首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Sediment cores from Lake Pepin, a natural lake on the Upper Mississippi River, reveal the historical trends in trace metal use and discharge in the watershed. Lead-210 dated concentration profiles of trace metals (Ag, Cd, Cr, Cu, Hg, Pb, V, Zn) in sediment cores from throughout the lake generally showed low and stable concentrations prior to settlement (circa 1830), peak concentrations between 1940 and 1975, and substantial decreases thereafter. Whole-lake sediment accumulation rates increased greatly over the period of record, from 79,000 metric tons year−1 prior to 1830, to 876,000 metric tons year−1 during the 1990s. Whole-lake accumulation rates of most trace metals peaked in the 1960s but decreased sharply after that. Sediment and trace metal accumulation rates decreased in the downstream direction, and approximately two-thirds of the sediment and trace metal mass accumulated in Lake Pepin since 1800 was deposited in the upper 30% (by area) of the lake. The dramatic declines in trace metal concentrations and accumulation rates in Lake Pepin sediments since 1970 coincide with increased pollution control and prevention efforts throughout the watershed, including the implementation of secondary treatment at a large municipal wastewater treatment plant upstream. This is one of eight papers dedicated to the “Recent Environmental History of the Upper Mississippi River” published in this special issue of the Journal of Paleolimnology. D.R. Engstrom served as guest editor of the special issue.  相似文献   

2.
This study was conducted to collect historical land use information that would help explain the historical patterns in accumulation of sediment and phosphorus in Lake Pepin documented by Engstrom et al. (J Paleolimnol, this issue). A wide range of historical factors including cropping systems, phosphorus applications from fertilizer and manure, human and animal populations, river flows and phosphorus discharges from waste water treatment plants were studied using statistical methods. Results showed that sediment losses from the Minnesota River basin are significantly correlated with historical increases in river flows, row crop production acreage and basin population. Total phosphorus accumulations in the sediments of Lake Pepin are significantly correlated with increased phosphorus discharges from metropolitan area wastewater treatment plants, and increases in row crop acreage and river flows. Total phosphorus inflows to Lake Pepin are significantly correlated with increases in river flows, row crop acreage and phosphorus fertilizer applied to agricultural lands. This is one of eight papers dedicated to the “Recent Environmental History of the Upper Mississippi River” published in this special issue of the Journal of Paleolimnology. D. R. Engstrom served as guest editor of the special issue.  相似文献   

3.
It can be advantageous to revisit coring locations in lakes years after an initial paleolimnological study is completed, to assess environmental changes in the intervening time interval. We revisited sediment core sites in Lake Pepin (Minnesota, Wisconsin) more than a decade after an original set of 10 cores was collected, dated radiometrically, and studied in 1996. Prominent magnetic susceptibility features were used to align the new core set with the older set, such that traditional radiometric dating was not necessary to obtain a chronology for the new cores. The procedure used to align the two core sets accounted for compaction of former surface sediments by burial with new sediment. The amount of new sediment, mercury, and phosphorus accumulated at each core site was determined and extrapolated to the depositional area of the lake to estimate recent (1996–2008) whole-basin loads. Recent sediment accumulation in Lake Pepin compared well (within 3%) with monitored inflow data from a gauging station on the upper Mississippi River just before it enters the lake. Bulk sediment accumulation rate remained very high (772,000 t/year) for the recent period (1996–2008), down slightly from the peak in 1990–1996 (876,000 t/year), and almost an order of magnitude above pre-settlement rates. Total phosphorus deposition remained constant since a peak in the 1960s, but was also well above pre-settlement rates. Mercury continued its precipitous decline since peaking in the 1960s.  相似文献   

4.
Study of Lake Pepin and Lake St. Croix began more than a century ago, but new information has permitted a closer look at the geologic history of these two riverine lakes located on the upper Mississippi River system. Drainages from large proglacial lakes Agassiz and Duluth at the end of the last glaciation helped shape the current valleys. As high-discharge outlet waters receded, tributary streams deposited fans of sediment in the incised river valleys. These tributary fans dammed the main river, forming riverine lakes. Lake Pepin was previously thought to be a single long continuous lake, extending for 80 km from its dam at the Chippewa River fan all the way up to St. Paul, with an arm extending up the St. Croix valley. Recent borings taken at bridge and dam locations show more than a single section of lake sediments, indicating a more complex history. The Minnesota and Mississippi Rivers did not always follow their current paths. Valleys cut into bedrock but now buried by glacial sediment indicate former river courses, with the most recent of these from the last interglacial period marked at the surface by chains of lakes. The morphology of the Mississippi valley bottom, and thus the morphology of Lake Pepin as it filled the valley, is reflect in part by the existence of these old valleys but also by the presence of glacial outwash terraces and the alluvial fans of tributary streams. A sediment core taken in Lake Pepin near Lake City had a piece of wood in gravels just below lake sediments that dated to 10.3 ka cal. BP, indicating that the lake formed as the Chippewa River fan grew shortly after the floodwaters of Lakes Agassiz and Duluth receded. Data from new borings indicate small lakes were dammed behind several tributary fans in the Mississippi River valley between the modern Lake Pepin and St. Paul. One tributary lake, here called Early Lake Vermillion, may have hydraulically dammed the St. Croix River, creating an incipient Lake St. Croix. The tributary fans from the Vermillion River, the Cannon River, and the Chippewa River all served to segment the main river valley into a series of riverine lakes. Later the growth of the Chippewa fan surpassed that of the Vermillion and Cannon fans to create a single large lake, here called late Lake Pepin, which extended upstream to St. Paul. Sediment cores taken from Lake Pepin did not have significant organic matter to develop a chronology from radiocarbon dating. Rather, magnetic features were matched with those from a Lake St. Croix core, which did have a known radiocarbon chronology. The Pepin delta migration rate was then estimated by projecting the elevations of the top of the buried lake sediments to the dated Lake Pepin core, using an estimated slope of 10 cm/km, the current slope of Lake Pepin sediment surface. By these approximations, the Lake Pepin delta prograded past Hastings 6.0 ka cal BP and Red Wing 1.4 ka cal BP. This is one of eight papers dedicated to the “Recent Environmental History of the Upper Mississippi River” published in this special issue of the Journal of Paleolimnology. D. R. Engstrom served as guest editor of the special issue.  相似文献   

5.
The global cycling of anthropogenic trace metals intensified during the twentieth century, impacting aquatic systems throughout the world. There are, however, few quantitative records showing the history of this contamination in large rivers. Here we present a well-dated sedimentary record of trace metal accumulation in Lake St. Croix, a natural riverine lake on the St. Croix River (Minnesota and Wisconsin, USA), revealing the history of heavy metal inputs to the river over the past 200 years. Concentrations of Hg, Pb, Ag, Cd, Cr and Zn and stable Pb isotopes were measured in eight 210Pb-dated sediment cores collected from profundal depositional areas throughout the lake. Time trends of trace metal concentrations and accumulation rates differed greatly between the upper lake (above Valley Creek) and the lower lake, reflecting contrasting sediment sources along the flow axis of the lake. For most of the study period (1800–2000 AD), sediment deposited throughout the lake derived almost exclusively from the suspended sediment load carried by the main-stem river into the lake. From 1910 through 1970, however, large inputs of eroded soils and stream channel sediments from side-valley tributaries resulted in greatly increased sediment and trace metal accumulation in the lower lake. Anthropogenic accumulation rates of Hg, Pb, Cd, Zn, and Ag in the upper lake correlate well with those from Square Lake, a small, relatively undisturbed nearby lake that has received trace metal inputs almost exclusively via atmospheric deposition. The similarity of these records suggests that atmospheric deposition was primarily responsible for trace metal accumulation trends in upper Lake St. Croix. Trace metal accumulation in the lower lake was also strongly influenced by atmospherically derived inputs, but metal contributions from native soils were important, as well, during the period of elevated sediment inputs from side-valley tributaries. Concentrations and accumulation rates of trace metals in both upper and lower lake sediments have decreased substantially since the 1970s due to decreased atmospheric inputs and sediment loadings, but accumulation rates remain well above pre-settlement values. Metal inputs to Lake St. Croix have been far lower than those to nearby Lake Pepin, located on the Mississippi River downstream of the Minneapolis-St. Paul metropolitan area, but there nevertheless remains a clear record of anthropogenic impact on the relatively pristine St. Croix River.  相似文献   

6.
Sediments from Lake Pepin on the Mississippi River, southeastern Minnesota, are used as provenance tracers to assess variations in hydrology and sediment-transport during the middle Holocene. Three rivers contribute sediment to Lake Pepin, and each catchment is characterized by a distinctly different geologic terrain. The geochemical fingerprint for each drainage basin was determined from the elemental composition of heavy minerals in the silt-sized fraction of modern sediment samples. Down-core elemental abundances were compared with these fingerprints by use of a chemical-mass-balance model that apportions sediment to the source areas. We observed a decreased contribution from the Minnesota River during the interval ~6700–5500 14C yr BP, which we attribute to decreased discharge of the Minnesota River, likely controlled by a combination of precipitation, snow melt, and groundwater input to the river. This hydrologic condition coincides with the mid-Holocene prairie period recorded by fossil pollen data. The occurrence of this feature in a proxy record for hydrologic variations supports the hypothesis that the mid-Holocene prairie period reflects drier conditions than before or after in midwestern North America.  相似文献   

7.
Long-term water quality monitoring data from two riverine lakes in the Upper Mississippi River basin, Lakes St. Croix and Pepin, were analyzed to compare the long-term average water quality conditions and land use distributions, water quality trends and loads at lake inlets and outlets, trends from long-term versus short-term monitoring records, and the ability of paleolimnological cores to accurately infer lake water quality conditions. During the 1976–2004 period, the long-term average concentrations of nutrients, suspended solids, and chlorophyll-a were consistently lower at the Lake St. Croix inlet versus the Lake Pepin inlet, which drains a greater proportion of urban and agricultural runoff. Despite these differences, nutrient trends were similar at the inlets to both lakes; reductions in total phosphorus and ammonium concentrations were attributed to improvements in point source technologies, whereas increasing nitrate concentrations were attributed to both point source changes and nonpoint source increases. Despite improvements in several water quality variables, nitrate concentrations are increasing in both lakes, sediment trends indicate persistent nonpoint source inputs to Lake Pepin, and current total phosphorus concentrations remain well above pre-1950s levels in both lakes. Since urban development and agriculture are increasing in the Lake St. Croix and Lake Pepin Watersheds, continued point source regulation and additional nonpoint source control efforts will be needed to further improve water quality in these lakes. The 1976–2004 trends for most water quality variables were similar at inlet versus outlet sites on Lake St. Croix. Trends at Lake Pepin inlet versus outlet sites were less similar, but data availability limited the comparison to the 1993–2003 period. While the truncated data record highlighted short-term trends in both lakes, the full data record was most useful for exploring general patterns in water quality. Length of monitoring record affected our ability to detect trends at the inlets to both lakes, and altered the magnitude of detected trends. During the two decades of the 1980s and 1990s, paleolimnological estimates of retained phosphorus loads were similar to those estimated from recent water quality monitoring. These similarities support the use of paleolimnological approaches to infer past water quality conditions in Lakes St. Croix and Pepin. This is one of eight papers dedicated to the “Recent Environmental History of the Upper Mississippi River” published in this special issue of the Journal of Paleolimnology. D. R. Engstrom served as guest editor of the special issue.  相似文献   

8.
Evaluation of land-use effects on coastal and marine ecosystems requires better understanding of the role of rivers in regulating mass transport from terrestrial to oceanic environments. Here we take advantage of the presence of a riverine lake to use paleoecological techniques to quantify impacts of logging, European-style agriculture, urbanization and continued terrestrial disturbance on mass transport and water quality in the northern drainage of the Mississippi River. Two 2-m sediment-cores recovered in 1999 from Lake St. Croix, a natural impoundment of the St. Croix River, were dated using 210Pb and 137Cs, and analyzed for historical changes (c. 1840–present) in sediment magnetic susceptibility, inorganic and organic matter content, biogenic silica, fossil pigments, and diatom microfossils. Inorganic sediment accumulation increased threefold between the mid-1800s and present, whereas clear signs of eutrophication were only evident after the mid-twentieth century when biogenic silica accumulation increased sixfold, diatom accumulation rates increased 20- to 50- fold, and the diatom community shifted from predominantly benthic species to assemblages composed mainly of planktonic taxa. Similarly, fossil pigment concentrations increased during the 1960s, and diatom-inferred total phosphorus (DI-TP) increased from ~30 μg TP l−1 c. 1910 to ~60 μg l−1 since 1990, similar to historical records since 1980. Together, these patterns demonstrate that initial land clearance did not result in substantive declines in water quality or nutrient mass transport, instead, substantial degradation of downstream environments was restricted to the latter half of the twentieth century. This is one of eight papers dedicated to the “Recent Environmental History of the Upper Mississippi River” published in this special issue of the Journal of Paleolimnology. D. R. Engstrom served as guest editor of the special issue.  相似文献   

9.
A simple binary mixing model is used to determine the isotopic ratios of lead (Pb) pollution sources to a lake located near a smelter closed because of excessive Pb aerosols (Horseshoe Lake Madison County, Illinois, USA). As a control, we also examine a relatively unpolluted lake in a rural area of Southern Illinois (Horseshoe Lake Alexander County). Sediment cores were taken from both lakes and analyzed for Pb and Pb isotopes by ICP-MS. The mixing model shows that Madison County Horseshoe Lake had 3 different sources of Pb in its history. The first source is sediment from the Mississippi River with an intermediate 206Pb/207Pb ratio (1.223 ± 0.009) which dominates inputs in pre-settlement times. From 1750 to 1933, the source of pollution Pb has the high 206Pb/207Pb ratio (1.256 ± 0.005) characteristic of ore from the southeast Missouri Pb mines. The most recently deposited pollution Pb comes from a source with a low 206Pb/207Pb ratio (1.202 ± 0.005). This source is similar in isotopic composition to pollution Pb found by several other investigators in the Eastern US and probably represents the mixture of ores used in modern industrial processes. It is unclear from the isotopic composition whether this source at Horseshoe Lake is the local Pb smelter or vehicle exhaust. The sediment core from Horseshoe Lake, Alexander County, shows a less variable isotopic composition. The binary mixing model showed a source composition of 1.225 ± 0.003 before 1850 and 1.231 ± 0.003 after this date. The change does not indicate a pollution source, but may be a shift in the sources of natural sediment with slightly different isotopic ratios to the lake. Our results show the value of simple binary mixing models to reconstruct the isotopic composition of Pb sources to lakes.  相似文献   

10.
Lake St. Croix is a natural impoundment of the lowermost 37 km of the St. Croix River in Minnesota and Wisconsin, making this one of a few large river systems in the world possessing a long-term depositional basin at its terminus. The river’s relatively pristine condition led to its designation as a National Scenic Riverway in 1968, but increasing urbanization in its lower reaches has raised concerns about impacts on water quality. This study was initiated to reconstruct historical loadings of suspended sediment and phosphorus (P) from the sediment record in Lake St. Croix. Twenty-four piston cores, with an average length of 2 m, were collected along eight transects of the lake. Dated chronologies from 210Pb, 137Cs and 14C were used to calculate the rate of sediment accumulation in the lake over the past 100+ years. Diatom microfossil analysis was used to reconstruct historical lakewater P concentrations over the same time period, and sediment P analysis quantified the amount of P trapped in lake sediments. Using a whole-lake mass balance approach, the loading of sediment and P to Lake St. Croix over the last 100+ years was calculated. Beginning in 1850, sediment accumulation increased dramatically to a peak in 1950–1960 of eight times background rates prior to European settlement. The peak is driven largely by sediment contributions from small side-valley catchment tributaries to the downstream half of the lake. The total P load to the lake increased sharply after 1940 and remains high, at around four times the level of pre-European settlement conditions. The timing of peak sediment and P loading to the lake shows that early settlement activities, such as logging and the conversion of forest and prairie to agricultural land between 1850 and 1890, had only modest impacts on the lake. By contrast, the mid-1900s brought major increases in sediment and P loading to the lake, suggesting that relatively recent activities on the landscape and changes to nutrient balances in the watershed have caused the current eutrophic condition of this important recreational and natural resource. This is one of eight papers dedicated to the “Recent Environmental History of the Upper Mississippi River” published in this special issue of the Journal of Paleolimnology. D. R. Engstrom served as guest editor of the special issue.  相似文献   

11.
Phosphorus accumulation rates in depositional zone sediments of Lake Okeechobee were determined in 11 mud-zone cores and two peat-zone cores dated by 210Pb. Although difficulties were encountered in interpreting 210Pb data from some sites, reliable dating of sediments from the mud zone of this shallow lake is possible. Sediment accumulation rates in this zone have increased during the present century by an average of about twofold, and accumulation of organic sediments in the lake during pre-settlement times apparently was much slower than during the past century. Concentrations of all forms of sedimentary P but especially nonapatite inorganic-P and organic-P also have increased since pre-settlement times and especially since about 1940. Annual P accumulation rates in the lake's sediments have increased about fourfold during the 1900s, with most of the increase occurring in the past 40–50 years. The recent accumulation rate of sedimentary P (past ~ 10 years) agrees within a factor of 1.5 with the net retention of P in the lake calculated from published input-output mass balances.  相似文献   

12.
Total organic carbon (TOC), total nitrogen (TN) and total phosphorus (TP) were determined in combination with stable isotope ratios of carbon and nitrogen (δ13COrg, δ15N) in a 63 cm sediment core from Longgan Lake, located in the middle reaches of the Yangtze River, China. These geochemical and isotopic records provide a continuous history of lake productivity and trophic state of Longgan Lake since 1890. Variations of δ13COrg, TOC, TN and TP indicate that primary productivity of Longgan Lake increased continuously during the last century and that the trophic state of the lake shifted from oligotrophic to mestrotrophic conditions accordingly. Anthropogenic sources of organic carbon (OC), nitrogen (N) and phosphorus (P) were distinguished from their natural background in the sediments using mass accumulation rates. Element mass accumulation rates suggested increased human activities in the lake’s catchment since 1950s, were especially the utilization of artificial fertilizers amplified the anthropogenic input of N and P into the lake. In the course of the improved availability of dissolved nutrients also primary productivity of Longgan Lake increased, resulting in an increase of the Suess-effect corrected organic carbon isotope ratios. δ15N of bulk sediments show a marked shift towards lower values around 1950 that has been attributed to the input of nitrogen from chemical fertilizers characterized by relatively depleted isotopic signatures into the lake.  相似文献   

13.
Lake Naivasha, Kenya, is one of a number of freshwater lakes in the East African Rift System. Since the beginning of the twentieth century, it has experienced greater anthropogenic influence as a result of increasingly intensive farming of coffee, tea, flowers, and other horticultural crops within its catchment. The water-level history of Lake Naivasha over the past 200 years was derived from a combination of instrumental records and sediment data. In this study, we analysed diatoms in a lake sediment core to infer past lacustrine conductivity and total phosphorus concentrations. We also measured total nitrogen and carbon concentrations in the sediments. Core chronology was established by 210Pb dating and covered a ~186-year history of natural (climatic) and human-induced environmental changes. Three stratigraphic zones in the core were identified using diatom assemblages. There was a change from littoral/epiphytic diatoms such as Gomphonema gracile and Cymbella muelleri, which occurred during a prolonged dry period from ca. 1820 to 1896 AD, through a transition period, to the present planktonic Aulacoseira sp. that favors nutrient-rich waters. This marked change in the diatom assemblage was caused by climate change, and later a strong anthropogenic overprint on the lake system. Increases in sediment accumulation rates since 1928, from 0.01 to 0.08 g cm−2 year−1 correlate with an increase in diatom-inferred total phosphorus concentrations since the beginning of the twentieth century. The increase in phosphorus accumulation suggests increasing eutrophication of freshwater Lake Naivasha. This study identified two major periods in the lake’s history: (1) the period from 1820 to 1950 AD, during which the lake was affected mainly by natural climate variations, and (2) the period since 1950, during which the effects of anthropogenic activity overprinted those of natural climate variation.  相似文献   

14.
Environmental change in Lake Taihu and its catchment since the early to middle part of the twentieth century has left a clear geochemical record in the lake sediments. The human activities in the lake and its catchment responsible for the change include agriculture, fishery, urbanisation, sewage and industrial waster disposal. Sediment cores were collected from Meilian Bay of northern Lake Taihu to investigate the record of anthropogenic impacts on the lake’s ecosystem and to assess its natural, pre-eutrophication baseline state. Two marked stratigraphic sediment units were identified on the basis of total phosphorus concentration (TP), pigments, total organic carbon (TOC)/total nitrogen (TN), δ13C and δ15N corresponding to stages in the lake history dominated by phytoplankton, and by aquatic macrophytes. Results show that as TP loading increased from the early 1950s the lake produced sediments with increasing amounts of organic matter derived from phytoplankton. In the early 1950s, the first evidence for eutrophication at the Meilian Bay site is recorded by an increase in C/N values and in sediment accumulation rate, but there is little change in phosphorus concentrations, pigments, δ13C and δ15N at this time. After 1990 a more rapid increase in trophic status took place indicated by increased levels of phosphorus, pigments, δ15N and by decreased δ13C and TOC/TN values in the lake sediments. The first increase in trophic status of the early 1950s results mainly from agricultural development in the catchment. In contrast, the acceleration from ca. 1990 originates from the recent development of fisheries and the urbanisation and industrialisation of the catchment.  相似文献   

15.
Tonle Sap Lake, Cambodia, possesses one of the most productive inland fisheries in the world and is a vital natural resource for the country. The lake is connected to the Mekong River via the Tonle Sap River. Flow in the Tonle Sap River reverses seasonally, with water exiting the lake in the dry season and entering the lake during the summer monsoon. This flood pulse drives the lake’s biological productivity. We used Sr, Nd, and Pb isotopes and elemental concentrations in lake sediment cores to track changes in the provenance of deposits in Tonle Sap Lake. We sought to determine when the lake first began to receive water and sediment input via the Mekong River, which initiated flood pulse processes. The transition from a non-pulsing lake to the Mekong-connected system is marked by shifts to values of 87Sr/86Sr, εNd, and 207Pb/204Pb that are characteristic of Mekong River sediments. In addition, magnetic susceptibility increased and sediment elemental composition changed. Elemental (P) measures point to enhanced phosphorus loading and C/N and isotope ratios of bulk organic matter indicate a shift to greater relative contribution of organic material from aquatic versus terrestrial environments, coinciding with the initiation of flood pulse processes. On the basis of radiocarbon dating in two cores, we estimate the initiation of the annual flood pulse occurred between ~4,450 and 3,910 cal year BP.  相似文献   

16.
Serpent River Bog lies north of North Channel, 10 m above Lake Huron and 15 m below the Nipissing Great Lake level. A 2.3 m Holocene sequence contains distinct alternating beds of inorganic clastic clay and organic peat that are interpreted as evidence of successive inundation and isolation by highstands and lowstands of the large Huron-Basin lake. Lowstand phases are confirmed by the presence of shallow-water pollen and plant macrofossil remains in peat units. Twelve 14C dates on peat, wood and plant macrofossils combined with previously published 14C ages of lake-level indicators confirm much of the known early Holocene lake-level history with one notable exception. A new Late Mattawa highstand (8,390 [9,400 cal]–8,220 [9,200 cal] BP) evidenced by a sticky blue-grey clay bed is tied to outburst floods of glacial Lake Minong during erosion of the Nadoway drift barrier in the eastern Lake Superior basin. A subsequent Late Mattawa highstand (8,110 [9,040 cal]–8,060 [8,970 cal] BP) is attributed to enhanced meltwater inflows that first had deposited thick varves throughout Superior Basin. Inundation by the Nadoway floods and possibly the last Mattawa flood were likely responsible for termination of the Olson Forest (southern Lake Michigan). A pollen diagram supports the recognized progression of Holocene vegetation, and defines a subzone implying a very dry, cool climate about 7.8–7.5 (8.6–8.3 cal) ka BP based on the Alnus crispa profile during the Late Stanley lowstand. A new date of 9,470 ± 25 (10,680–10,750 cal) BP on basal peat over lacustrine clay at Espanola West Bog supports the previous interpretation of the Early Mattawa highstand at ca. 9,500 (10,740 cal) BP. The organic and clastic sediment units at these two bogs are correlated with other records showing coherent evidence of Holocene repeated inundation and isolation around northern Lake Huron. Taken together the previous and new lake-level data suggest that the Huron and Georgian basin lakes were mainly closed lowstands throughout early Holocene time except for short-lived highstands. Three of the lowstands were exceptionally low, and likely caused three episodes of offshore sediment erosion which had been previously identified as seismo-stratigraphic sequence boundaries.  相似文献   

17.
Monthly limnological monitoring in Lake Sanabria (Spain) since 1986 provided a unique opportunity to test relationships among climate, hydrology and lake dynamics and how they are recorded in the lake sediments. Four datasets were employed: (1) meteorological (monthly maximum and minimum air temperature and total precipitation), (2) limnological (Secchi disk, water temperature, conductivity, pH, dissolved oxygen, nitrate, silicon, total and reactive phosphorus, and total chlorophylls and chlorophyll a), (3) hydrological (Tera River water input and output), and (4) XRF core scanner measurements carried out in short cores. Linear models between the different dataset variables allowed us to characterize the climate signal transmission from one to the other and cross-correlation analyses permitted us to identify the different response times (if any) between them. Principal Component Analyses (PCA) of the limnological and geochemical datasets allowed us to identify the main processes that link lake dynamics, primarily nutrient supply and organic productivity, with some sedimentological processes, e.g. organic matter and phosphorus accumulation. Sediment chronology was established by gamma spectrometry (210Pb). Water input to Lake Sanabria is controlled mostly by the Tera River input and is linked directly to precipitation. Response of the Lake Sanabria water budget to climate oscillations is immediate, as the strongest correlation between these two datasets occurs with no lag time. PCA of the limnological dataset indicated that most of the variance is related to nutrient input, and comparison with the Tera River water discharge shows that nutrient input was controlled mainly by oscillations in the hydrological balance. The lag time between the hydrological and limnological datasets is 1 month. The PCA of the XRF core scanner dataset showed that the principal process that controls the chemical composition of the Lake Sanabria sediments is related to sediment and nutrient delivery from the Tera River and organic productivity. Comparison of the nutrient input reconstructed using the limnological dataset and the XRF core scanner data indicated that the sediments act as a low-pass filter, smoothing the climate signal. It was, however, possible to establish the link between these datasets, and obtain a quantitative reconstruction of precipitation for the 1959–2005 AD period that captures the regional variability. This quantitative precipitation reconstruction suggests it is possible to obtain accurate climate reconstructions using non-laminated sediments.  相似文献   

18.
We present a sedimentary geochemical record of human perturbation in the watershed and related changes in trace metals (Cr, Ni, Zn and Pb), phosphorus and abundant rock-forming elements (Al, Fe, K, Mg, etc.) in Chaohu Lake over the past 500 years, a period spanning historical agricultural expansion and modern economic development. The record exhibited a stable terrestrial detrital input to Chaohu Lake before ca. 1540 AD, a period with less human perturbation of the watershed, which resulted in low and constant values of trace metals and phosphorus (TP) concentrations as well as Al, Fe, K, Mg, fine silt (<16 μm), the chemical index of alteration (CIA) and K/Na ratio. Two periods of successive marked increases in Al, Fe, K, Mg, fine silt, chemical index of alteration (CIA) and K/Na ratio occurred after ca. 1540 AD and 1950 AD. The former period apparently resulted from enhanced well-weathered topsoil erosion in the watershed related to the expansion of arable land, and the latter resulted from further enhancement of human perturbation in the watershed during the modern period. Concentrations of trace metals and TP were positively correlated with that of the rock-forming elements and fine silt. Trace metal pollution was limited during 1540–1950 AD, according to the low enrichment factors (EFs = 0.8–1.1), when an increase in trace metal concentrations was also linked to changes in detrital input. In addition to detrital regulation, pollution also contributed to an increase in TP concentrations (average EF 1.4) during 1540–1950 AD and the average accumulation rate of anthropogenic phosphorus was 87.3 mg m−2 a−1. Anthropogenic phosphorus increased further and Pb and Zn pollution also occurred after 1950 AD, reaching maximum values after 1980 AD, when the average accumulation rates of anthropogenic Zn, Pb and phosphorus (mainly in the form of NaOH-P) were 242.2, 43.3 and 811.8 mg m−2 a−1, respectively. The increase in phosphorus pollution in recent decades is probably from the domestic sewage sources of Hefei City and non-point sources related to agricultural utilization of commercial fertilizer, whereas Zn and Pb pollution is probably derived mainly from industrial sources of Hefei City, as deduced from their spatial variations in the sediments of the river mouths.  相似文献   

19.
We used 210Pb-dated sediment cores from wetlands and Blue Cypress Lake, in the Upper St. Johns River Basin (USJRB), Florida, USA, to measure historical accumulation rates of bulk sediment, total carbon (C), total nitrogen (N), and total phosphorus (P). Marsh cores displayed similar stratigraphies with respect to physical properties and nutrient content. Wetland sediments typically contained > 900 mg organic matter (OM) g–1 dry mass, > 500 mg C g–1, and 30–40 mg N g–1. OM, C, and N concentrations were slightly lower in uppermost sediments of most cores, but displayed no strong stratigraphic trends. Total P concentrations were relatively low in bottommost deposits (0.01–0.11 mg g–1), but ranged from 0.38–2.67 mg g–1 in surface sediments. The mean sediment accretion rate in the marsh since ~ 1900, 0.33 ± 0.05 cm yr–1, was calculated from ten 210Pb-dated cores. All sites displayed increases in accumulation rates of bulk sediment, C, N, and P since the early part of the 20th century. These trends are attributed to recent hydrologic modifications in the basin combined with high nutrient loading from agricultural, residential, and urban sources.  相似文献   

20.
The water level of the Lake Michigan basin is currently 177 m above sea level. Around 9,800 14C years B.P., the lake level in the Lake Michigan basin had dropped to its lowest level in prehistory, about 70 m above sea level. This low level (Lake Chippewa) had profound effects on the rivers flowing directly into the basin. Recent studies of the St. Joseph River indicate that the extreme low lake level rejuvenated the river, causing massive incision of up to 43 m in a valley no more than 1.6 km wide. The incision is seen 25 km upstream of the present shoreline. As lake level rose from the Chippewa low, the St. Joseph River lost competence and its estuary migrated back upstream. Floodplain and channel sediments partially refilled the recently excavated valley leaving a distinctly non-classical morphology of steep sides with a broad, flat bottom. The valley walls of the lower St. Joseph River are 12–18 m tall and borings reveal up to 30 m of infill sediment below the modern floodplain. About 3 × 108 m3 of sediment was removed from the St. Joseph River valley during the Chippewa phase lowstand, a massive volume, some of which likely resides in a lowstand delta approximately 30 km off-shore in Lake Michigan. The active floodplain below Niles, Michigan, is inset into an upper terrace and delta graded to the Calumet level (189 m) of Lake Chicago. In the lower portion of the terrace stratigraphy a 1.5–2.0 m thick section of clast-supported gravel marks the entry of the main St. Joseph River drainage above South Bend, Indiana, into the Lake Michigan basin. This gravel layer represents the consolidation of drainage that probably occurred during final melting out of ice-marginal kettle chains allowing stream piracy to proceed between Niles and South Bend. It is unlikely that the St. Joseph River is palimpsest upon a bedrock valley. The landform it cuts across is a glaciofluvial-deltaic feature rather than a classic unsorted moraine that would drape over pre-glacial topography. This is the fifth in a series of ten papers published in this special issue of Journal of Paleolimnology. These papers were presented at the 47th Annual Meeting of the International Association for Great Lakes Research (2004), held at the University of Waterloo, Waterloo, Ontario, Canada. P.F. Karrow and C.F.M. Lewis were guest editors of this special issue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号