pulsars, and then suffer partial photo-disintegration in the non-thermal radiation fields of the outer gaps. As a result, protons, neutrons, and surviving heavier nuclei are injected into the expanding supernova remnant. We compute the spectra of nuclei escaping from supernova remnants into the interstellar medium, taking into account the observed population of radio pulsars.

Our calculations, which include a realistic model for acceleration and propagation of nuclei in pulsar magnetospheres and supernova remnants, predict that heavy nuclei accelerated directly by gamma-ray pulsars could contribute about 20% of the observed cosmic rays in the knee region. Such a contribution of heavy nuclei to the cosmic ray spectrum at the knee can significantly increase the average value of lnA with increasing energy as is suggested by recent observations.  相似文献   


5.
The capabilities and limitations of pulsars as sources of cosmic rays are reviewed in the light of experimental observations. Pulsars can supply the cosmic ray power if they have rotational velocities in excess of 700 rad s?1 at birth. Though this is theoretically possible, there is no experimental proof for the same. Pulsars can accelerate particles to the highest energies of 1020 eV, but in general, the spectra on simple considerations, turn out to be flatter than the observed cosmic ray spectrum. At the highest energies, absorption processes due to fragmentation and photodisintegration dominate for heavy nuclei. The existence of a steady flux of cosmic rays of energy greater than 1017 eV demands acceleration of particles to last over fifty years, the time interval between supernovae outbursts, whereas the expected period of activity is less than a few years. Finally, the problem of anisotropy with relevance to pulsars as sources and the possibility of observing pulsar accelerated particles from galactic clusters is considered.  相似文献   

6.
宇宙线的起源是高能天体物理的核心问题之一.一直以来,超新星爆发被认为是能谱膝区以下宇宙线的主要来源.多波段观测表明,超新星遗迹有能力加速带电粒子至亚PeV (10~(15)eV)能量.扩散激波加速被认为是最有效的天体高能粒子加速机制之一,而超新星遗迹的大尺度激波正好为这一机制提供平台.近年来,一系列较高精度的地面和空间实验极大地推动了对宇宙线以及超新星遗迹的研究.新的观测事实挑战着传统的扩散激波加速模型以及其在银河系宇宙线超新星遗迹起源学说上的应用,深化了人们对宇宙高能现象的认识.结合超新星遗迹辐射能谱的时间演化特性,构建的时间依赖的超新星遗迹粒子加速模型,不仅能够解释200 GV附近宇宙线的能谱反常,还自然地形成能谱膝区,甚至可以将超新星遗迹粒子加速对宇宙线能谱的贡献延伸至踝区.该模型预期超新星遗迹中粒子的输运行为表现为湍流扩散,这需要未来的观测以及与粒子输运相关的等离子体数值模拟工作来进一步验证.  相似文献   

7.
In this paper we demonstrate the importance of cosmic rays for the dynamics of the interstellar medium. We present the first 3D-MHD numerical simulations of the Parker instability triggered by cosmic rays accelerated in randomly distributed supernova remnants. We show that in the presence of galactic rotation a net radial magnetic field is produced as a result of the cosmic ray injection and Coriolis force. This process provides a possibility of very efficient magnetic field amplification within the general frame of so called fast galactic dynamo proposed by Parker (1992).  相似文献   

8.
The intensive acceleration of energetic charged particles in perpendicular shock waves which has been known to take place in the interplanetary medium has been utilized in this work in order to account for the energization of cosmic rays. It is proposed that cosmic rays can be accelerated up to 1014–1015 eV in successive perpendicular shock waves which appear inside supernova shells in our Galaxy.  相似文献   

9.
Recent direct measurements of the energy spectra of the major mass components of cosmic rays have indicated the presence of a ‘kink’ in the region of 200 GeV per nucleon. The kink, which varies in magnitude from one element to another, is much sharper than predicted by our cosmic ray origin model in which supernova remnants are responsible for cosmic ray acceleration and it appears as though a new, steeper component is responsible.The component amounts to about 20 percent of the total at 30 GeV/nucleon for protons and helium nuclei and its magnitude varies with nuclear charge; the unweighted fraction for all cosmic rays being 36%.The origin of the new component is subject to doubt but the contenders include O, B, A, supergiant and Wolf-Rayet stars, by way of their intense stellar winds. Another explanation is also in terms of these particles as the sources but then being trapped, and even further accelerated, in the Local Bubble.  相似文献   

10.
Ultrahigh energy cosmic rays (UHECRs, E > 1018 eV) from extragalactic sources deviate in the galactic and intergalactic magnetic fields, which explains the diffusive character of their propagation, the isotropization of their total flux, and the absence of UHECR clusters associated with individual sources. Extremely high energy cosmic rays (E > 1019.7 eV) are scattered mainly in localized magnetized structures, such as galaxy clusters, filaments, etc., with a mean free path of tens of megaparsecs; therefore, in the case of nearby transient sources, a substantial contribution to the observed flux is expected from unscattered and weakly scattered particles, which may be a decisive factor in the identification of these sources. We propose a method for calculating the time evolution of the UHECR energy spectra based on analytical solutions of the transport equation with the explicit determination of the contributions from scattered and unscattered particles. As examples, we consider the cases of transient activity of the nearest active galactic nucleus, Centaurus A, and the acceleration of UHECRs by a young millisecond pulsar.  相似文献   

11.
12.
The maximum energy for cosmic ray acceleration at supernova shock fronts is usually thought to be limited to around 1014–1015 eV by the size of the shock and the time for which it propagates at high velocity. We show that the magnetic field can be amplified non-linearly by the cosmic rays to many times the pre-shock value, thus increasing the acceleration rate and facilitating acceleration to energies well above 1015 eV. A supernova remnant expanding into a uniform circumstellar medium may accelerate protons to 1017 eV and heavy ions, with charge Ze , to Z ×1017 eV. Expansion into a pre-existing stellar wind may increase the maximum cosmic ray energy by a further factor of 10.  相似文献   

13.
The extragalactic sources of ultra-high-energy (E > 4 × 1019 eV) cosmic rays that make a small contribution to the flux of particles recorded by ground-based arrays are discussed. We show that cosmic rays from such sources can produce a noticeable diffuse gamma-ray flux in intergalactic space compared to the the data obtained with Fermi LAT (onboard the Fermi space observatory). A possible type of active galactic nuclei (AGNs) in which cosmi-ray protons can be accelerated to energies 1021 eV is considered as an illustration of such sources. We conclude that ultra-high-energy cosmic rays from the AGNs being discussed can contribute significantly to the extragalactic diffuse gamma-ray emission. In addition, a constraint on the fraction of the AGNs under consideration relative to the BL Lac objects and radio galaxies has been obtained from a comparison with the Fermi LAT data.  相似文献   

14.
In this paper we demonstrate the importance of cosmic rays for the dynamics of the interstellar medium. We present the first 3D-MHD numerical simulations of the Parker instability triggered by cosmic rays accelerated in supernova remnants. We show that in the presence of galactic rotation a net radial magnetic field is produced as a result of the cosmic ray injection. This process provides a very efficient magnetic field amplification within the general frame of so called fast galactic dynamo proposed by Parker (1992). This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

15.
The position of the knee in the Galactic cosmic ray (GCR) spectrum is shown to depend on the explosion energy distribution function of supernovae (SN). The position of the knee in the GCR spectrum can be quantitatively explained by the dominating contribution of hypernovae with explosion energies of (~30–50)×1051 erg, the fraction of which must be no less than 1% of all SN. The model reproduces the main features in the spectrum of all particles measured in extensive air shower (EAS) experiments: the knee in the spectrum of all particles at energy of about 3 PeV, the change in slope by δγ ~ 0.3–0.5 after the knee point, and the steepening of the spectrum near 1018 eV. The model predicts a smooth knee if the SN explosion energy distribution is universal and a sharp knee if the hypernovae represent a separate class of events. The suggested model of the GCR spectrum is essentially based on the assumption that a spread in explosion energies exists and that the assumptions of the standard model for the CR acceleration in supernova remnants are valid.  相似文献   

16.
On the basis of recent new information on regular and chaotic magnetic fields in coronae of spiral galaxies, we discuss propagation of ultra-high energy cosmic rays of energies exceeding 1017 eV in the galactic corona. It is shown that the expected regular magnetic field is able to confine to the corona protons of energies up to 3×1019 eV. Chaotic magnetic fields of the corona play an important role in dynamics of cosmic-ray protons of energy up to 7×1018 eV.  相似文献   

17.
High energy phenomena on the surface of the Sun are manifestations of part of the solar dynamo cycle. Convection and magnetic field give rise to unstable, twisted flux loops that become solar flares when the resistive tearing mode proceeds to the nonlinear limit. If such twisted flux loops did not dissipate rapidly due to an enhanced resistivity, then the dynamo would not work. The act of dissipation leads to intense heating and acceleration leading to X-rays and accelerated particles. The particles in turn give rise to hard X-rays, gamma rays, neutrons, and solar cosmic rays. In high-energy astrophysics such phenomena occur in accretion disks around compact objects like black holes in quasars and SS433. The resulting acceleration may explain the observed extremely high-energy cosmic rays of up to 1020 eV and the high-energy gamma rays of 1012 to 1015 eV. These high energies are more readily explained by acceleration E parallel to B as opposed to stochastic shock acceleration. The anisotropy and localization of gamma rays from solar flares potentially may indicate which mechanism is prevalent.  相似文献   

18.
The case is made for most cosmic rays having come from galactic sources. ‘Structure’, i.e. a lack of smoothness in the energy spectrum, is apparent, strengthening the view that most cosmic rays come from discrete sources, supernova remnants being most likely.  相似文献   

19.
The investigation of supernova remnants (SNRs) across the electromagnetic spectrum from radio up to very high energy gamma-rays can serve as a test of the particle acceleration and touches on one of the unresolved problems of modern astrophysics, namely the origin of cosmic rays and the Galaxy's contribution to the overall cosmic ray spectrum. The multiwavelength observations of Cas A SNR demonstrated that structure and spectral features have clear signs of young SNRs and its overall properties make this object the best target to test a hypothesis of cosmic ray origin in SNRs. Studies of Cas A at very high energies by SHALON telescope showed the location of TeV gamma-ray emission region relative to the position of reveres shock. Also, the spectral energy distribution was obtained at high and very high energies. To describe the spectral and structural features of this SNR viewed in non-thermal emission, two approaches involving reverse and also both reverse and forward shocks to the mechanism of diffusive shock acceleration of cosmic rays in Cas A were applied. It is demonstrated that the observational properties of Cas A are well reproduced by the hadronic model with significant contribution of both the forward and reverse shocks in the generation of broadband emission. Calculation results suggest that the very high efficiency of particle acceleration in Cas A, which value is up to 25% of the supernova explosion energy with energy of accelerated particles not exceeding of eV. Whereas, the forward shock model predicts the spectral characteristics of the TeV-gamma-emission corresponding to ones detected at 800 GeV–40 TeV that are the evidence of acceleration of the hadronic cosmic rays in shells of SNRs up to eV  相似文献   

20.
Active galactic nuclei and pulsars as cosmic ray sources   总被引:2,自引:0,他引:2  
Relativistic e± particles and cosmic rays are accelerated in the magnetospheres of supermassive black holes and neutron stars. The possibility of synchrotron radiation with extremely high intensity inside the deepest regions of magnetospheres is investigated. Very high brightness temperatures are expected for such radiation by relativistic protons, which can be made even higher in the presence of non-stationary conditions, Doppler boosting and coherent processes. The main parameters for models of such high-brightness-temperature radiation are determined. Two types of active galactic nuclei (AGNs) are expected. One type is associated with the acceleration and ejection of relativistic e± particles only (probably non-IDV sources and FR-I radio galaxies). The second type of AGN is also associated with e± acceleration, but is dominated by the contribution of relativistic protons (probably IDV sources and FR-II radio galaxies). Analogous objects for pulsars are plerion and shell supernova remnants with neutron stars or pulsars without synchrotron nebulae, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号