首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Summary A three-dimensional non-hydrostatic atmospheric model RAMS, version3b, is used to examine the impact of complex topography on the sea breeze under heterogeneous and degradation land use characteristics. In the study, it is shown that topography plays an important role in the sea-breeze circulation by aligning the sea breeze front to the coastline and locating the convergence zones close to the mountain range. When the sea breeze is coupled with the upslope wind, the sea-breeze circulation is strengthened by the topography.Sensitivity analyses are carried out to determine the influence of vegetation and soil moisture, i.e., land surface modifications, to this thermally driven flow. Land degradation results in an enhanced sea-breeze circulation which is characterized by a stronger onshore flow, a stronger return current, a larger updraft velocity associated with the sea-breeze front and further inland penetration. Other important features are a deeper sea-breeze depth, a larger downdraft velocity behind the sea-breeze front, and a longer offshore extent. The results also show how land changes modify the sea breeze temporal evolution resulting in an earlier onset and later end. The study stresses the convenience of using three-dimensional models with detailed land surface information to model the sea breeze in complex terrain where land use is rapidly modified.Received February 25, 2002; accepted October 7, 2002 Published online April 10, 2003  相似文献   

2.
Sea-breeze dynamics in the Marseille area, in the south of France, is investigated in the framework of the ESCOMPTE experiment conducted during summer 2001 in order to evaluate the role of thermal circulations on pollutant transport and ventilation. Under particular attention in this paper is the sea-breeze channelling by the broad Rhône valley and the narrow Durance valley, both oriented nearly-north–south, i.e., perpendicular to the coastline, and its possible impact on the sea-breeze penetration, intensity and depth, which are key information for air pollution issues. One situation of slight synoptic pressure gradient leading to a northerly flow in the Rhône valley (25 June 2001) and one situation of a weak onshore prevailing synoptic wind (26 June 2001) are compared. The impact of the Rhône and Durance valleys on the sea-breeze dynamics on these two typical days is generalized to the whole ESCOMPTE observing period.The present study shows by combining simple scaling analysis with wind data from meteorological surface stations and Doppler lidars that (i) the Durance valley always affects the sea breeze by accelerating the flow. A consequence is that the Durance valley contributes to weaken the temperature gradient along the valley and thus the sea-breeze circulation. In some cases, the acceleration of the channelled flow in the Durance valley suppresses the sea-breeze flow by temperature gradient inhibition; (ii) the Rhône valley does not generally affect the sea breeze significantly. However, if the sea breeze is combined with an onshore flow, it leads to further penetration inland and intensification of the low-level southerly flow. In this situation, lateral constriction may accelerate the sea breeze. Simple scaling analysis suggests that Saint Paul (44.35°N, about 100 km from the coastline) is the lower limit where sea breeze can be affected by the Rhône valley. These conclusions have implications in air quality topics as channelled sea breeze may advect far inland pollutants which may be incorporated into long-range transport, particularly in the Durance valley.  相似文献   

3.
In this study radar, surface observations and numericalsimulations are used to examine the inland penetrationand intensity of the sea breeze during various large-scaleflow regimes along the curved coastline of the Carolinas,U.S.A. The results clearly indicate that the flow directionrelative to the curved coastline has a significant effecton the sea-breeze evolution.Overall, during northerly flow regimes alongthe curved North Carolina coast, observationsand numerical simulations show that the sea-breezefront has a tendency to remain close to the south-facingcoast. During these same flow regimes the frontmoves further inland relative to the east-facingcoast. The sea-breeze front during westerly flowcases progressed further inland relative to the southcoast and less so from the east-facing coastline.South-westerly flow allows the sea breeze to moveinland from both coastlines but the coastal shapeinfluence makes the inland penetration less fromthe easterly facing beaches. During periods of lightonshore flow (south-east), the sea breeze movesconsiderable distances inland but is not discernableuntil later in the afternoon. The simulations indicatedthat the sea-breeze intensity is greatest (least) when thelarge-scale flow direction has an offshore (onshore)component. Model results indicate the existence of astrong front well inland in the late afternoon duringlight onshore flow. Also noted was that the simulatedsea-breeze front develops earlier in the afternoon duringoffshore regimes and later in the day as the large-scaleflow becomes more onshore. It is concluded that thecoastline shape and coast-relative flow direction areimportant factors in determining how the sea-breezecirculation evolves spatially.  相似文献   

4.
A three-dimensional finite-element mesoscale model is used to study the interaction of two different but related mesoscale phenomena in an area having a complex pattern of surface heating. The model simulations have been compared with temperature and wind fields observed on a typical fall day during the Kennedy Space Center Atmospheric Boundary Layer Experiment on the east coast of Florida.Numerical results and observations both show that the meso- scale flow field is significantly modified from the conventional coastal-flow patterns by the smaller meso- scale irregular geographic features in this area. A local river breeze is observed to develop around the Indian River almost the same time as the Atlantic sea breeze. A comparison of the sea and the river breezes shows a large difference in their horizontal circulations but only slight differences in their vertical scales. The sea breeze intensifies more rapidly than the river breeze, so that a lag of 1 to 1.5 h exists between their most developed stages. The river breeze is relatively stationary, whereas the sea breeze propagates inland, with an eventual merger of the two circulations occurring about 6–8 h after their onset.Different synoptic wind regimes create different flow structures. Well-defined sea- and river-breeze circulations become established under calm, weak offshore, and weak alongshore synoptic-wind conditions. Maximum vertical velocities occur in the sea-breeze front (river-breeze front) in the cases of calm (offshore winds). The sea breeze and the river breeze are weaker when the synoptic winds are stronger.Finally, the results from numerical experiments designed to isolate the rivers' effect indicate that the convergence in the sea-breeze front is suppressed when it passes over the cooler surface of the rivers.Journal Paper No. J-14150 of the Iowa Agriculture and Home Economics Experiment Station, Ames, Iowa, Project No. 2779  相似文献   

5.
The urban impact on the sea breeze is studied by means of a mesoscale model with a detailed urban parameterisation. Four simulations are carried out on an idealised two-dimensional flat domain. In the base case, half of the domain is characterised by seaand the other half by rural land. In the urban case, an urban area 10 km wide is added near the shoreline. Simulations are performed for a moist rural soil (weak sea breeze) and for a dry rural soil (strong sea breeze). Results are analysed in order to evaluate the impact of the city on the wind, temperature and turbulent kinetic energy fields. The dispersion of a passive tracer emitted near the coastline is, also, used in the comparison. Results show that the city accelerates the sea-breeze formation in the morning (combinations of urban circulation and sea breeze), but it slows thesea-breeze front penetration. Moreover, the presence of the city enhances the recirculation processes and strongly modifies the pollutant dispersion. These effects are enhanced for a moist rural soil.  相似文献   

6.
In-situ sodar and lidar measurements were coupled with numerical simulations for studying a sea-breeze event in a flat coastal area of the North Sea. The study’s aims included the recognition of the dynamics of a sea-breeze structure, and its effects on the lower troposphere stratification and the three-dimensional (3D) pollutant distribution. A sea breeze was observed with ground-based remote sensing instruments and analysed by means of numerical simulations using the 3D non-hydrostatic atmospheric model Meso-NH. The vertical structure of the lower troposphere was experimentally determined from the lidar and sodar measurements, while numerical simulations focused on the propagation of the sea breeze inland. The sea-breeze front, the headwind, the thermal internal boundary layer, the gravity current and the sea-breeze circulation were observed and analysed. The development of a late stratification was also observed by the lidar and simulated by the model, suggesting the formation of a stable multilayered structure. The transport of passive tracers inside the sea breeze and their redistribution above the gravity current was simulated too. Numerical modelling showed that local pollutants may travel backward to the sea above the gravity current at relatively low speed due to the shearing between the landward gravity current and the seaward synoptic wind. Such dynamic conditions may enhance an accumulation of pollutants above coastal industrial areas.  相似文献   

7.
Scaling of the Sea-Breeze Strength with Observations in the Netherlands   总被引:1,自引:1,他引:1  
In this study we evaluate recently proposed scaling relations for the sea-breeze strength using independent data for a relatively homogeneous area in The Netherlands. We show that several of the scaling relations in the literature incorporate hidden correlation. Furthermore, it appears that the estimate for the sea-breeze strength is better made on the basis of the time-integrated rather than of the instantaneous sensible heat flux. It also turns out that for similar forcing the sea breeze in The Netherlands is about twice as strong as the sea breeze in the Vancouver area of Canada.  相似文献   

8.
The structure and evolution of the sea breeze in the north-west part of the Mediterranean (Catalonia, north-east Spain) is studied both experimentally and, predominantly, using numerical models to increase understanding of sea-breeze structure and three-dimensional (3D) pollution distributions in coastal environments. Sea-breeze components are modelled and analyzed using the fifth-generation Pennsylvania State University–National Centre for Atmospheric Research Mesoscale Model (MM5). The results show that the growth and structure of the sea-breeze circulation is modulated by the synoptic flow and especially by the complex topography of the area. 3D pollution transport in a sea breeze is modelled by coupling the MM5 to the Community Multiscale Air Quality (CMAQ) model, with results indicating that topography and synoptic flow are the main factors modulating horizontal and vertical pollutant transport in sea-breeze episodes. In this way, horizontal dispersion is limited by the complex topography of the area, whilst the sea-breeze flow is intensified by anabatic upslope winds that contribute to vertical pollutant transport. The numerical model results also indicate that the sea-breeze circulation with a weak return flow at upper levels grows due to a synoptic onshore wind component. However, such a sea-breeze circulation is capable of transporting pollutants towards the coast.  相似文献   

9.
Two-dimensional mesoscale model results support the claim of evening sea-breeze activity at Daly Waters, 280 km inland from the coast in northern Australia, the site of the Koorin boundary-layer experiment. The sea breeze occurs in conditions of strong onshore and alongshore geostrophic winds, not normally associated with such activity. It manifests itself at Daly Waters and in the model as a cooling in a layer 500–1000 m deep, as an associated surface pressure jump, as strong backing of the wind and, when an offshore low-level wind is present, as a collapse in the inland nocturnal jet.Both observational analysis and model results illustrate the rotational aspects of the deeply penetrating sea breeze; in our analysis this is represented in terms of a surge vector — the vector difference between the post- and pre-frontal low-level winds.There is further evidence to support earlier work that the sea breeze during the afternoon and well into the night — at least for these low-latitude experiments — behaves in many ways as an atmospheric gravity current, and that inland penetrations up to 500 km occur.  相似文献   

10.
The Advanced Regional Prediction System (ARPS) is coupled with the tropical town energy budget (tTEB) scheme to analyze the effects of the urban canopy circulation over the metropolitan area of São Paulo and its interactions with the sea breeze and mountain-valley circulation in the eastern state of São Paulo, Brazil. Two experiments are carried out for the typical sea-breeze event occurring on 22 August 2014 under weak synoptic forcing and clear-sky conditions: (a) a control run with the default semi-desert surface parametrization and; (b) a tTEB run for the urban canopy of São Paulo. A realistic land-use database over the south-eastern domain of Brazil is used in the downscaling simulation to a horizontal grid resolution of 3 km. Our results indicate that ARPS effectively simulates features of the nighttime and early morning land-breeze circulation, which is affected by the surrounding hills and the nocturnal heat island of São Paulo. By early afternoon, the south-eastern sea-breeze circulation moves inland perpendicular to the upslope of the Serra do Mar scarp, which generates a line of moisture convergence and updrafts further inland. Later, the convergence line reaches São Paulo and interacts with the circulation arising from the urban heat island (UHI), which increases the moisture convergence and strength of updrafts. The surface energy balance indicates that the UHI is caused by large sensible heat storage within the urban canopy during the day, which is later released in the afternoon and at night. The simulations are verified with available radiosonde and surface weather station data, land-surface-temperature estimates from the moderate resolution imaging spectroradiometer, as well as the National Center for Atmospheric Research reanalysis databases. The three-dimensional geometry of the urban canyons within the tTEB scheme consistently improves the thermodynamically-induced circulation over São Paulo.  相似文献   

11.
Summary From a data set of sea-breeze observations corresponding to cases of no synoptic-scale flow in Barcelona during the period 1970–89, some features of this wind have been deduced. Maximum velocities of between 6–14 m/s generally occur during 12–16 SLT. Diurnal evolution gives a clockwise rotation of sea breeze so that this wind blows roughly parallel to the shoreline in late afternoon. The rate of the change of direction is in agreement with numerical results from a simple nonlinear sea breeze model.With 7 FiguresThis work has been supported by the DGICYT, Project No. PB87-0718.  相似文献   

12.
Using sodar measurements of the wind in the vicinity of sea-breeze fronts, we have investigated the lateral movement of the incoming front.A characteristic of the sea-breeze front is related to periodic oscillations in wind direction, which are likely tobe caused by the sea breeze and accompanyingupdrafts and downdrafts in the ambient flow.  相似文献   

13.
Sea and Lake Breezes: A Review of Numerical Studies   总被引:11,自引:0,他引:11  
Numerical studies of sea and lake breezes are reviewed. The modelled dependence of sea-breeze and lake-breeze characteristics on the land surface sensible heat flux, ambient geostrophic wind, atmospheric stability and moisture, water body dimensions, terrain height and slope, Coriolis parameter, surface roughness length, and shoreline curvature is discussed. Consensus results on the influence of these geophysical variables on sea and lake breezes are synthesized as well as current gaps in our understanding. A brief history of numerical modelling, an overview of recent high-resolution simulations, and suggestions for future research related to sea and lake breezes are also presented. The results of this survey are intended to be a resource for numerical modelling, coastal air quality, and wind power studies.  相似文献   

14.
陆海风是由于海陆表面之间的比热容不同而导致的昼夜热量分布差异,从而在海岸附近引发的大气中尺度循环系统.本文利用多普勒风激光雷达Windcube100s首次对黄海西海岸的海陆风的循环结构进行了观测研究.在2018年8月31日至9月28日观测期间发现,海陆风发展高度一般在700 m至1300 m.海陆风转化持续的时间为6小时至8小时.在425m高度,海风水平风速出现最大值,平均为5.6 m s-1.陆风最大水平风速出现在370m,约为4.5 m s-1.最大风切变指数在1300m处,为2.84;在陆风向海风转换过程中,最大风切变指数在700m处,为1.28.在同一高度上,风切变指数在海风盛行和陆风盛行时的差值范围为0.2-3.6,风切变能反映出海陆风的发展高度.  相似文献   

15.
Sea-breeze circulations in a stably stratified environment have been simulated in a water tank. The floor of the tank was divided into two halves representing land and sea; the land side was heated from the bottom of the tank, and the sea side was insulated by an underlying sponge slab. The temperature profiles over both land and sea sides, the land–sea temperature difference, and the horizontal temperature distributions were measured. Particle tracking velocimetry was applied to obtain the two-dimensional velocity field orthogonal to the coastline. It was shown that the overall flow consists of a closed circulation caused by the horizontal temperature difference between land and sea, and a strong updraft occurring at the sea-breeze front. The dimensionless governing parameters are calculated from the measurements and used to characterize the developing sea breezes. The analysis confirms the scaling laws for sea-breeze velocity and depth. The results indicate that the scaling characteristics of the sea-breeze translation speed during the developing period are different to those during the following maintaining period. A criterion for the onset of the sea breeze is proposed based on these results.  相似文献   

16.
Summary Convection and subsequent precipitation induced by the sea breeze circulations are often observed in the Florida peninsula during summer. In this study, the mechanisms of initiation and maintenance of the convective clouds and precipitation are investigated. A fully-compressible fine resolution non-hydrostatic mesoscale numerical model is used in this study. Surface energy and moisture budget were included in this model to simulate the diurnal cycle of ground surface temperature and wetness. The model also has a sophisticated boundary layer and explicit cloud physics. A sounding obtained from Orlando, Florida at 1110 UTC 17 July 1991 as part of the Convection and Precipitation Electrification (CaPE) experiment is used for initialization. The initial data for the model is kept in geostrophic and thermal wind balance. Several sensitivity tests were conducted to investigate the effects of different treatments of ground surface moisture and temperature on the model forecast of the convection and precipitation induced by the sea breeze circulations. The simulations agree reasonably well with the observations when both surface energy and moisture budget were included in the model to predict ground surface temperature and wetness. The surface moisture has a significant impact on the formation, strength, sustenance, and the location of convection and precipitation induced by the sea breezes.With 17 Figures  相似文献   

17.
The evolution of a sea-breeze front(SBF)in parallel and offshore environmental flows was investigated by using high-resolution simulations of two SBF cases from the Bohai Bay region,China.The results show that the combination of a distinct vertical wind shear caused by the sea-breeze circulation with a neutral or slightly stable atmospheric stratification associated with the thermal inner boundary layer promoted the occurrence and maintenance of a Kelvin-Helmholtz billow(KHB).In a parallel environmental flow,the SBF evolved into a few connected segments because of the inhomogeneity of the sea-breeze direction and intensity as it penetrated inland.A significant upward vertical motion occurred at the two ends of the SBF segment owing to the sea-breeze convergence and was accelerated by the KHB.The KHB made a notable contribution to the intensity at the ends of the segment,whereas the intensity at the middle segment was primarily attributed to the convergence between the sea breeze and the parallel flow.In the offshore environmental flow,the clockwise rotation of the offshore flow varying with time increased the downstream convergence of the interface between the sea breeze and the offshore flow and pushed the downstream convergence zone to an orientation consistent with the offshore flow.The air parcels ascending from the downstream part of the SBF were continuously lifted by the downstream convergence zone during their advection,leading to a significant downstream development of the SBF.The significant upward vertical motion caused by the sea-breeze convergence behind the upstream end of the SBF was shifted to the upstream end of the SBF by the KHB,which enhanced the intensity of the upstream end of the SBF.  相似文献   

18.
The Town Energy Budget (TEB) model, a detailed urban parameterisation using a generalised canyon geometry, coupled with the Regional Atmospheric Modelling System (RAMS) is used to simulate the wintertime local circulation in the megacity environment of the metropolitan area of Sao Paulo (MASP) in Brazil. Model simulations are performed using actual topography and land-use fields. Comparison with a simple urban parameterisation based on the LEAF-2 scheme is also shown. Validation is based on comparison between model simulations and observations. Sensitivity tests with TEB reveal an important interaction between the sea breeze and the MASP heat island circulation. Even though topography is known to play an important role in the MASP region’s weather, in these tests the simulations were performed without topography in order to unambiguously identify the interaction between the two local circulations. The urban heat island (UHI) forms a strong convergence zone in the centre of the city and thereby accelerates the sea-breeze front toward the centre of the city. The presence of the urban region increases the sea-breeze front propagation mean speed by about 0.32 m s−1 when compared with the situation of no city. After its arrival in the urban region, the sea-breeze front stalls over the centre of the city for about 2 h. Subsequently, the sea breeze progresses beyond the city when the heat island dissipates. Thereafter, the sea breeze propagates beyond the urban area at a decelerated rate compared to a simulation without an UHI.  相似文献   

19.
A numerical mesoscale model is used to make a high-resolutionsimulation of the marine boundary layer in the Persian Gulf, duringconditions of offshore flow from Saudi Arabia. A marine internal boundary layer(MIBL) and a sea-breeze circulation (SBC) are found to co-exist. The sea breeze develops in the mid-afternoon, at which time its frontis displaced several tens of kilometres offshore. Between the coastand the sea-breeze system, the MIBL that occurs is consistent with a picture described in the existing literature. However, the MIBL isperturbed by the SBC, the boundary layer deepening significantly seaward of the sea-breeze front. Our analysis suggests that thisstrong, localized deepening is not a direct consequence offrontal uplift, but rather that the immediate cause is the retardation of theprevailing, low-level offshore windby the SBC. The simulated boundary-layer development can be accounted for by using a simple 1D Lagrangian model of growth driven by the surface heatflux. This model is obtained as a straightforward modification ofan established MIBL analytic growth model.  相似文献   

20.
Summary A numerical mesoscale model (COAMPS) is used to study some of the features associated with the evolution of the kinematic, thermodynamic, and physical structure of the Alabama sea and bay breeze circulations and convections in weak shear environments based on five cases from Medlin and Croft (1998). The general and expected features and evolution of sea and bay breeze circulations are captured by the model simulations, including horizontal and vertical wind shifts, thermal contrast between land and water surface, vertical stability over water and land, return currents and moisture increase. The relationship of the circulations to specific synoptic flow regimes and local physiographic features was investigated. The sea breeze triggered convective cells are confirmed to have a preferred location according to the flow regime and local conditions. This result can assist the forecasters in understanding the anticipated convective cell initiation and development on a given day as related to sea and bay breeze cells as well as improve the short-term forecast accuracy of the location of thunderstorm initiation based on routine observations and subsequent convective activity. If local NWS office model a selective subset of cases then they can better visualize and forecast those cases operationally.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号