首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
《Basin Research》2018,30(1):75-96
The Xichang Basin in southeastern Tibet provides crucial information about formation and tectonic processes affecting the eastern Tibetan Plateau. To determine when and how the uplift developed, we conducted detailed studies of structures and obtained thermochronology data from the Xichang Basin and its periphery. The Xichang Basin is characterized by gentle deformation of the strata, segmented by an E‐vergent boundary thrust fault. Two stages of deformation, strike‐slip followed by an E‐W oriented shortening resulted in oblique shortening between the southeastern Tibetan Plateau and the Sichuan Basin. New apatite fission‐track data interpreted together with (U‐Th)/He data confirm a simple burial/heating and exhumation/cooling history across the Xichang Basin and its periphery. Subsidence and burial of the Xichang Basin peaked between 80–30 Ma, followed by mountain building with a protracted cooling starting at around 40–20 Ma, with rates of ca. 2.0–8.0 °C Myr−1 (i.e. 0.1–0.3 mm year−1). Our data indicate that the Xichang Basin has experienced ca. 2.5–5 km of exhumation, much more intensive than the ca. 1–2 km of exhumation inferred for the southwestern Sichuan Basin. Restored balanced cross‐sections of post‐Late‐Triassic strata along a ca. 250 km traverse indicate ca. 10–20% east‐west shortening strain (i.e. ca. 20–30 km) at the southeastern Tibetan Plateau during Cenozoic time. Study of crustal thickening and erosion supports a tectonic shortening mechanism to account for the uplift of the Xichang Basin on the southeastern Tibetan Plateau.  相似文献   

2.
《Basin Research》2018,30(Z1):269-288
A number of major controversies exist in the South China Sea, including the timing and pattern of seafloor spreading, the anomalous alternating strike‐slip movement on the Red River Fault, the existence of anomalous post‐rift subsidence and how major submarine canyons have developed. The Qiongdongnan Basin is located in the intersection of the northern South China Sea margin and the strike‐slip Red River fault zone. Analysing the subsidence of the Qiongdongnan Basin is critical in understanding these controversies. The basin‐wide unloaded tectonic subsidence is computed through 1D backstripping constrained by the reconstruction of palaeo‐water depths and the interpretation of dense seismic profiles and wells. Results show that discrete subsidence sags began to form in the central depression during the middle and late Eocene (45–31.5 Ma). Subsequently in the Oligocene (31.5–23 Ma), more faults with intense activity formed, leading to rapid extension with high subsidence (40–90 m Myr−1). This extension is also inferred to be affected by the sinistral movement of the offshore Red River Fault as new subsidence sags progressively formed adjacent to this structure. Evidence from faults, subsidence, magmatic intrusions and strata erosion suggests that the breakup unconformity formed at ca. 23 Ma, coeval with the initial seafloor spreading in the southwestern subbasin of the South China Sea, demonstrating that the breakup unconformity in the Qiongdongnan Basin is younger than that observed in the Pearl River Mouth Basin (ca. 32–28 Ma) and Taiwan region (ca. 39–33 Ma), which implies that the seafloor spreading in the South China Sea began diachronously from east to west. The post‐rift subsidence was extremely slow during the early and middle Miocene (16 m Myr−1, 23–11.6 Ma), probably caused by the transient dynamic support induced by mantle convection during seafloor spreading. Subsequently, rapid post‐rift subsidence occurred during the late Miocene (144 m Myr−1, 11.6–5.5 Ma) possibly as the dynamic support disappeared. The post‐rift subsidence slowed again from the Pliocene to the Quaternary (24 m Myr−1, 5.5–0 Ma), but a subsidence centre formed in the west with the maximum subsidence of ca. 450 m, which coincided with a basin with the sediment thickness exceeding 5500 m and is inferred to be caused by sediment‐induced ductile crust flow. Anomalous post‐rift subsidence in the Qiongdongnan Basin increased from ca. 300 m in the northwest to ca. 1200 m in the southeast, and the post‐rift vertical movement of the basement was probably the most important factor to facilitate the development of the central submarine canyon.  相似文献   

3.
During the Cretaceous, the Neuquén Basin transitioned from an extensional back‐arc to a retroarc foreland basin. We present a multi‐proxy provenance study of Aptian to Santonian (125–84 Ma) continental sedimentary rocks preserved in the Neuquén Basin used to resolve changes of sediment drainage pattern in response to the change in tectonic regime. Sandstone petrology and U–Pb detrital zircon geochronology constrain the source units delivering detritus to the basin; apatite U–Pb and fission track dating further resolve provenance and determine the age and patterns of exhumation of the source rocks. Sandstone provenance records a sharp change from a mixed orogenic source during Aptian time (ca. 125 Ma), to a magmatic arc provenance in the Cenomanian (ca. 100 Ma). We interpret this provenance change as the result of the drainage pattern reorganisation from divergent to convergent caused by tectonic basin inversion. During this inversion and early stages of contraction, a transient phase of uplift and basin erosion, possibly due to continental buckling, caused the pre‐Cenomanian unconformity dividing the Lower from Upper Cretaceous strata in the Neuquén Basin. This phase was followed by the development of a retroarc foreland basin characterised by a volcanic arc sediment provenance progressively shifting to a mixed continental basement provenance during Turonian‐Santonian (90–84). According to multi‐proxy provenance data and lag times derived from apatite fission track analysis, this trend is the result of a rapidly exhuming source within the Cordillera to the west, in response to active compressional tectonics along the western margin of South America, coupled with the increasing contribution of material from the stable craton to the east; this contribution is thought to be the result of the weak uplift and exhumation of the foreland due to eastward migration of the forebulge.  相似文献   

4.
The recent paper by Go??dowski et al. (2012) is a contribution to the ongoing debate regarding the possible processes involved in the geological evolution of the North Sea basin and adjacent hinterlands during the Cenozoic. Their major conclusions state (1) that the prominent seismic feature called the ‘mid‐Miocene unconformity’ (MMU) is a diachroneous surface in the North Sea basin and forms a regional hiatus and (2) that sediment flux from western Scandinavia was primarily controlled by climate and vegetation cover from the Late Eocene and onwards. We believe, however, that regarding the eastern North Sea basin, which was the depocentre for sediments sourced from southwestern Scandinavia, these conclusions are not supported by the geological record. The so‐called ‘mid‐Miocene unconformity’ is not a regional hiatus in the Danish and Norwegian sectors of the North Sea basin, but represents a distinct shift from prograding delta/slope systems to deposition of deeper marine hemipelagic mud, and thus provides a distinct seismic marker horizon. However, detailed studies show that there is a continuous sedimentation dominated by glacony‐rich mud where a ca. 3 m thick mudlayer spans several millions years and thus are below seismic resolution. Consequently, seismic stratigraphy is not applicable for this condensed section. (1) Warm climate and dense vegetation cover in southern Scandinavia during the mid‐Miocene Climatic Optimum were not able to hinder the progradation of a major siliciclastic wedge from Scandinavia into the North Sea basin. (2) The distinct temperature decrease in the Serravallian does not correlate with the aforementioned progradation, but on the contrary, correlate with the culmination of a major flooding event and deposition of a condensed succession of marine glaucony‐rich clay.  相似文献   

5.
[Correction added after online publication 3 August 2010 ‐ ‘prelate’ has been changed to ‘pre‐late’ throughout the text]. Using apatite fission track and (U‐Th‐Sm)/He thermochronology, we report the low‐temperature thermal history of the Mesozoic Micang Shan Foreland Basin system, central China. This system, comprising the Hannan Dome hinterland, the northern Sichuan Foreland Basin and the intermediate frontal thrust belt (FB), shares a common boundary with three major tectonic terrains – Mesozoic Qinling‐Dabie Orogen, Mesozoic Sichuan Foreland Basin and Cenozoic elevated Tibetan Plateau. Results show: (1) a relatively rapid pre‐late Cretaceous cooling episode in the Hannan Dome; (2) a mid‐Cenozoic cooling phase (ca. 50°C at ca. 30 ± 5 Ma) within the northern Sichuan Basin; and (3) possible late Cenozoic cooling (ca. 25°C at ca. 16 ± 4 Ma) within the Hannan Dome‐FB, a phase which has also been reported previously from adjacent regions. The pre‐late Cretaceous cooling episode in the Hannan Dome is attributed to coeval tectonism in nearby regions. Mid‐Cenozoic cooling in the northern Sichuan Basin can possibly be attributed to either one of or a combination of shortening of the basin, onset of the Asian monsoon and drainage adjustment of the Yangtze River system, all of which are related to growth of the Tibetan Plateau. Possible late Cenozoic cooling in the hinterland and nearby regions is also probably related to the northeastward growth of the Tibetan Plateau. However, previous studies suggest a northeastward propagation for onset of cooling from the eastern Tibetan Plateau to western Qinling in response to northeastward lower crust flow from the central Tibetan Plateau. The timing of apparent late Cenozoic cooling in the Hannan Dome hinterland, at an intermediate locality, is not consistent with this trend, and supports a previous model suggesting northeastern growth of the Tibetan Plateau through reactivation of WE trending strike‐slip faults.  相似文献   

6.
Unconformities in sedimentary successions (i.e. sequence boundaries) form in response to the interplay between a variety of factors such as eustasy, climate, tectonics and basin physiography. Unravelling the origin of sequence boundaries is thus one of the most pertinent questions in the analysis of sedimentary basins. We address this question by focusing on three of the most marked physical discontinuities (sequence boundaries) in the Cenozoic North Sea Basin: top Eocene, near‐top Oligocene and the mid‐Miocene unconformity. The Eocene/Oligocene transition is characterized by an abrupt increase in sediment supply from southern Norway and by minor erosion of the basin floor. The near‐top Oligocene and the mid‐Miocene unconformity are characterized by major changes in sediment input directions and by widespread erosion along their clinoform breakpoints. The mid‐Miocene shift in input direction was followed by a marked increase in sediment supply to the southern and central North Sea Basin. Correlation with global δ18O records suggests that top Eocene correlates with a major long‐term δ18O increase (inferred climatic cooling and eustatic fall). Near‐top Oligocene does not correlate with any major δ18O events, while the mid‐Miocene unconformity correlates with a gradual decrease followed by a major long‐term increase in δ18O values The abrupt increases in sediment supply in post‐Eocene and post‐middle Miocene time correlate with similar changes worldwide and with major δ18O increases, suggesting a global control (i.e. climate and eustasy) of the post‐Eocene sedimentation in the North Sea Basin. Erosional features observed at near‐top Oligocene and at the mid‐Miocene unconformity are parallel to the clinoform breakpoints and resemble scarps formed by mass wasting. Incised valleys have not been observed, indicating that sea level never fell significantly below the clinoform breakpoint during the Oligocene to middle Miocene.  相似文献   

7.
A broad array of new provenance and stable isotope data are presented from two magnetostratigraphically dated sections in the south‐eastern Issyk Kul basin of the Central Kyrgyz Tien Shan. The results presented here are discussed and interpreted for two plausible magnetostratigraphic age models. A combination of zircon U‐Pb provenance, paleocurrent and conglomerate clast count analyses is used to determine sediment provenance. This analysis reveals that the first coarse‐grained, syn‐tectonic sediments (Dzhety Oguz formation) were sourced from the nearby Terskey Range, supporting previous thermochronology‐based estimates of a ca. 25–20 Ma onset of deformation in the range. Climate variations are inferred using carbonate stable isotope (δ18O and δ13C) data from 53 samples collected in the two sections and are compared with the oxygen isotope compositions of modern water from 128 samples. Two key features are identified in the stable isotope data set derived from the sediments: (1) isotope values, in particular δ13C, decrease between ca. 26.0 and 23.6 or 25.6 and 21.0 Ma, and (2) the scatter of δ18O values increased significantly after ca. 22.6 or 16.9 Ma. The first feature is interpreted to reflect progressively wetter conditions. Because this feature slightly post‐dates the onset of deformation in the Terskey Range, we suggest that it has been caused by orographically enhanced precipitation, implying that surface uplift accompanied late Cenozoic deformation and rock uplift in the Terskey Range. The increased scatter could reflect variable moisture source or availability caused by global climate change following the onset of Miocene glaciations at ca. 22.6 Ma, or enhanced evaporation during the Mid‐Miocene climatic optimum at ca. 17–15 Ma.  相似文献   

8.
The Northland Allochthon, an assemblage of Cretaceous–Oligocene sedimentary rocks, was emplaced during the Late Oligocene–earliest Miocene, onto the in situ Mesozoic and early Cenozoic rocks (predominantly Late Eocene–earliest Miocene) in northwestern New Zealand. Using low‐temperature thermochronology, we investigate the sedimentary provenance, burial and erosion histories of the rocks from both the hanging and footwalls of the allochthon. In central Northland (Parua Bay), both the overlying allochthon and underlying Early Miocene autochthon yield detrital zircon and partially reset apatite fission‐track ages that were sourced from the local Jurassic terrane and perhaps Late Cretaceous volcanics; the autochthon contains, additionally, material sourced from Oligocene volcanics. Thermal history modelling indicates that the lower part of the allochthon together with the autochthon was heated to ca. 55–100°C during the Late Oligocene and Early Miocene, most likely due to the burial beneath the overlying nappe sequences. From the Mesozoic basement exposed in eastern Northland, we obtained zircon fission‐track ages tightly bracketed between 153 and 149 Ma; the apatite fission‐track ages on the other hand, generally young towards the northwest, from 129 to 20.9 Ma. Basement thermochronological ages are inverted to simulate the emplacement and later erosion of the Northland Allochthon, using a thermo‐kinematic model coupled with an inversion algorithm. The results suggest that during the Late Oligocene, the nappes in eastern Northland ranged from ca. 4–6‐km thick in the north to zero in the Auckland region (over a distance >200 km). Following the allochthon emplacement, eastern Northland was uplifted and unroofed during the Early Miocene for a period of ca. 1–6 Myr at the rate of 0.1–0.8 km/Myr, leading to rapid erosion of the nappes. Since Middle Miocene, the basement uplift ceased and the erosion of the nappes and the region as a whole slowed down (ca. 0–0.2 km/Myr), implying a decay in the tectonic activity in this region.  相似文献   

9.
Seismic reflection profiles and well data are used to determine the Cenozoic stratigraphic and tectonic development of the northern margin of the South China Sea. In the Taiwan region, this margin evolved from a Palaeogene rift to a latest Miocene–Recent foreland basin. This evolution is related to the opening of the South China Sea and its subsequent partial closure by the Taiwan orogeny. Seismic data, together with the subsidence analysis of deep wells, show that during rifting (~58–37 Ma), lithospheric extension occurred simultaneously in discrete rift belts. These belts form a >200 km wide rift zone and are associated with a stretching factor, β, in the range ~1.4–1.6. By ~37 Ma, the focus of rifting shifted to the present‐day continent–ocean boundary off southern Taiwan, which led to continental rupture and initial seafloor spreading of the South China Sea at ~30 Ma. Intense rifting during the rift–drift transition (~37–30 Ma) may have induced a transient, small‐scale mantle convection beneath the rift. The coeval crustal uplift (Oligocene uplift) of the previously rifted margin, which led to erosion and development of the breakup unconformity, was most likely caused by the induced convection. Oligocene uplift was followed by rapid, early post‐breakup subsidence (~30–18 Ma) possibly as the inferred induced convection abated following initial seafloor spreading. Rapid subsidence of the inner margin is interpreted as thermally controlled subsidence, whereas rapid subsidence in the outer shelf of the outer margin was accompanied by fault activity during the interval ~30–21 Ma. This extension in the outer margin (β~1.5) is manifested in the Tainan Basin, which formed on top of the deeply eroded Mesozoic basement. During the interval ~21–12.5 Ma, the entire margin experienced broad thermal subsidence. It was not until ~12.5 Ma that rifting resumed, being especially active in the Tainan Basin (β~1.1). Rifting ceased at ~6.5 Ma due to the orogeny caused by the overthrusting of the Luzon volcanic arc. The Taiwan orogeny created a foreland basin by loading and flexing the underlying rifted margin. The foreland flexure inherited the mechanical and thermal properties of the underlying rifted margin, thereby dividing the basin into north and south segments. The north segment developed on a lithosphere where the major rift/thermal event occurred ~58–30 Ma, and this segment shows minor normal faulting related to lithospheric flexure. In contrast, the south segment developed on a lithosphere, which experienced two more recent rift/thermal events during ~30–21 and ~12.5–6.5 Ma. The basal foreland surface of the south segment is highly faulted, especially along the previous northern rifted flank, thereby creating a deeper foreland flexure that trends obliquely to the strike of the orogen.  相似文献   

10.
The Tarim Basin in western China formed the easternmost margin of a shallow epicontinental sea that extended across Eurasia and was well connected to the western Tethys during the Paleogene. Climate modelling studies suggest that the westward retreat of this sea from Central Asia may have been as important as the Tibetan Plateau uplift in forcing aridification and monsoon intensification in the Asian continental interior due to the redistribution of the land‐sea thermal contrast. However, testing of this hypothesis is hindered by poor constraints on the timing and precise palaeogeographic dynamics of the retreat. Here, we present an improved integrated bio‐ and magnetostratigraphic chronological framework of the previously studied marine to continental transition in the southwest Tarim Basin along the Pamir and West Kunlun Shan, allowing us to better constrain its timing, cause and palaeoenvironmental impact. The sea retreat is assigned a latest Lutetian–earliest Bartonian age (ca. 41 Ma; correlation of the last marine sediments to calcareous nannofossil Zone CP14 and correlation of the first continental red beds to the base of magnetochron C18r). Higher up in the continental deposits, a major hiatus includes the Eocene–Oligocene transition (ca. 34 Ma). This suggests the Tarim Basin was hydrologically connected to the Tethyan marine Realm until at least the earliest Oligocene and had not yet been closed by uplift of the Pamir–Kunlun orogenic system. The westward sea retreat at ca. 41 Ma and the disconformity at the Eocene–Oligocene transition are both time‐equivalent with reported Asian aridification steps, suggesting that, consistent with climate modelling results, the sea acted as an important moisture source for the Asian continental interior.  相似文献   

11.
The continuous Cenozoic strata in the Xining Basin record the growth and evolution of the northeastern Qinghai–Tibetan Plateau. Here, the mechanisms and evolution of the Xining Basin during the Cenozoic were investigated by studying the sedimentary facies of 22 Cenozoic sections across the basin and detrital zircon U‐Pb ages of three Cenozoic sections located in the eastern, central and western basin, respectively. In the Eocene (ca. 50–44 Ma), the India‐Eurasia Collision affected the northeastern Qinghai–Tibetan Plateau. The Central Qilian Block rotated clockwise by ca. 24° to form the Xining Basin. The Triassic flysch sediments surrounding the basin were the primary sources of sediment. Between ca. 44–40 Ma, the basin enlarged and deepened, and sedimentation was dominated by saline lake sediments. Between ca. 40–25.5 Ma, the Xining Basin began to shrink and dry, resulting in the deposition of saline pan and saline mudflat sediments in the basin. After ca. 20 Ma, the Laji Shan to the south of the Xining Basin was uplifted due to the northward compression of the Guide Basin to the south. Clasts that eroded from this range dominated the sediments as the basin evolved from a lacustrine environment into a fluvial system. The Xining Basin was an extensional basin in the Early Cenozoic, but changed into a compressive one during the Late Cenozoic, it was not a foreland basin either to the Kunlun Shan or to the western Qinling Shan in the whole Cenozoic. The formation and deformation of the Xining Basin are the direct responses of the India‐Eurasia Collision and the growth of the Qinghai‐Tibetan Plateau.  相似文献   

12.
Early Mesozoic Basins in the Yanshan Fold–Thrust Belt (YFTB), located along the northern margin of the North China Craton (NCC), record significant intraplate deformation of unknown age. In this article, we present evidence for the rapid exhumation of high‐grade basement rocks along the northern margin of the NCC in the Early Mesozoic. U–Pb geochronology of detrital zircons constrains the maximum depositional ages of syntectonic sedimentary units that formed during the unroofing of basement rocks and plutons in the Xiabancheng Basin. In the Early Mesozoic, the Xiabancheng Basin recorded a dramatic transformation in depositional environments, related to a significant change in the regional tectonic setting. In this study, the tectonic evolution of the YFTB is established from paleocurrent data and U–Pb zircon ages of sandstone and granitic gravels of the Xingshikou Formation, Xiabancheng Basin. The paleocurrent direction of meandering fluvial facies in the Triassic Liujiagou and Ermaying Formations are from east to west. In contrast, the overlying Xingshikou Formation consists of alluvial fan facies with paleocurrent directions from north‐northwest to south‐southeast. The lower and middle segments of the Xingshikou Formation record rapid exhumation of basement rocks along the northern margin of the NCC. U‐Pb ages of detrital zircons within the Xingshikou Formation are characterized by three major U–Pb age groups: 2.2–2.5 Ga, 1.7–1.8 Ga and 193–356 Ma. From 193 Ma to 356 Ma, a subsidiary peak occurs at 198 ± 5 Ma, constraining the sedimentation age of the Xingshikou Formation to the Early Jurassic. Zircon from the Wangtufang pluton in the northern portion of the Xiabancheng Basin yields U–Pb ages of 191 ± 1 Ma and 207 ± 1 Ma. Within error, these crystallization ages are identical to detrital zircon ages of 206 ± 1 Ma and 206 ± 2 Ma obtained for granitic gravel clasts in the Xingshikou Formation. Thus, the Wangtufang pluton and surrounding basement rocks must have experienced rapid uplift and exhumation during the Early Jurassic. The onset of exhumation along the northern margin of the NCC occurred at ca. 198–180 Ma.  相似文献   

13.
The late‐stage evolution of the southern central Pyrenees has been well documented but controversies remain concerning potential Neogene acceleration of exhumation rates and the influence of tectonic and/or climatic processes. A popular model suggests that the Pyrenees and their southern foreland were buried below a thick succession of conglomerates during the Oligocene, when the basin was endorheic. However, both the amount of post‐orogenic fill and the timing of re‐excavation remain controversial. We address this question by revisiting extensive thermochronological datasets of the Axial Zone. We use an inverse approach that couples the thermo‐kinematic model Pecube and the Neighbourhood inversion algorithm to constrain the history of exhumation and topographic changes since 40 Ma. By comparison with independent geological data, we identified a most probable scenario involving rapid exhumation (>2.5 km Myr?1) between 37 and 30 Ma followed by a strong decrease to very slow rates (0.02 km Myr?1) that remain constant until the present. Therefore, the inversion does not require a previously inferred Pliocene acceleration in regional exhumation rates. A clear topographic signal emerges, however: the topography has to be infilled by conglomerates to an elevation of 2.6 km between 40 and 29 Ma and then to remain stable until ca. 9 Ma. We interpret the last stage of the topographic history as recording major incision of the southern Pyrenean wedge, due to the Ebro basin connection to the Mediterranean, well before previously suggested Messinian ages. These results thus demonstrate temporally varying controls of different processes on exhumation: rapid rock uplift in an active orogen during late Eocene, whereas base‐level changes in the foreland basin control the post‐orogenic evolution of topography and exhumation in the central Pyrenees. In contrast, climate changes appear to play a lesser role in the post‐orogenic topographic and erosional evolution of this mountain belt.  相似文献   

14.
The syntectonic continental conglomerates of the South‐Central Pyrenees record the late stages of thin‐skinned transport of the South‐Pyrenean Central Units and the onset of exhumation of the Pyrenean Axial Zone (AZ) in the core of the orogen. New magnetostratigraphic data of these syntectonic continental conglomerates have established their age as Late Lutetian to Late Oligocene. The data reveal that these materials were deposited during intense periods of tectonic activity of the Pyrenean chain and not during the cessation of the deformation as considered previously. The magnetostratigraphic ages have been combined with new detrital apatite fission track (AFT) thermochronology from AZ‐derived granite cobbles within the syntectonic conglomerates. Distribution of the granitic cobbles with different AFT ages and track lengths combined with their depositional ages reveal information on the timing and rate of episodes of exhumation in the orogen. Some AFT ages are considerably older than the AFT ages of the outcropping AZ granitic massifs, indicating erosion from higher crustal levels within the massifs than presently exposed or from completely eroded plutons. Inverse thermal modelling reveals two well‐defined periods of rapid cooling in the hinterland at ca. 50–40 and ca. 30–25 Ma, with another poorly defined cooling episode at ca. 70–60 Ma. The lowest stratigraphic samples experienced postburial annealing caused by the deposition of younger syntectonic sediments during progressive burial of the south Pyrenean thrust and fold belt. Moreover, samples from the deeper stratigraphic levels also reveal postorogenic cooling during the Late Miocene as a response to the excavation of the Ebro River towards the Mediterranean Sea. Our data strongly support previous ideas about the burial of the South Pyrenean fold and thrust belt by Late Palaeogene syntectonic conglomerates and their subsequent re‐excavation and are consistent with other thermochronological data and thermal modelling from the interior part of the orogen.  相似文献   

15.
The Adana Basin of southern Turkey, located at the SE margin of the Central Anatolian Plateau in the vicinity of the Arabia‐Eurasia collision zone, is ideally suited to record Neogene and Quaternary topographic and tectonic changes in the easternmost Mediterranean realm. On the basis of our correlation of 34 seismic reflection profiles with corresponding exposed units along the margins of the Adana Basin, we identify and characterize the seismic facies that corresponds to the upper part of the Messinian Handere Formation (ca. 5.45 to 5.33 Ma), which consists mainly of fluvial conglomerates and marls. The seismic reflection profiles indicate that ca. 1100 km3 of the Handere Formation upper sub‐unit is distributed over ca. 3000 km2, reflecting local sedimentation rates of up to 12.5 mm year?1. This indicates a major increase in both sediment supply and subsidence rates at ca. 5.45 Ma. Our provenance analysis of the Handere Formation upper sub‐unit based on clast counting and palaeocurrent measurements reveals that most of the sediment is derived from the Taurus Mountains at the SE margin of the Central Anatolian Plateau and regions farther north. A comparison of these results with the composition of recent fluvial conglomerates and the present‐day drainage basins indicates major changes between late Messinian and present‐day source areas. We suggest that these changes in drainage patterns and lithological characteristics result from uplift and ensuing erosion of the SE margin of the plateau. We interpret the tectonic evolution of the southern flank of the Anatolian Plateau and the coeval subsidence and sedimentation in the Adana Basin to be related to deep lithospheric processes, particularly lithospheric delamination and slab break‐off.  相似文献   

16.
The significance of variations in the sediment flux from western Scandinavia during the Cenozoic has been a matter of debate for decades. Here we compile the sediment flux using seismic data, boreholes and results from other publications and discuss the relative importance of causal agents such as tectonism, climate and climate change. Western Scandinavia, the northern British Isles and the Faeroe‐Shetland Platform were significant sediment sources during the Paleocene, which is well founded in tectonic causes related to the opening of the North Atlantic. From the Eocene and onward, variations in the sediment flux from western Scandinavia correlate better with climate and climate change. During the Eocene, sediment production was low. From the late Eocene onward, increased seasonality may have contributed to stimulating the sediment flux. Significant climatic cooling episodes correlate with Oligocene deposits in the North Sea, the post‐mid‐Miocene Molo and Kai Formations of the Norwegian Shelf, the southern North Sea delta system and large volumes of the Late Pliocene‐Holocene Naust Formation. The sediment flux from Scandinavia during the Cenozoic is in general agreement with the detrital flux to the world's oceans. Furthermore, the large variations in the size of sediment catchment areas as well as the possibility of submarine and glacial erosion must be incorporated to understand regional variations in climate driven sediment flux.  相似文献   

17.
The central and southern Perth Basin in southwestern Australia has a geological history involving multiple regional unconformity‐forming events from the Permian to Recent. This study uses sonic transit time analysis to quantify the magnitudes of net and gross exhumation for four stratigraphic periods from 43 wells. Most importantly, we quantify gross exhumation of the Permian–Triassic, Triassic–Jurassic, Valanginian break‐up and post‐Early Cretaceous events. Post‐Early Cretaceous gross exhumation averages 900‐m offshore and 600‐m onshore. Up to 200 m of this exhumation may be attributed to localized fault block rotation during extension in the Late Cretaceous and/or reverse fault re‐activation due to the compressive stresses in Australia in the last 50 Ma. The remainder is attributed to regional exhumation caused by epeirogenic processes either during the Cenozoic or at the Aptian–Albian boundary. Maximum burial depths prior to the Valanginian unconformity‐forming event were less than those reached subsequently, so that the magnitude of Valanginian break‐up exhumation cannot be accurately quantified. Gross exhumation prior to the break‐up of Gondwana was defined by large magnitude differences (up to 2500 m) between adjoining sub‐basins. At the end of Triassic, exhumation is primarily attributed to reverse re‐activation of faults that were driven by short‐wavelength inversion and exhumation at the end Permian is likely caused by uplift of rotated fault blocks during extension. The evidence from quantitative exhumation analysis indicates a switch in regime, from locally heterogeneous before break‐up to more regionally homogeneous after break‐up.  相似文献   

18.
The North Sea Basin contains an almost complete record of Cenozoic sedimentation, separated by clear regional unconformities. The changes in sediment characteristics, rate and source, and expression of the unconformities reflect the tectonic, eustatic and climatic changes that the North Sea and its margins have undergone. While the North Sea has been mapped locally, we present the first regional mapping of the Cenozoic sedimentary strata. Our study provides a new regional sub‐division of the main seismic units in the North Sea together with maps of depocentres, influx direction and source areas. Our study provides a regional synthesis of sedimentation based on a comprehensive interpretation of a regionally covering reflection seismic data set. We relate observations of sediment characteristics and unconformities to the geological evolution. The timing, regional expression and stratigraphic characteristics of many unconformities indicate that they were generated by eustatic sea‐level fall, often in conjunction with other processes. Early Cenozoic unconformities, however, relate to tectonism associated with the opening of the North Atlantic. From observation on a regional scale, we infer that the sediment influx into the North Sea during the Cenozoic is more complex than previously suggested clockwise rotation from early northwestern to late southern sources. The Shetland Platform supplied sediment continuously, although at varying rates, until the latest Cenozoic. Sedimentation around Norway changed from early Cenozoic influx from the southwestern margin, to almost exclusively from the southern margin in the Oligocene and from all of southern Norway in the latest Cenozoic. Thick Eocene deposits in the Central Graben are sourced mainly from a western and a likely southern source, indicating that prominent influx from the south did not only occur from the mid‐Miocene onwards. We infer a new age for the increased progradational sediment influx in the Pleistocene of 2.5 Ma, coeval with Fennoscandian glaciation.  相似文献   

19.
《Basin Research》2018,30(Z1):1-14
The paleogeographic reconstruction of the Variscan Mountains during late Carboniferous‐Permian post‐orogenic extension remains poorly understood, owing to the subsequent erosion and/or burial of most associated sedimentary basins during the Mesozoic. The Graissessac‐Lodève Basin (southern France) preserves a thick and exceptionally complete record of continental sedimentation spanning late Carboniferous through late Permian time. This section records the localized tectonic and paleogeographic evolution of southern France in the context of the low‐latitude Variscan Belt of Western Europe. This study presents new detrital zircon and framework mineralogy data that address the provenance of siliciclastic strata exposed in the basin. The ages and compositions of units that constitute the Montagne Noire metamorphic core complex (west of the basin) dictate the detrital zircon age populations and sandstone compositions in Permian strata, recording rapid exhumation and unroofing of the Montagne Noire dome. Cambrian‐Archean zircons and metamorphic lithic‐rich compositions record derivation from recycled detritus of the earliest Paleozoic sedimentary cover and Neoproterozoic‐early Cambrian metasedimentary Schistes X, which formerly covered the Montagne Noire dome. Ordovician zircons and subarkosic framework compositions indicate erosion of orthogneiss units that formed a large part of the dome. The youngest zircon population (320–285 Ma) reflects derivation from late Carboniferous‐early Permian granite units in the axial zone of the Montagne Noire. This population appears first in the early Permian, persists throughout the Permian section and is accompanied by sandstone compositions dominated by feldspar, polycrystalline quartz and metamorphic lithic fragments. The most recent migmatization, magmatism and deformation occurred ca. 298 ± 2 Ma, at ca. 17 km depth (based on peak metamorphic conditions). Accordingly, these new provenance data, together with zircon fission‐track thermochronology, demonstrate that exhumation of the Montagne Noire core complex was rapid (1–17 mm year−1) and early (300–285 Ma), reflecting deep‐seated uplift in the southern Massif Central during post‐orogenic extension.  相似文献   

20.
A comprehensive interpretation of single and multichannel seismic reflection profiles integrated with biostratigraphical data and log information from nearby DSDP and ODP wells has been used to constrain the late Messinian to Quaternary basin evolution of the central part of the Alboran Sea Basin. We found that deformation is heterogeneously distributed in space and time and that three major shortening phases have affected the basin as a result of convergence between the Eurasian and African plates. During the Messinian salinity crisis, significant erosion and local subsidence resulted in the formation of small, isolated, basins with shallow marine and lacustrine sedimentation. The first shortening event occurred during the Early Pliocene (ca. 5.33–4.57 Ma) along the Alboran Ridge. This was followed by a major transgression that widened the basin and was accompanied by increased sediment accumulation rates. The second, and main, phase of shortening on the Alboran Ridge took place during the Late Pliocene (ca. 3.28–2.59 Ma) as a result of thrusting and folding which was accompanied by a change in the Eurasian/African plate convergence vector from NW‐SE to WNW‐ESE. This phase also caused uplift of the southern basins and right‐lateral transtension along the WNW‐ENE Yusuf fault zone. Deformation along the Yusuf and Alboran ridges continued during the early Pleistocene (ca. 1.81–1.19 Ma) and appears to continue at the present day together with the active NNE‐SSW trending Al‐Idrisi strike‐slip fault. The Alboran Sea Basin is a region of complex interplay between sediment supply from the surrounding Betic and Rif mountains and tectonics in a zone of transpression between the converging African and European plates. The partitioning of the deformation since the Pliocene, and the resulting subsidence and uplift in the basin was partially controlled by the inherited pre‐Messinian basin geometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号